Properties

Label 1600.2.n.a
Level 16001600
Weight 22
Character orbit 1600.n
Analytic conductor 12.77612.776
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1600,2,Mod(1343,1600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1600.1343");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1600=2652 1600 = 2^{6} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1600.n (of order 44, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.776064323412.7760643234
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2i2)q3+(2i+2)q7+5iq9+(i1)q13+(5i+5)q17+4q198q21+(2i+2)q23+(4i+4)q27+4iq29+4iq31+(i+1)q37+4q39++(3i+3)q97+O(q100) q + ( - 2 i - 2) q^{3} + ( - 2 i + 2) q^{7} + 5 i q^{9} + (i - 1) q^{13} + (5 i + 5) q^{17} + 4 q^{19} - 8 q^{21} + (2 i + 2) q^{23} + ( - 4 i + 4) q^{27} + 4 i q^{29} + 4 i q^{31} + (i + 1) q^{37} + 4 q^{39}+ \cdots + (3 i + 3) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q3+4q72q13+10q17+8q1916q21+4q23+8q27+2q37+8q39+12q434q4714q5316q57+8q59+8q61+20q63+20q67++6q97+O(q100) 2 q - 4 q^{3} + 4 q^{7} - 2 q^{13} + 10 q^{17} + 8 q^{19} - 16 q^{21} + 4 q^{23} + 8 q^{27} + 2 q^{37} + 8 q^{39} + 12 q^{43} - 4 q^{47} - 14 q^{53} - 16 q^{57} + 8 q^{59} + 8 q^{61} + 20 q^{63} + 20 q^{67}+ \cdots + 6 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1600Z)×\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times.

nn 577577 901901 11511151
χ(n)\chi(n) ii 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1343.1
1.00000i
1.00000i
0 −2.00000 + 2.00000i 0 0 0 2.00000 + 2.00000i 0 5.00000i 0
1407.1 0 −2.00000 2.00000i 0 0 0 2.00000 2.00000i 0 5.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1600.2.n.a 2
4.b odd 2 1 1600.2.n.n 2
5.b even 2 1 320.2.n.h 2
5.c odd 4 1 320.2.n.a 2
5.c odd 4 1 1600.2.n.n 2
8.b even 2 1 800.2.n.j 2
8.d odd 2 1 800.2.n.a 2
20.d odd 2 1 320.2.n.a 2
20.e even 4 1 320.2.n.h 2
20.e even 4 1 inner 1600.2.n.a 2
40.e odd 2 1 160.2.n.f yes 2
40.f even 2 1 160.2.n.a 2
40.i odd 4 1 160.2.n.f yes 2
40.i odd 4 1 800.2.n.a 2
40.k even 4 1 160.2.n.a 2
40.k even 4 1 800.2.n.j 2
80.i odd 4 1 1280.2.o.o 2
80.j even 4 1 1280.2.o.p 2
80.k odd 4 1 1280.2.o.b 2
80.k odd 4 1 1280.2.o.o 2
80.q even 4 1 1280.2.o.a 2
80.q even 4 1 1280.2.o.p 2
80.s even 4 1 1280.2.o.a 2
80.t odd 4 1 1280.2.o.b 2
120.i odd 2 1 1440.2.x.i 2
120.m even 2 1 1440.2.x.j 2
120.q odd 4 1 1440.2.x.i 2
120.w even 4 1 1440.2.x.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.2.n.a 2 40.f even 2 1
160.2.n.a 2 40.k even 4 1
160.2.n.f yes 2 40.e odd 2 1
160.2.n.f yes 2 40.i odd 4 1
320.2.n.a 2 5.c odd 4 1
320.2.n.a 2 20.d odd 2 1
320.2.n.h 2 5.b even 2 1
320.2.n.h 2 20.e even 4 1
800.2.n.a 2 8.d odd 2 1
800.2.n.a 2 40.i odd 4 1
800.2.n.j 2 8.b even 2 1
800.2.n.j 2 40.k even 4 1
1280.2.o.a 2 80.q even 4 1
1280.2.o.a 2 80.s even 4 1
1280.2.o.b 2 80.k odd 4 1
1280.2.o.b 2 80.t odd 4 1
1280.2.o.o 2 80.i odd 4 1
1280.2.o.o 2 80.k odd 4 1
1280.2.o.p 2 80.j even 4 1
1280.2.o.p 2 80.q even 4 1
1440.2.x.i 2 120.i odd 2 1
1440.2.x.i 2 120.q odd 4 1
1440.2.x.j 2 120.m even 2 1
1440.2.x.j 2 120.w even 4 1
1600.2.n.a 2 1.a even 1 1 trivial
1600.2.n.a 2 20.e even 4 1 inner
1600.2.n.n 2 4.b odd 2 1
1600.2.n.n 2 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1600,[χ])S_{2}^{\mathrm{new}}(1600, [\chi]):

T32+4T3+8 T_{3}^{2} + 4T_{3} + 8 Copy content Toggle raw display
T724T7+8 T_{7}^{2} - 4T_{7} + 8 Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display
T132+2T13+2 T_{13}^{2} + 2T_{13} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+4T+8 T^{2} + 4T + 8 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T24T+8 T^{2} - 4T + 8 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
1717 T210T+50 T^{2} - 10T + 50 Copy content Toggle raw display
1919 (T4)2 (T - 4)^{2} Copy content Toggle raw display
2323 T24T+8 T^{2} - 4T + 8 Copy content Toggle raw display
2929 T2+16 T^{2} + 16 Copy content Toggle raw display
3131 T2+16 T^{2} + 16 Copy content Toggle raw display
3737 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T212T+72 T^{2} - 12T + 72 Copy content Toggle raw display
4747 T2+4T+8 T^{2} + 4T + 8 Copy content Toggle raw display
5353 T2+14T+98 T^{2} + 14T + 98 Copy content Toggle raw display
5959 (T4)2 (T - 4)^{2} Copy content Toggle raw display
6161 (T4)2 (T - 4)^{2} Copy content Toggle raw display
6767 T220T+200 T^{2} - 20T + 200 Copy content Toggle raw display
7171 T2+144 T^{2} + 144 Copy content Toggle raw display
7373 T26T+18 T^{2} - 6T + 18 Copy content Toggle raw display
7979 (T+16)2 (T + 16)^{2} Copy content Toggle raw display
8383 T24T+8 T^{2} - 4T + 8 Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T26T+18 T^{2} - 6T + 18 Copy content Toggle raw display
show more
show less