L(s) = 1 | + (1.81 − 3.13i)2-s + (−0.112 − 0.195i)3-s + (−2.56 − 4.44i)4-s + (−1.55 + 2.69i)5-s − 0.817·6-s + (−8.28 − 16.5i)7-s + 10.3·8-s + (13.4 − 23.3i)9-s + (5.64 + 9.77i)10-s + (−13.6 − 23.6i)11-s + (−0.579 + 1.00i)12-s − 46.9·13-s + (−66.9 − 4.02i)14-s + 0.702·15-s + (39.3 − 68.1i)16-s + (−30.3 − 52.6i)17-s + ⋯ |
L(s) = 1 | + (0.640 − 1.10i)2-s + (−0.0217 − 0.0376i)3-s + (−0.320 − 0.555i)4-s + (−0.139 + 0.241i)5-s − 0.0556·6-s + (−0.447 − 0.894i)7-s + 0.459·8-s + (0.499 − 0.864i)9-s + (0.178 + 0.308i)10-s + (−0.374 − 0.648i)11-s + (−0.0139 + 0.0241i)12-s − 1.00·13-s + (−1.27 − 0.0769i)14-s + 0.0120·15-s + (0.614 − 1.06i)16-s + (−0.433 − 0.750i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.864 + 0.502i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.864 + 0.502i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.529194 - 1.96199i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.529194 - 1.96199i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (8.28 + 16.5i)T \) |
| 23 | \( 1 + (-11.5 + 19.9i)T \) |
good | 2 | \( 1 + (-1.81 + 3.13i)T + (-4 - 6.92i)T^{2} \) |
| 3 | \( 1 + (0.112 + 0.195i)T + (-13.5 + 23.3i)T^{2} \) |
| 5 | \( 1 + (1.55 - 2.69i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (13.6 + 23.6i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 46.9T + 2.19e3T^{2} \) |
| 17 | \( 1 + (30.3 + 52.6i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (0.916 - 1.58i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 29 | \( 1 - 115.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-32.9 - 57.0i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (4.26 - 7.38i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 129.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 200.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-38.8 + 67.3i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-14.2 - 24.6i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (25.6 + 44.3i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-30.5 + 52.9i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-8.64 - 14.9i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 366.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-455. - 788. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-611. + 1.05e3i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 - 825.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (348. - 604. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + 658.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.08541874580112826017010394788, −11.07909636723422349360340240060, −10.28680381978303728249281129481, −9.348687653089069348374132590516, −7.59275909589948790080300945082, −6.70424173718109941940030815110, −4.91120153520309800844354696173, −3.76918875129613470907039213603, −2.74849234956810982933598187025, −0.792845145145772000889433210846,
2.27029702687444827053645783945, 4.41931712490504885616502861771, 5.20517564707635295621585456862, 6.37350196119753679946133759786, 7.42467980597244703581058791379, 8.349172650189480176984421210863, 9.753748314799284560336951920450, 10.73800243837981416363099749909, 12.33115433582182043296008821400, 12.87416676149259432609094433513