L(s) = 1 | + (−2 + 2i)3-s + (2 + 2i)7-s − 5i·9-s + (−1 − i)13-s + (5 − 5i)17-s + 4·19-s − 8·21-s + (2 − 2i)23-s + (4 + 4i)27-s − 4i·29-s − 4i·31-s + (1 − i)37-s + 4·39-s + (6 − 6i)43-s + (−2 − 2i)47-s + ⋯ |
L(s) = 1 | + (−1.15 + 1.15i)3-s + (0.755 + 0.755i)7-s − 1.66i·9-s + (−0.277 − 0.277i)13-s + (1.21 − 1.21i)17-s + 0.917·19-s − 1.74·21-s + (0.417 − 0.417i)23-s + (0.769 + 0.769i)27-s − 0.742i·29-s − 0.718i·31-s + (0.164 − 0.164i)37-s + 0.640·39-s + (0.914 − 0.914i)43-s + (−0.291 − 0.291i)47-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(0.850−0.525i)Λ(2−s)
Λ(s)=(=(1600s/2ΓC(s+1/2)L(s)(0.850−0.525i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
0.850−0.525i
|
Analytic conductor: |
12.7760 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(1343,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1600, ( :1/2), 0.850−0.525i)
|
Particular Values
L(1) |
≈ |
1.236908878 |
L(21) |
≈ |
1.236908878 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(2−2i)T−3iT2 |
| 7 | 1+(−2−2i)T+7iT2 |
| 11 | 1−11T2 |
| 13 | 1+(1+i)T+13iT2 |
| 17 | 1+(−5+5i)T−17iT2 |
| 19 | 1−4T+19T2 |
| 23 | 1+(−2+2i)T−23iT2 |
| 29 | 1+4iT−29T2 |
| 31 | 1+4iT−31T2 |
| 37 | 1+(−1+i)T−37iT2 |
| 41 | 1+41T2 |
| 43 | 1+(−6+6i)T−43iT2 |
| 47 | 1+(2+2i)T+47iT2 |
| 53 | 1+(7+7i)T+53iT2 |
| 59 | 1−4T+59T2 |
| 61 | 1−4T+61T2 |
| 67 | 1+(−10−10i)T+67iT2 |
| 71 | 1−12iT−71T2 |
| 73 | 1+(−3−3i)T+73iT2 |
| 79 | 1+16T+79T2 |
| 83 | 1+(−2+2i)T−83iT2 |
| 89 | 1−89T2 |
| 97 | 1+(−3+3i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.824035746050276995318001059359, −8.879497359957271322294128083006, −7.910183342301211870629676942020, −7.00621352936811647541120539422, −5.76375537033056747436714548833, −5.37128852542097409721740056601, −4.75438873219656222026554312231, −3.71702910636198709638027100023, −2.54172334288598827486348885621, −0.74224336133570552787174303818,
1.04196385229980683940419055957, 1.64414702522611555776394123864, 3.29613539383094573066654059563, 4.58476895883111918494663699182, 5.37475069642031071734892128175, 6.10907772588770603036871078024, 6.99354812874300665672723799699, 7.61727826073966844802561949689, 8.133125465690917920606161970208, 9.413622223939550624798789734255