Properties

Label 2-40e2-20.3-c1-0-17
Degree $2$
Conductor $1600$
Sign $0.850 - 0.525i$
Analytic cond. $12.7760$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2 + 2i)3-s + (2 + 2i)7-s − 5i·9-s + (−1 − i)13-s + (5 − 5i)17-s + 4·19-s − 8·21-s + (2 − 2i)23-s + (4 + 4i)27-s − 4i·29-s − 4i·31-s + (1 − i)37-s + 4·39-s + (6 − 6i)43-s + (−2 − 2i)47-s + ⋯
L(s)  = 1  + (−1.15 + 1.15i)3-s + (0.755 + 0.755i)7-s − 1.66i·9-s + (−0.277 − 0.277i)13-s + (1.21 − 1.21i)17-s + 0.917·19-s − 1.74·21-s + (0.417 − 0.417i)23-s + (0.769 + 0.769i)27-s − 0.742i·29-s − 0.718i·31-s + (0.164 − 0.164i)37-s + 0.640·39-s + (0.914 − 0.914i)43-s + (−0.291 − 0.291i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1600\)    =    \(2^{6} \cdot 5^{2}\)
Sign: $0.850 - 0.525i$
Analytic conductor: \(12.7760\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1600} (1343, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1600,\ (\ :1/2),\ 0.850 - 0.525i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.236908878\)
\(L(\frac12)\) \(\approx\) \(1.236908878\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + (2 - 2i)T - 3iT^{2} \)
7 \( 1 + (-2 - 2i)T + 7iT^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 + (1 + i)T + 13iT^{2} \)
17 \( 1 + (-5 + 5i)T - 17iT^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 + (-2 + 2i)T - 23iT^{2} \)
29 \( 1 + 4iT - 29T^{2} \)
31 \( 1 + 4iT - 31T^{2} \)
37 \( 1 + (-1 + i)T - 37iT^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + (-6 + 6i)T - 43iT^{2} \)
47 \( 1 + (2 + 2i)T + 47iT^{2} \)
53 \( 1 + (7 + 7i)T + 53iT^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 - 4T + 61T^{2} \)
67 \( 1 + (-10 - 10i)T + 67iT^{2} \)
71 \( 1 - 12iT - 71T^{2} \)
73 \( 1 + (-3 - 3i)T + 73iT^{2} \)
79 \( 1 + 16T + 79T^{2} \)
83 \( 1 + (-2 + 2i)T - 83iT^{2} \)
89 \( 1 - 89T^{2} \)
97 \( 1 + (-3 + 3i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.824035746050276995318001059359, −8.879497359957271322294128083006, −7.910183342301211870629676942020, −7.00621352936811647541120539422, −5.76375537033056747436714548833, −5.37128852542097409721740056601, −4.75438873219656222026554312231, −3.71702910636198709638027100023, −2.54172334288598827486348885621, −0.74224336133570552787174303818, 1.04196385229980683940419055957, 1.64414702522611555776394123864, 3.29613539383094573066654059563, 4.58476895883111918494663699182, 5.37475069642031071734892128175, 6.10907772588770603036871078024, 6.99354812874300665672723799699, 7.61727826073966844802561949689, 8.133125465690917920606161970208, 9.413622223939550624798789734255

Graph of the $Z$-function along the critical line