Properties

Label 161.4.e.a.93.18
Level $161$
Weight $4$
Character 161.93
Analytic conductor $9.499$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,4,Mod(93,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.93");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.49930751092\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 93.18
Character \(\chi\) \(=\) 161.93
Dual form 161.4.e.a.116.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.81191 - 3.13831i) q^{2} +(-0.112864 - 0.195487i) q^{3} +(-2.56601 - 4.44446i) q^{4} +(-1.55669 + 2.69626i) q^{5} -0.818000 q^{6} +(-8.28058 - 16.5660i) q^{7} +10.3930 q^{8} +(13.4745 - 23.3386i) q^{9} +(5.64114 + 9.77074i) q^{10} +(-13.6603 - 23.6604i) q^{11} +(-0.579223 + 1.00324i) q^{12} -46.9064 q^{13} +(-66.9929 - 4.02897i) q^{14} +0.702778 q^{15} +(39.3593 - 68.1722i) q^{16} +(-30.3738 - 52.6090i) q^{17} +(-48.8292 - 84.5746i) q^{18} +(-0.916584 + 1.58757i) q^{19} +15.9779 q^{20} +(-2.30385 + 3.48846i) q^{21} -99.0050 q^{22} +(11.5000 - 19.9186i) q^{23} +(-1.17300 - 2.03170i) q^{24} +(57.6535 + 99.8587i) q^{25} +(-84.9901 + 147.207i) q^{26} -12.1779 q^{27} +(-52.3788 + 79.3112i) q^{28} +115.694 q^{29} +(1.27337 - 2.20554i) q^{30} +(32.9474 + 57.0666i) q^{31} +(-101.059 - 175.039i) q^{32} +(-3.08353 + 5.34084i) q^{33} -220.138 q^{34} +(57.5565 + 3.46146i) q^{35} -138.303 q^{36} +(-4.26505 + 7.38728i) q^{37} +(3.32153 + 5.75306i) q^{38} +(5.29407 + 9.16960i) q^{39} +(-16.1787 + 28.0223i) q^{40} +129.654 q^{41} +(6.77351 + 13.5510i) q^{42} +200.276 q^{43} +(-70.1052 + 121.426i) q^{44} +(41.9512 + 72.6616i) q^{45} +(-41.6739 - 72.1812i) q^{46} +(38.8781 - 67.3388i) q^{47} -17.7691 q^{48} +(-205.864 + 274.352i) q^{49} +417.851 q^{50} +(-6.85625 + 11.8754i) q^{51} +(120.362 + 208.474i) q^{52} +(14.2548 + 24.6901i) q^{53} +(-22.0651 + 38.2180i) q^{54} +85.0594 q^{55} +(-86.0602 - 172.171i) q^{56} +0.413799 q^{57} +(209.627 - 363.084i) q^{58} +(-25.6223 - 44.3792i) q^{59} +(-1.80334 - 3.12347i) q^{60} +(30.5548 - 52.9225i) q^{61} +238.791 q^{62} +(-498.203 - 29.9621i) q^{63} -102.686 q^{64} +(73.0186 - 126.472i) q^{65} +(11.1742 + 19.3542i) q^{66} +(8.64942 + 14.9812i) q^{67} +(-155.879 + 269.990i) q^{68} -5.19177 q^{69} +(115.150 - 174.358i) q^{70} +366.502 q^{71} +(140.041 - 242.558i) q^{72} +(455.230 + 788.481i) q^{73} +(15.4557 + 26.7701i) q^{74} +(13.0141 - 22.5410i) q^{75} +9.40786 q^{76} +(-278.842 + 422.219i) q^{77} +38.3694 q^{78} +(611.129 - 1058.51i) q^{79} +(122.540 + 212.246i) q^{80} +(-362.438 - 627.760i) q^{81} +(234.921 - 406.895i) q^{82} +825.101 q^{83} +(21.4160 + 1.28797i) q^{84} +189.130 q^{85} +(362.881 - 628.529i) q^{86} +(-13.0577 - 22.6167i) q^{87} +(-141.972 - 245.903i) q^{88} +(-348.966 + 604.426i) q^{89} +304.047 q^{90} +(388.412 + 777.051i) q^{91} -118.036 q^{92} +(7.43719 - 12.8816i) q^{93} +(-140.887 - 244.023i) q^{94} +(-2.85367 - 4.94270i) q^{95} +(-22.8118 + 39.5113i) q^{96} -658.577 q^{97} +(487.996 + 1143.17i) q^{98} -736.266 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 6 q^{3} - 88 q^{4} - 20 q^{5} + 24 q^{6} - 12 q^{7} + 42 q^{8} - 238 q^{9} - 182 q^{10} + 28 q^{11} - 127 q^{12} + 440 q^{13} + 16 q^{14} + 40 q^{15} - 436 q^{16} - 294 q^{17} + 155 q^{18} - 252 q^{19}+ \cdots - 5764 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/161\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(120\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.81191 3.13831i 0.640606 1.10956i −0.344692 0.938716i \(-0.612017\pi\)
0.985298 0.170846i \(-0.0546500\pi\)
\(3\) −0.112864 0.195487i −0.0217208 0.0376215i 0.854961 0.518693i \(-0.173581\pi\)
−0.876681 + 0.481071i \(0.840248\pi\)
\(4\) −2.56601 4.44446i −0.320751 0.555558i
\(5\) −1.55669 + 2.69626i −0.139234 + 0.241161i −0.927207 0.374549i \(-0.877797\pi\)
0.787973 + 0.615710i \(0.211131\pi\)
\(6\) −0.818000 −0.0556578
\(7\) −8.28058 16.5660i −0.447109 0.894479i
\(8\) 10.3930 0.459311
\(9\) 13.4745 23.3386i 0.499056 0.864391i
\(10\) 5.64114 + 9.77074i 0.178388 + 0.308978i
\(11\) −13.6603 23.6604i −0.374432 0.648534i 0.615810 0.787895i \(-0.288829\pi\)
−0.990242 + 0.139360i \(0.955495\pi\)
\(12\) −0.579223 + 1.00324i −0.0139339 + 0.0241343i
\(13\) −46.9064 −1.00073 −0.500365 0.865814i \(-0.666801\pi\)
−0.500365 + 0.865814i \(0.666801\pi\)
\(14\) −66.9929 4.02897i −1.27890 0.0769135i
\(15\) 0.702778 0.0120971
\(16\) 39.3593 68.1722i 0.614988 1.06519i
\(17\) −30.3738 52.6090i −0.433337 0.750562i 0.563821 0.825897i \(-0.309331\pi\)
−0.997158 + 0.0753349i \(0.975997\pi\)
\(18\) −48.8292 84.5746i −0.639397 1.10747i
\(19\) −0.916584 + 1.58757i −0.0110673 + 0.0191691i −0.871506 0.490385i \(-0.836856\pi\)
0.860439 + 0.509554i \(0.170190\pi\)
\(20\) 15.9779 0.178638
\(21\) −2.30385 + 3.48846i −0.0239401 + 0.0362497i
\(22\) −99.0050 −0.959452
\(23\) 11.5000 19.9186i 0.104257 0.180579i
\(24\) −1.17300 2.03170i −0.00997659 0.0172800i
\(25\) 57.6535 + 99.8587i 0.461228 + 0.798870i
\(26\) −84.9901 + 147.207i −0.641074 + 1.11037i
\(27\) −12.1779 −0.0868011
\(28\) −52.3788 + 79.3112i −0.353524 + 0.535300i
\(29\) 115.694 0.740822 0.370411 0.928868i \(-0.379217\pi\)
0.370411 + 0.928868i \(0.379217\pi\)
\(30\) 1.27337 2.20554i 0.00774947 0.0134225i
\(31\) 32.9474 + 57.0666i 0.190888 + 0.330628i 0.945545 0.325492i \(-0.105530\pi\)
−0.754657 + 0.656120i \(0.772197\pi\)
\(32\) −101.059 175.039i −0.558275 0.966960i
\(33\) −3.08353 + 5.34084i −0.0162659 + 0.0281733i
\(34\) −220.138 −1.11039
\(35\) 57.5565 + 3.46146i 0.277966 + 0.0167170i
\(36\) −138.303 −0.640292
\(37\) −4.26505 + 7.38728i −0.0189505 + 0.0328233i −0.875345 0.483499i \(-0.839366\pi\)
0.856395 + 0.516322i \(0.172699\pi\)
\(38\) 3.32153 + 5.75306i 0.0141796 + 0.0245597i
\(39\) 5.29407 + 9.16960i 0.0217367 + 0.0376490i
\(40\) −16.1787 + 28.0223i −0.0639518 + 0.110768i
\(41\) 129.654 0.493867 0.246933 0.969032i \(-0.420577\pi\)
0.246933 + 0.969032i \(0.420577\pi\)
\(42\) 6.77351 + 13.5510i 0.0248851 + 0.0497848i
\(43\) 200.276 0.710274 0.355137 0.934814i \(-0.384434\pi\)
0.355137 + 0.934814i \(0.384434\pi\)
\(44\) −70.1052 + 121.426i −0.240199 + 0.416037i
\(45\) 41.9512 + 72.6616i 0.138971 + 0.240706i
\(46\) −41.6739 72.1812i −0.133576 0.231360i
\(47\) 38.8781 67.3388i 0.120658 0.208987i −0.799369 0.600840i \(-0.794833\pi\)
0.920028 + 0.391854i \(0.128166\pi\)
\(48\) −17.7691 −0.0534321
\(49\) −205.864 + 274.352i −0.600187 + 0.799860i
\(50\) 417.851 1.18186
\(51\) −6.85625 + 11.8754i −0.0188248 + 0.0326056i
\(52\) 120.362 + 208.474i 0.320986 + 0.555964i
\(53\) 14.2548 + 24.6901i 0.0369444 + 0.0639895i 0.883906 0.467664i \(-0.154904\pi\)
−0.846962 + 0.531653i \(0.821571\pi\)
\(54\) −22.0651 + 38.2180i −0.0556053 + 0.0963112i
\(55\) 85.0594 0.208535
\(56\) −86.0602 172.171i −0.205362 0.410844i
\(57\) 0.413799 0.000961562
\(58\) 209.627 363.084i 0.474575 0.821988i
\(59\) −25.6223 44.3792i −0.0565380 0.0979267i 0.836371 0.548164i \(-0.184673\pi\)
−0.892909 + 0.450237i \(0.851340\pi\)
\(60\) −1.80334 3.12347i −0.00388016 0.00672064i
\(61\) 30.5548 52.9225i 0.0641336 0.111083i −0.832176 0.554512i \(-0.812905\pi\)
0.896309 + 0.443429i \(0.146238\pi\)
\(62\) 238.791 0.489136
\(63\) −498.203 29.9621i −0.996313 0.0599185i
\(64\) −102.686 −0.200559
\(65\) 73.0186 126.472i 0.139336 0.241337i
\(66\) 11.1742 + 19.3542i 0.0208400 + 0.0360960i
\(67\) 8.64942 + 14.9812i 0.0157716 + 0.0273171i 0.873803 0.486279i \(-0.161646\pi\)
−0.858032 + 0.513596i \(0.828313\pi\)
\(68\) −155.879 + 269.990i −0.277987 + 0.481488i
\(69\) −5.19177 −0.00905819
\(70\) 115.150 174.358i 0.196615 0.297712i
\(71\) 366.502 0.612616 0.306308 0.951932i \(-0.400906\pi\)
0.306308 + 0.951932i \(0.400906\pi\)
\(72\) 140.041 242.558i 0.229222 0.397024i
\(73\) 455.230 + 788.481i 0.729872 + 1.26418i 0.956937 + 0.290295i \(0.0937536\pi\)
−0.227065 + 0.973880i \(0.572913\pi\)
\(74\) 15.4557 + 26.7701i 0.0242796 + 0.0420535i
\(75\) 13.0141 22.5410i 0.0200364 0.0347041i
\(76\) 9.40786 0.0141994
\(77\) −278.842 + 422.219i −0.412689 + 0.624887i
\(78\) 38.3694 0.0556985
\(79\) 611.129 1058.51i 0.870347 1.50749i 0.00870893 0.999962i \(-0.497228\pi\)
0.861638 0.507523i \(-0.169439\pi\)
\(80\) 122.540 + 212.246i 0.171255 + 0.296622i
\(81\) −362.438 627.760i −0.497171 0.861125i
\(82\) 234.921 406.895i 0.316374 0.547976i
\(83\) 825.101 1.09116 0.545582 0.838057i \(-0.316309\pi\)
0.545582 + 0.838057i \(0.316309\pi\)
\(84\) 21.4160 + 1.28797i 0.0278176 + 0.00167296i
\(85\) 189.130 0.241341
\(86\) 362.881 628.529i 0.455006 0.788093i
\(87\) −13.0577 22.6167i −0.0160912 0.0278708i
\(88\) −141.972 245.903i −0.171980 0.297879i
\(89\) −348.966 + 604.426i −0.415621 + 0.719877i −0.995493 0.0948303i \(-0.969769\pi\)
0.579872 + 0.814707i \(0.303102\pi\)
\(90\) 304.047 0.356104
\(91\) 388.412 + 777.051i 0.447436 + 0.895133i
\(92\) −118.036 −0.133763
\(93\) 7.43719 12.8816i 0.00829248 0.0143630i
\(94\) −140.887 244.023i −0.154589 0.267756i
\(95\) −2.85367 4.94270i −0.00308190 0.00533800i
\(96\) −22.8118 + 39.5113i −0.0242523 + 0.0420063i
\(97\) −658.577 −0.689365 −0.344682 0.938719i \(-0.612013\pi\)
−0.344682 + 0.938719i \(0.612013\pi\)
\(98\) 487.996 + 1143.17i 0.503011 + 1.17834i
\(99\) −736.266 −0.747450
\(100\) 295.879 512.477i 0.295879 0.512477i
\(101\) 863.494 + 1495.61i 0.850701 + 1.47346i 0.880577 + 0.473904i \(0.157156\pi\)
−0.0298754 + 0.999554i \(0.509511\pi\)
\(102\) 24.8458 + 43.0341i 0.0241186 + 0.0417746i
\(103\) 287.951 498.747i 0.275463 0.477116i −0.694789 0.719214i \(-0.744502\pi\)
0.970252 + 0.242098i \(0.0778355\pi\)
\(104\) −487.499 −0.459647
\(105\) −5.81941 11.6422i −0.00540873 0.0108206i
\(106\) 103.314 0.0946671
\(107\) −833.211 + 1443.16i −0.752800 + 1.30389i 0.193661 + 0.981069i \(0.437964\pi\)
−0.946461 + 0.322819i \(0.895369\pi\)
\(108\) 31.2485 + 54.1240i 0.0278416 + 0.0482230i
\(109\) −205.579 356.073i −0.180650 0.312895i 0.761452 0.648221i \(-0.224487\pi\)
−0.942102 + 0.335326i \(0.891154\pi\)
\(110\) 154.120 266.943i 0.133589 0.231382i
\(111\) 1.92549 0.00164648
\(112\) −1455.26 87.5196i −1.22776 0.0738378i
\(113\) 868.120 0.722706 0.361353 0.932429i \(-0.382315\pi\)
0.361353 + 0.932429i \(0.382315\pi\)
\(114\) 0.749766 1.29863i 0.000615982 0.00106691i
\(115\) 35.8038 + 62.0140i 0.0290323 + 0.0502855i
\(116\) −296.872 514.198i −0.237620 0.411569i
\(117\) −632.042 + 1094.73i −0.499421 + 0.865023i
\(118\) −185.701 −0.144874
\(119\) −620.007 + 938.805i −0.477613 + 0.723194i
\(120\) 7.30399 0.00555633
\(121\) 292.290 506.262i 0.219602 0.380362i
\(122\) −110.725 191.781i −0.0821686 0.142320i
\(123\) −14.6333 25.3457i −0.0107272 0.0185800i
\(124\) 169.087 292.867i 0.122455 0.212099i
\(125\) −748.165 −0.535343
\(126\) −996.728 + 1509.23i −0.704727 + 1.06709i
\(127\) −2092.70 −1.46218 −0.731090 0.682281i \(-0.760988\pi\)
−0.731090 + 0.682281i \(0.760988\pi\)
\(128\) 622.410 1078.05i 0.429795 0.744428i
\(129\) −22.6040 39.1513i −0.0154277 0.0267216i
\(130\) −264.606 458.310i −0.178519 0.309204i
\(131\) −574.154 + 994.463i −0.382932 + 0.663257i −0.991480 0.130260i \(-0.958419\pi\)
0.608548 + 0.793517i \(0.291752\pi\)
\(132\) 31.6495 0.0208692
\(133\) 33.8895 + 2.03813i 0.0220947 + 0.00132878i
\(134\) 62.6878 0.0404134
\(135\) 18.9571 32.8347i 0.0120857 0.0209330i
\(136\) −315.676 546.766i −0.199036 0.344741i
\(137\) 75.7532 + 131.208i 0.0472411 + 0.0818241i 0.888679 0.458530i \(-0.151624\pi\)
−0.841438 + 0.540354i \(0.818290\pi\)
\(138\) −9.40700 + 16.2934i −0.00580273 + 0.0100506i
\(139\) 1883.12 1.14910 0.574548 0.818471i \(-0.305178\pi\)
0.574548 + 0.818471i \(0.305178\pi\)
\(140\) −132.306 264.690i −0.0798708 0.159788i
\(141\) −17.5518 −0.0104832
\(142\) 664.067 1150.20i 0.392445 0.679735i
\(143\) 640.758 + 1109.82i 0.374705 + 0.649008i
\(144\) −1060.69 1837.18i −0.613828 1.06318i
\(145\) −180.099 + 311.941i −0.103148 + 0.178657i
\(146\) 3299.34 1.87024
\(147\) 76.8670 + 9.27917i 0.0431284 + 0.00520634i
\(148\) 43.7766 0.0243136
\(149\) 202.297 350.389i 0.111227 0.192651i −0.805038 0.593223i \(-0.797855\pi\)
0.916265 + 0.400572i \(0.131189\pi\)
\(150\) −47.1605 81.6844i −0.0256709 0.0444633i
\(151\) −1116.66 1934.12i −0.601807 1.04236i −0.992547 0.121860i \(-0.961114\pi\)
0.390740 0.920501i \(-0.372219\pi\)
\(152\) −9.52608 + 16.4996i −0.00508333 + 0.00880459i
\(153\) −1637.09 −0.865039
\(154\) 819.819 + 1640.12i 0.428980 + 0.858210i
\(155\) −205.155 −0.106313
\(156\) 27.1693 47.0586i 0.0139441 0.0241519i
\(157\) −1782.17 3086.80i −0.905939 1.56913i −0.819652 0.572862i \(-0.805833\pi\)
−0.0862873 0.996270i \(-0.527500\pi\)
\(158\) −2214.62 3835.83i −1.11510 1.93141i
\(159\) 3.21773 5.57327i 0.00160492 0.00277980i
\(160\) 629.266 0.310924
\(161\) −425.198 25.5715i −0.208138 0.0125175i
\(162\) −2626.81 −1.27396
\(163\) −718.105 + 1243.79i −0.345070 + 0.597678i −0.985366 0.170449i \(-0.945478\pi\)
0.640297 + 0.768128i \(0.278811\pi\)
\(164\) −332.693 576.242i −0.158408 0.274371i
\(165\) −9.60019 16.6280i −0.00452954 0.00784539i
\(166\) 1495.01 2589.43i 0.699006 1.21071i
\(167\) 124.915 0.0578815 0.0289407 0.999581i \(-0.490787\pi\)
0.0289407 + 0.999581i \(0.490787\pi\)
\(168\) −23.9440 + 36.2556i −0.0109959 + 0.0166499i
\(169\) 3.21270 0.00146231
\(170\) 342.686 593.549i 0.154605 0.267783i
\(171\) 24.7011 + 42.7835i 0.0110464 + 0.0191330i
\(172\) −513.910 890.118i −0.227821 0.394598i
\(173\) −324.114 + 561.383i −0.142439 + 0.246712i −0.928415 0.371546i \(-0.878828\pi\)
0.785976 + 0.618258i \(0.212161\pi\)
\(174\) −94.6377 −0.0412325
\(175\) 1176.85 1781.97i 0.508353 0.769741i
\(176\) −2150.64 −0.921084
\(177\) −5.78370 + 10.0177i −0.00245610 + 0.00425409i
\(178\) 1264.59 + 2190.33i 0.532499 + 0.922315i
\(179\) 1188.84 + 2059.13i 0.496414 + 0.859814i 0.999991 0.00413569i \(-0.00131643\pi\)
−0.503577 + 0.863950i \(0.667983\pi\)
\(180\) 215.294 372.901i 0.0891506 0.154413i
\(181\) 930.543 0.382137 0.191068 0.981577i \(-0.438805\pi\)
0.191068 + 0.981577i \(0.438805\pi\)
\(182\) 3142.40 + 188.985i 1.27984 + 0.0769697i
\(183\) −13.7942 −0.00557212
\(184\) 119.520 207.014i 0.0478865 0.0829418i
\(185\) −13.2787 22.9993i −0.00527712 0.00914024i
\(186\) −26.9510 46.6805i −0.0106244 0.0184020i
\(187\) −829.833 + 1437.31i −0.324510 + 0.562068i
\(188\) −399.046 −0.154806
\(189\) 100.840 + 201.738i 0.0388096 + 0.0776418i
\(190\) −20.6823 −0.00789712
\(191\) 80.8877 140.102i 0.0306431 0.0530753i −0.850297 0.526303i \(-0.823578\pi\)
0.880940 + 0.473228i \(0.156911\pi\)
\(192\) 11.5896 + 20.0738i 0.00435630 + 0.00754534i
\(193\) 393.217 + 681.071i 0.146655 + 0.254013i 0.929989 0.367587i \(-0.119816\pi\)
−0.783334 + 0.621601i \(0.786483\pi\)
\(194\) −1193.28 + 2066.82i −0.441611 + 0.764892i
\(195\) −32.9648 −0.0121059
\(196\) 1747.60 + 210.965i 0.636879 + 0.0768822i
\(197\) −2877.57 −1.04070 −0.520352 0.853952i \(-0.674199\pi\)
−0.520352 + 0.853952i \(0.674199\pi\)
\(198\) −1334.05 + 2310.63i −0.478821 + 0.829342i
\(199\) −2412.93 4179.32i −0.859539 1.48876i −0.872370 0.488847i \(-0.837418\pi\)
0.0128311 0.999918i \(-0.495916\pi\)
\(200\) 599.193 + 1037.83i 0.211847 + 0.366930i
\(201\) 1.95242 3.38170i 0.000685141 0.00118670i
\(202\) 6258.28 2.17986
\(203\) −958.013 1916.59i −0.331228 0.662650i
\(204\) 70.3728 0.0241524
\(205\) −201.830 + 349.581i −0.0687632 + 0.119101i
\(206\) −1043.48 1807.36i −0.352926 0.611287i
\(207\) −309.914 536.787i −0.104060 0.180238i
\(208\) −1846.20 + 3197.72i −0.615438 + 1.06597i
\(209\) 50.0834 0.0165758
\(210\) −47.0812 2.83147i −0.0154710 0.000930430i
\(211\) 4350.18 1.41933 0.709665 0.704539i \(-0.248846\pi\)
0.709665 + 0.704539i \(0.248846\pi\)
\(212\) 73.1561 126.710i 0.0236999 0.0410495i
\(213\) −41.3650 71.6463i −0.0133065 0.0230475i
\(214\) 3019.40 + 5229.76i 0.964496 + 1.67056i
\(215\) −311.767 + 539.996i −0.0988944 + 0.171290i
\(216\) −126.565 −0.0398687
\(217\) 672.541 1018.35i 0.210392 0.318572i
\(218\) −1489.96 −0.462902
\(219\) 102.759 177.983i 0.0317068 0.0549177i
\(220\) −218.263 378.043i −0.0668878 0.115853i
\(221\) 1424.73 + 2467.70i 0.433654 + 0.751111i
\(222\) 3.48881 6.04279i 0.00105474 0.00182687i
\(223\) 6359.82 1.90980 0.954899 0.296931i \(-0.0959630\pi\)
0.954899 + 0.296931i \(0.0959630\pi\)
\(224\) −2062.86 + 3123.56i −0.615316 + 0.931702i
\(225\) 3107.41 0.920715
\(226\) 1572.95 2724.43i 0.462970 0.801887i
\(227\) −1518.85 2630.73i −0.444096 0.769197i 0.553893 0.832588i \(-0.313142\pi\)
−0.997989 + 0.0633910i \(0.979808\pi\)
\(228\) −1.06181 1.83911i −0.000308422 0.000534203i
\(229\) −3099.52 + 5368.53i −0.894420 + 1.54918i −0.0598983 + 0.998204i \(0.519078\pi\)
−0.834521 + 0.550976i \(0.814256\pi\)
\(230\) 259.492 0.0743931
\(231\) 114.010 + 6.85658i 0.0324731 + 0.00195294i
\(232\) 1202.41 0.340268
\(233\) −1890.68 + 3274.75i −0.531599 + 0.920756i 0.467721 + 0.883876i \(0.345075\pi\)
−0.999320 + 0.0368800i \(0.988258\pi\)
\(234\) 2290.40 + 3967.09i 0.639864 + 1.10828i
\(235\) 121.042 + 209.651i 0.0335996 + 0.0581962i
\(236\) −131.494 + 227.755i −0.0362693 + 0.0628202i
\(237\) −275.899 −0.0756185
\(238\) 1822.87 + 3646.80i 0.496467 + 0.993224i
\(239\) 4051.01 1.09639 0.548197 0.836349i \(-0.315314\pi\)
0.548197 + 0.836349i \(0.315314\pi\)
\(240\) 27.6608 47.9100i 0.00743958 0.0128857i
\(241\) −2657.65 4603.18i −0.710350 1.23036i −0.964726 0.263256i \(-0.915203\pi\)
0.254376 0.967105i \(-0.418130\pi\)
\(242\) −1059.21 1834.60i −0.281357 0.487324i
\(243\) −246.214 + 426.455i −0.0649985 + 0.112581i
\(244\) −313.616 −0.0822837
\(245\) −419.258 982.143i −0.109328 0.256109i
\(246\) −106.057 −0.0274876
\(247\) 42.9937 74.4673i 0.0110754 0.0191832i
\(248\) 342.423 + 593.094i 0.0876770 + 0.151861i
\(249\) −93.1246 161.297i −0.0237009 0.0410512i
\(250\) −1355.60 + 2347.98i −0.342944 + 0.593996i
\(251\) 6690.02 1.68235 0.841176 0.540762i \(-0.181864\pi\)
0.841176 + 0.540762i \(0.181864\pi\)
\(252\) 1145.23 + 2291.13i 0.286280 + 0.572728i
\(253\) −628.376 −0.156149
\(254\) −3791.77 + 6567.54i −0.936680 + 1.62238i
\(255\) −21.3461 36.9724i −0.00524212 0.00907963i
\(256\) −2666.24 4618.07i −0.650938 1.12746i
\(257\) −911.975 + 1579.59i −0.221352 + 0.383393i −0.955219 0.295901i \(-0.904380\pi\)
0.733867 + 0.679293i \(0.237714\pi\)
\(258\) −163.826 −0.0395323
\(259\) 157.695 + 9.48380i 0.0378327 + 0.00227527i
\(260\) −749.466 −0.178769
\(261\) 1558.92 2700.13i 0.369712 0.640360i
\(262\) 2080.63 + 3603.75i 0.490616 + 0.849772i
\(263\) 1313.64 + 2275.30i 0.307995 + 0.533463i 0.977924 0.208962i \(-0.0670086\pi\)
−0.669929 + 0.742426i \(0.733675\pi\)
\(264\) −32.0472 + 55.5074i −0.00747110 + 0.0129403i
\(265\) −88.7612 −0.0205757
\(266\) 67.8009 102.663i 0.0156284 0.0236642i
\(267\) 157.543 0.0361105
\(268\) 44.3890 76.8840i 0.0101175 0.0175240i
\(269\) −798.856 1383.66i −0.181067 0.313618i 0.761177 0.648544i \(-0.224622\pi\)
−0.942244 + 0.334927i \(0.891288\pi\)
\(270\) −68.6970 118.987i −0.0154843 0.0268196i
\(271\) 980.342 1698.00i 0.219747 0.380613i −0.734983 0.678085i \(-0.762810\pi\)
0.954731 + 0.297472i \(0.0961434\pi\)
\(272\) −4781.96 −1.06599
\(273\) 108.066 163.631i 0.0239576 0.0362762i
\(274\) 549.031 0.121052
\(275\) 1575.13 2728.21i 0.345396 0.598244i
\(276\) 13.3221 + 23.0746i 0.00290543 + 0.00503235i
\(277\) 44.3567 + 76.8280i 0.00962142 + 0.0166648i 0.870796 0.491644i \(-0.163604\pi\)
−0.861175 + 0.508309i \(0.830271\pi\)
\(278\) 3412.04 5909.83i 0.736118 1.27499i
\(279\) 1775.80 0.381056
\(280\) 598.185 + 35.9750i 0.127673 + 0.00767828i
\(281\) 2149.45 0.456318 0.228159 0.973624i \(-0.426729\pi\)
0.228159 + 0.973624i \(0.426729\pi\)
\(282\) −31.8022 + 55.0831i −0.00671559 + 0.0116317i
\(283\) −730.294 1264.91i −0.153397 0.265692i 0.779077 0.626928i \(-0.215688\pi\)
−0.932474 + 0.361236i \(0.882355\pi\)
\(284\) −940.447 1628.90i −0.196497 0.340344i
\(285\) −0.644155 + 1.11571i −0.000133882 + 0.000231891i
\(286\) 4643.97 0.960153
\(287\) −1073.61 2147.85i −0.220812 0.441754i
\(288\) −5446.86 −1.11444
\(289\) 611.363 1058.91i 0.124438 0.215533i
\(290\) 652.646 + 1130.42i 0.132154 + 0.228898i
\(291\) 74.3300 + 128.743i 0.0149735 + 0.0259349i
\(292\) 2336.25 4046.50i 0.468215 0.810972i
\(293\) −5241.67 −1.04513 −0.522563 0.852601i \(-0.675024\pi\)
−0.522563 + 0.852601i \(0.675024\pi\)
\(294\) 168.397 224.420i 0.0334051 0.0445185i
\(295\) 159.544 0.0314881
\(296\) −44.3267 + 76.7761i −0.00870418 + 0.0150761i
\(297\) 166.354 + 288.133i 0.0325011 + 0.0562935i
\(298\) −733.088 1269.75i −0.142506 0.246827i
\(299\) −539.424 + 934.310i −0.104333 + 0.180711i
\(300\) −133.577 −0.0257069
\(301\) −1658.40 3317.77i −0.317570 0.635325i
\(302\) −8093.17 −1.54208
\(303\) 194.915 337.604i 0.0369558 0.0640093i
\(304\) 72.1522 + 124.971i 0.0136125 + 0.0235776i
\(305\) 95.1286 + 164.768i 0.0178592 + 0.0309330i
\(306\) −2966.26 + 5137.70i −0.554149 + 0.959814i
\(307\) 9095.08 1.69083 0.845413 0.534113i \(-0.179354\pi\)
0.845413 + 0.534113i \(0.179354\pi\)
\(308\) 2592.05 + 155.887i 0.479531 + 0.0288391i
\(309\) −129.998 −0.0239331
\(310\) −371.722 + 643.841i −0.0681045 + 0.117960i
\(311\) −5269.73 9127.44i −0.960833 1.66421i −0.720417 0.693541i \(-0.756050\pi\)
−0.240415 0.970670i \(-0.577284\pi\)
\(312\) 55.0214 + 95.2998i 0.00998388 + 0.0172926i
\(313\) 2193.13 3798.61i 0.396048 0.685975i −0.597186 0.802102i \(-0.703715\pi\)
0.993234 + 0.116127i \(0.0370481\pi\)
\(314\) −12916.5 −2.32140
\(315\) 856.331 1296.64i 0.153171 0.231929i
\(316\) −6272.66 −1.11666
\(317\) −1539.46 + 2666.42i −0.272759 + 0.472432i −0.969567 0.244825i \(-0.921269\pi\)
0.696808 + 0.717257i \(0.254603\pi\)
\(318\) −11.6604 20.1965i −0.00205624 0.00356152i
\(319\) −1580.42 2737.37i −0.277387 0.480449i
\(320\) 159.850 276.869i 0.0279247 0.0483670i
\(321\) 376.160 0.0654056
\(322\) −850.670 + 1288.07i −0.147224 + 0.222924i
\(323\) 111.361 0.0191835
\(324\) −1860.04 + 3221.68i −0.318937 + 0.552414i
\(325\) −2704.32 4684.02i −0.461565 0.799454i
\(326\) 2602.28 + 4507.28i 0.442107 + 0.765752i
\(327\) −46.4051 + 80.3759i −0.00784773 + 0.0135927i
\(328\) 1347.50 0.226838
\(329\) −1437.47 86.4497i −0.240882 0.0144867i
\(330\) −69.5786 −0.0116066
\(331\) 3021.40 5233.22i 0.501726 0.869014i −0.498272 0.867021i \(-0.666032\pi\)
0.999998 0.00199383i \(-0.000634656\pi\)
\(332\) −2117.22 3667.13i −0.349992 0.606205i
\(333\) 114.939 + 199.080i 0.0189148 + 0.0327613i
\(334\) 226.334 392.022i 0.0370792 0.0642231i
\(335\) −53.8577 −0.00878376
\(336\) 147.138 + 294.362i 0.0238900 + 0.0477939i
\(337\) −7200.61 −1.16392 −0.581962 0.813216i \(-0.697715\pi\)
−0.581962 + 0.813216i \(0.697715\pi\)
\(338\) 5.82111 10.0825i 0.000936764 0.00162252i
\(339\) −97.9799 169.706i −0.0156977 0.0271893i
\(340\) −485.309 840.581i −0.0774106 0.134079i
\(341\) 900.146 1559.10i 0.142949 0.247595i
\(342\) 179.024 0.0283056
\(343\) 6249.58 + 1138.55i 0.983807 + 0.179230i
\(344\) 2081.47 0.326237
\(345\) 8.08195 13.9983i 0.00126121 0.00218448i
\(346\) 1174.53 + 2034.35i 0.182495 + 0.316090i
\(347\) −3105.70 5379.22i −0.480468 0.832195i 0.519281 0.854604i \(-0.326200\pi\)
−0.999749 + 0.0224085i \(0.992867\pi\)
\(348\) −67.0126 + 116.069i −0.0103226 + 0.0178792i
\(349\) 3356.94 0.514879 0.257439 0.966294i \(-0.417121\pi\)
0.257439 + 0.966294i \(0.417121\pi\)
\(350\) −3460.05 6922.11i −0.528421 1.05715i
\(351\) 571.220 0.0868646
\(352\) −2760.99 + 4782.17i −0.418071 + 0.724121i
\(353\) −4070.61 7050.51i −0.613759 1.06306i −0.990601 0.136784i \(-0.956323\pi\)
0.376842 0.926277i \(-0.377010\pi\)
\(354\) 20.9590 + 36.3021i 0.00314678 + 0.00545038i
\(355\) −570.528 + 988.183i −0.0852971 + 0.147739i
\(356\) 3581.80 0.533244
\(357\) 253.501 + 15.2456i 0.0375818 + 0.00226018i
\(358\) 8616.27 1.27202
\(359\) 495.602 858.407i 0.0728603 0.126198i −0.827293 0.561770i \(-0.810121\pi\)
0.900154 + 0.435572i \(0.143454\pi\)
\(360\) 436.000 + 755.173i 0.0638311 + 0.110559i
\(361\) 3427.82 + 5937.16i 0.499755 + 0.865601i
\(362\) 1686.06 2920.34i 0.244799 0.424004i
\(363\) −131.957 −0.0190797
\(364\) 2456.90 3720.21i 0.353782 0.535692i
\(365\) −2834.60 −0.406492
\(366\) −24.9938 + 43.2906i −0.00356953 + 0.00618261i
\(367\) 1093.36 + 1893.75i 0.155512 + 0.269355i 0.933245 0.359240i \(-0.116964\pi\)
−0.777733 + 0.628594i \(0.783631\pi\)
\(368\) −905.263 1567.96i −0.128234 0.222108i
\(369\) 1747.02 3025.94i 0.246467 0.426894i
\(370\) −96.2389 −0.0135222
\(371\) 290.978 440.594i 0.0407191 0.0616563i
\(372\) −76.3356 −0.0106393
\(373\) −2941.56 + 5094.94i −0.408333 + 0.707254i −0.994703 0.102789i \(-0.967223\pi\)
0.586370 + 0.810043i \(0.300557\pi\)
\(374\) 3007.16 + 5208.55i 0.415766 + 0.720128i
\(375\) 84.4412 + 146.256i 0.0116281 + 0.0201404i
\(376\) 404.060 699.853i 0.0554198 0.0959898i
\(377\) −5426.79 −0.741364
\(378\) 815.830 + 49.0643i 0.111010 + 0.00667617i
\(379\) −7571.91 −1.02623 −0.513117 0.858318i \(-0.671509\pi\)
−0.513117 + 0.858318i \(0.671509\pi\)
\(380\) −14.6451 + 25.3660i −0.00197704 + 0.00342434i
\(381\) 236.191 + 409.095i 0.0317597 + 0.0550094i
\(382\) −293.122 507.702i −0.0392602 0.0680007i
\(383\) −2977.45 + 5157.10i −0.397234 + 0.688030i −0.993384 0.114844i \(-0.963363\pi\)
0.596149 + 0.802874i \(0.296697\pi\)
\(384\) −280.992 −0.0373420
\(385\) −704.341 1409.09i −0.0932378 0.186530i
\(386\) 2849.89 0.375791
\(387\) 2698.62 4674.15i 0.354467 0.613955i
\(388\) 1689.92 + 2927.02i 0.221115 + 0.382982i
\(389\) 4741.04 + 8211.72i 0.617944 + 1.07031i 0.989860 + 0.142044i \(0.0453674\pi\)
−0.371917 + 0.928266i \(0.621299\pi\)
\(390\) −59.7292 + 103.454i −0.00775514 + 0.0134323i
\(391\) −1397.20 −0.180714
\(392\) −2139.55 + 2851.34i −0.275672 + 0.367384i
\(393\) 259.206 0.0332703
\(394\) −5213.90 + 9030.73i −0.666681 + 1.15473i
\(395\) 1902.67 + 3295.53i 0.242364 + 0.419787i
\(396\) 1889.27 + 3272.31i 0.239746 + 0.415251i
\(397\) −7361.53 + 12750.5i −0.930641 + 1.61192i −0.148413 + 0.988926i \(0.547416\pi\)
−0.782228 + 0.622992i \(0.785917\pi\)
\(398\) −17488.0 −2.20250
\(399\) −3.42650 6.85499i −0.000429923 0.000860098i
\(400\) 9076.79 1.13460
\(401\) −5139.90 + 8902.56i −0.640085 + 1.10866i 0.345328 + 0.938482i \(0.387768\pi\)
−0.985413 + 0.170178i \(0.945566\pi\)
\(402\) −7.07522 12.2546i −0.000877811 0.00152041i
\(403\) −1545.45 2676.79i −0.191028 0.330870i
\(404\) 4431.47 7675.53i 0.545727 0.945227i
\(405\) 2256.81 0.276893
\(406\) −7750.68 466.128i −0.947438 0.0569792i
\(407\) 233.048 0.0283827
\(408\) −71.2571 + 123.421i −0.00864645 + 0.0149761i
\(409\) 5985.36 + 10366.9i 0.723611 + 1.25333i 0.959543 + 0.281561i \(0.0908523\pi\)
−0.235932 + 0.971769i \(0.575814\pi\)
\(410\) 731.396 + 1266.81i 0.0881001 + 0.152594i
\(411\) 17.0997 29.6175i 0.00205223 0.00355456i
\(412\) −2955.55 −0.353421
\(413\) −523.017 + 791.944i −0.0623147 + 0.0943560i
\(414\) −2246.14 −0.266647
\(415\) −1284.42 + 2224.69i −0.151927 + 0.263146i
\(416\) 4740.30 + 8210.43i 0.558683 + 0.967667i
\(417\) −212.538 368.126i −0.0249593 0.0432307i
\(418\) 90.7465 157.177i 0.0106186 0.0183919i
\(419\) −7014.83 −0.817892 −0.408946 0.912559i \(-0.634104\pi\)
−0.408946 + 0.912559i \(0.634104\pi\)
\(420\) −36.8107 + 55.7382i −0.00427662 + 0.00647558i
\(421\) 2278.39 0.263758 0.131879 0.991266i \(-0.457899\pi\)
0.131879 + 0.991266i \(0.457899\pi\)
\(422\) 7882.12 13652.2i 0.909231 1.57483i
\(423\) −1047.73 1814.72i −0.120431 0.208592i
\(424\) 148.151 + 256.605i 0.0169690 + 0.0293911i
\(425\) 3502.31 6066.18i 0.399734 0.692360i
\(426\) −299.798 −0.0340969
\(427\) −1129.73 67.9420i −0.128036 0.00770011i
\(428\) 8552.12 0.965846
\(429\) 144.638 250.520i 0.0162778 0.0281939i
\(430\) 1129.78 + 1956.84i 0.126705 + 0.219459i
\(431\) 5180.13 + 8972.25i 0.578928 + 1.00273i 0.995603 + 0.0936771i \(0.0298621\pi\)
−0.416675 + 0.909056i \(0.636805\pi\)
\(432\) −479.312 + 830.192i −0.0533817 + 0.0924598i
\(433\) −4684.42 −0.519905 −0.259952 0.965621i \(-0.583707\pi\)
−0.259952 + 0.965621i \(0.583707\pi\)
\(434\) −1977.32 3955.80i −0.218697 0.437522i
\(435\) 81.3072 0.00896180
\(436\) −1055.03 + 1827.37i −0.115888 + 0.200723i
\(437\) 21.0814 + 36.5141i 0.00230769 + 0.00399704i
\(438\) −372.378 644.978i −0.0406231 0.0703612i
\(439\) 3416.18 5917.01i 0.371402 0.643288i −0.618379 0.785880i \(-0.712210\pi\)
0.989782 + 0.142592i \(0.0455437\pi\)
\(440\) 884.024 0.0957823
\(441\) 3629.06 + 8501.33i 0.391865 + 0.917971i
\(442\) 10325.9 1.11120
\(443\) −598.076 + 1035.90i −0.0641432 + 0.111099i −0.896314 0.443421i \(-0.853765\pi\)
0.832170 + 0.554520i \(0.187098\pi\)
\(444\) −4.94083 8.55776i −0.000528111 0.000914715i
\(445\) −1086.46 1881.80i −0.115737 0.200463i
\(446\) 11523.4 19959.1i 1.22343 2.11904i
\(447\) −91.3288 −0.00966376
\(448\) 850.302 + 1701.10i 0.0896719 + 0.179396i
\(449\) 11508.1 1.20958 0.604791 0.796384i \(-0.293257\pi\)
0.604791 + 0.796384i \(0.293257\pi\)
\(450\) 5630.34 9752.03i 0.589815 1.02159i
\(451\) −1771.12 3067.66i −0.184919 0.320290i
\(452\) −2227.60 3858.32i −0.231809 0.401505i
\(453\) −252.064 + 436.587i −0.0261434 + 0.0452818i
\(454\) −11008.1 −1.13796
\(455\) −2699.77 162.365i −0.278169 0.0167292i
\(456\) 4.30062 0.000441656
\(457\) −671.527 + 1163.12i −0.0687368 + 0.119056i −0.898345 0.439290i \(-0.855230\pi\)
0.829609 + 0.558345i \(0.188564\pi\)
\(458\) 11232.1 + 19454.5i 1.14594 + 1.98483i
\(459\) 369.888 + 640.665i 0.0376142 + 0.0651496i
\(460\) 183.746 318.257i 0.0186243 0.0322583i
\(461\) −6399.46 −0.646535 −0.323267 0.946308i \(-0.604781\pi\)
−0.323267 + 0.946308i \(0.604781\pi\)
\(462\) 228.093 345.375i 0.0229694 0.0347799i
\(463\) −4694.74 −0.471238 −0.235619 0.971845i \(-0.575712\pi\)
−0.235619 + 0.971845i \(0.575712\pi\)
\(464\) 4553.63 7887.12i 0.455597 0.789117i
\(465\) 23.1547 + 40.1052i 0.00230919 + 0.00399964i
\(466\) 6851.47 + 11867.1i 0.681091 + 1.17968i
\(467\) 4687.30 8118.63i 0.464459 0.804466i −0.534718 0.845030i \(-0.679582\pi\)
0.999177 + 0.0405645i \(0.0129156\pi\)
\(468\) 6487.30 0.640760
\(469\) 176.557 267.339i 0.0173830 0.0263211i
\(470\) 877.266 0.0860963
\(471\) −402.287 + 696.781i −0.0393554 + 0.0681656i
\(472\) −266.293 461.233i −0.0259685 0.0449788i
\(473\) −2735.84 4738.61i −0.265949 0.460637i
\(474\) −499.903 + 865.858i −0.0484416 + 0.0839033i
\(475\) −211.377 −0.0204182
\(476\) 5763.43 + 346.614i 0.554971 + 0.0333761i
\(477\) 768.308 0.0737493
\(478\) 7340.06 12713.4i 0.702356 1.21652i
\(479\) 8265.72 + 14316.6i 0.788456 + 1.36565i 0.926913 + 0.375277i \(0.122452\pi\)
−0.138457 + 0.990368i \(0.544214\pi\)
\(480\) −71.0217 123.013i −0.00675351 0.0116974i
\(481\) 200.058 346.511i 0.0189644 0.0328473i
\(482\) −19261.7 −1.82022
\(483\) 42.9908 + 86.0067i 0.00405000 + 0.00810237i
\(484\) −3000.08 −0.281751
\(485\) 1025.20 1775.69i 0.0959831 0.166248i
\(486\) 892.233 + 1545.39i 0.0832768 + 0.144240i
\(487\) −3310.41 5733.79i −0.308026 0.533517i 0.669904 0.742448i \(-0.266335\pi\)
−0.977931 + 0.208930i \(0.933002\pi\)
\(488\) 317.557 550.025i 0.0294572 0.0510214i
\(489\) 324.194 0.0299807
\(490\) −3841.93 463.787i −0.354205 0.0427587i
\(491\) 19288.8 1.77290 0.886449 0.462826i \(-0.153164\pi\)
0.886449 + 0.462826i \(0.153164\pi\)
\(492\) −75.0985 + 130.074i −0.00688151 + 0.0119191i
\(493\) −3514.07 6086.55i −0.321026 0.556033i
\(494\) −155.801 269.855i −0.0141899 0.0245777i
\(495\) 1146.14 1985.16i 0.104071 0.180256i
\(496\) 5187.15 0.469576
\(497\) −3034.84 6071.46i −0.273906 0.547972i
\(498\) −674.933 −0.0607318
\(499\) −4144.06 + 7177.72i −0.371770 + 0.643925i −0.989838 0.142200i \(-0.954582\pi\)
0.618068 + 0.786125i \(0.287916\pi\)
\(500\) 1919.80 + 3325.19i 0.171712 + 0.297414i
\(501\) −14.0985 24.4192i −0.00125723 0.00217759i
\(502\) 12121.7 20995.4i 1.07772 1.86667i
\(503\) −7588.41 −0.672665 −0.336332 0.941743i \(-0.609187\pi\)
−0.336332 + 0.941743i \(0.609187\pi\)
\(504\) −5177.83 311.396i −0.457617 0.0275212i
\(505\) −5376.75 −0.473787
\(506\) −1138.56 + 1972.04i −0.100030 + 0.173257i
\(507\) −0.362599 0.628040i −3.17625e−5 5.50143e-5i
\(508\) 5369.88 + 9300.91i 0.468996 + 0.812325i
\(509\) −6463.47 + 11195.1i −0.562846 + 0.974877i 0.434401 + 0.900720i \(0.356960\pi\)
−0.997247 + 0.0741575i \(0.976373\pi\)
\(510\) −154.708 −0.0134325
\(511\) 9292.41 14070.4i 0.804446 1.21808i
\(512\) −9365.38 −0.808389
\(513\) 11.1620 19.3332i 0.000960655 0.00166390i
\(514\) 3304.83 + 5724.13i 0.283598 + 0.491207i
\(515\) 896.500 + 1552.78i 0.0767078 + 0.132862i
\(516\) −116.004 + 200.925i −0.00989691 + 0.0171420i
\(517\) −2124.35 −0.180713
\(518\) 315.491 477.711i 0.0267604 0.0405202i
\(519\) 146.324 0.0123755
\(520\) 758.883 1314.42i 0.0639985 0.110849i
\(521\) 7221.77 + 12508.5i 0.607277 + 1.05184i 0.991687 + 0.128673i \(0.0410717\pi\)
−0.384410 + 0.923163i \(0.625595\pi\)
\(522\) −5649.24 9784.77i −0.473679 0.820437i
\(523\) −7955.50 + 13779.3i −0.665143 + 1.15206i 0.314104 + 0.949389i \(0.398296\pi\)
−0.979247 + 0.202672i \(0.935037\pi\)
\(524\) 5893.14 0.491303
\(525\) −481.178 28.9382i −0.0400006 0.00240565i
\(526\) 9520.80 0.789214
\(527\) 2001.48 3466.66i 0.165438 0.286547i
\(528\) 242.731 + 420.423i 0.0200067 + 0.0346526i
\(529\) −264.500 458.127i −0.0217391 0.0376533i
\(530\) −160.827 + 278.560i −0.0131809 + 0.0228300i
\(531\) −1380.99 −0.112863
\(532\) −77.9025 155.851i −0.00634869 0.0127011i
\(533\) −6081.60 −0.494228
\(534\) 285.454 494.420i 0.0231326 0.0400668i
\(535\) −2594.10 4493.11i −0.209631 0.363092i
\(536\) 89.8936 + 155.700i 0.00724405 + 0.0125471i
\(537\) 268.356 464.806i 0.0215650 0.0373517i
\(538\) −5789.81 −0.463971
\(539\) 9303.45 + 1123.09i 0.743466 + 0.0897491i
\(540\) −194.577 −0.0155060
\(541\) 4165.21 7214.35i 0.331010 0.573326i −0.651700 0.758477i \(-0.725944\pi\)
0.982710 + 0.185151i \(0.0592773\pi\)
\(542\) −3552.57 6153.24i −0.281543 0.487646i
\(543\) −105.025 181.909i −0.00830030 0.0143765i
\(544\) −6139.07 + 10633.2i −0.483843 + 0.838040i
\(545\) 1280.09 0.100611
\(546\) −317.721 635.628i −0.0249033 0.0498212i
\(547\) 9377.15 0.732976 0.366488 0.930423i \(-0.380560\pi\)
0.366488 + 0.930423i \(0.380560\pi\)
\(548\) 388.767 673.365i 0.0303053 0.0524903i
\(549\) −823.424 1426.21i −0.0640125 0.110873i
\(550\) −5707.98 9886.52i −0.442526 0.766477i
\(551\) −106.043 + 183.672i −0.00819891 + 0.0142009i
\(552\) −53.9581 −0.00416053
\(553\) −22595.7 1358.91i −1.73755 0.104497i
\(554\) 321.481 0.0246542
\(555\) −2.99738 + 5.19162i −0.000229246 + 0.000397066i
\(556\) −4832.11 8369.47i −0.368574 0.638389i
\(557\) 8948.09 + 15498.5i 0.680687 + 1.17898i 0.974772 + 0.223205i \(0.0716519\pi\)
−0.294085 + 0.955779i \(0.595015\pi\)
\(558\) 3217.59 5573.03i 0.244107 0.422805i
\(559\) −9394.22 −0.710793
\(560\) 2501.36 3787.51i 0.188753 0.285806i
\(561\) 374.635 0.0281945
\(562\) 3894.60 6745.65i 0.292320 0.506313i
\(563\) 9438.37 + 16347.7i 0.706536 + 1.22376i 0.966134 + 0.258040i \(0.0830765\pi\)
−0.259598 + 0.965717i \(0.583590\pi\)
\(564\) 45.0381 + 78.0083i 0.00336250 + 0.00582401i
\(565\) −1351.39 + 2340.68i −0.100625 + 0.174288i
\(566\) −5292.90 −0.393069
\(567\) −7398.28 + 11202.4i −0.547969 + 0.829726i
\(568\) 3809.06 0.281381
\(569\) −13181.5 + 22831.1i −0.971174 + 1.68212i −0.279150 + 0.960248i \(0.590053\pi\)
−0.692024 + 0.721874i \(0.743281\pi\)
\(570\) 2.33430 + 4.04312i 0.000171532 + 0.000297101i
\(571\) 7420.20 + 12852.2i 0.543828 + 0.941938i 0.998680 + 0.0513705i \(0.0163590\pi\)
−0.454852 + 0.890567i \(0.650308\pi\)
\(572\) 3288.38 5695.65i 0.240374 0.416341i
\(573\) −36.5174 −0.00266237
\(574\) −8685.89 522.372i −0.631607 0.0379850i
\(575\) 2652.06 0.192345
\(576\) −1383.65 + 2396.55i −0.100090 + 0.173362i
\(577\) −10893.4 18867.9i −0.785956 1.36132i −0.928426 0.371517i \(-0.878838\pi\)
0.142470 0.989799i \(-0.454496\pi\)
\(578\) −2215.46 3837.30i −0.159431 0.276143i
\(579\) 88.7604 153.737i 0.00637091 0.0110347i
\(580\) 1848.55 0.132339
\(581\) −6832.32 13668.6i −0.487870 0.976024i
\(582\) 538.716 0.0383685
\(583\) 389.452 674.550i 0.0276663 0.0479194i
\(584\) 4731.21 + 8194.70i 0.335238 + 0.580649i
\(585\) −1967.78 3408.30i −0.139073 0.240882i
\(586\) −9497.42 + 16450.0i −0.669513 + 1.15963i
\(587\) 6790.87 0.477494 0.238747 0.971082i \(-0.423263\pi\)
0.238747 + 0.971082i \(0.423263\pi\)
\(588\) −156.001 365.443i −0.0109411 0.0256303i
\(589\) −120.796 −0.00845047
\(590\) 289.078 500.698i 0.0201714 0.0349380i
\(591\) 324.776 + 562.528i 0.0226049 + 0.0391528i
\(592\) 335.738 + 581.516i 0.0233087 + 0.0403719i
\(593\) −2480.33 + 4296.06i −0.171762 + 0.297501i −0.939036 0.343819i \(-0.888279\pi\)
0.767274 + 0.641320i \(0.221613\pi\)
\(594\) 1205.67 0.0832815
\(595\) −1566.11 3133.12i −0.107906 0.215875i
\(596\) −2076.39 −0.142705
\(597\) −544.669 + 943.394i −0.0373397 + 0.0646743i
\(598\) 1954.77 + 3385.76i 0.133673 + 0.231529i
\(599\) 7501.85 + 12993.6i 0.511715 + 0.886316i 0.999908 + 0.0135803i \(0.00432288\pi\)
−0.488193 + 0.872736i \(0.662344\pi\)
\(600\) 135.255 234.269i 0.00920296 0.0159400i
\(601\) −14385.8 −0.976387 −0.488193 0.872735i \(-0.662344\pi\)
−0.488193 + 0.872735i \(0.662344\pi\)
\(602\) −13417.1 806.906i −0.908370 0.0546296i
\(603\) 466.187 0.0314836
\(604\) −5730.75 + 9925.95i −0.386061 + 0.668677i
\(605\) 910.008 + 1576.18i 0.0611522 + 0.105919i
\(606\) −706.337 1223.41i −0.0473482 0.0820094i
\(607\) 1116.64 1934.07i 0.0746671 0.129327i −0.826274 0.563268i \(-0.809544\pi\)
0.900941 + 0.433941i \(0.142877\pi\)
\(608\) 370.515 0.0247144
\(609\) −266.542 + 403.594i −0.0177354 + 0.0268546i
\(610\) 689.456 0.0457627
\(611\) −1823.63 + 3158.62i −0.120747 + 0.209139i
\(612\) 4200.79 + 7275.99i 0.277462 + 0.480579i
\(613\) 1003.41 + 1737.95i 0.0661130 + 0.114511i 0.897187 0.441650i \(-0.145607\pi\)
−0.831074 + 0.556162i \(0.812274\pi\)
\(614\) 16479.4 28543.2i 1.08315 1.87608i
\(615\) 91.1179 0.00597436
\(616\) −2898.01 + 4388.13i −0.189553 + 0.287017i
\(617\) 16288.8 1.06282 0.531412 0.847113i \(-0.321661\pi\)
0.531412 + 0.847113i \(0.321661\pi\)
\(618\) −235.544 + 407.974i −0.0153317 + 0.0265552i
\(619\) −9711.18 16820.3i −0.630574 1.09219i −0.987434 0.158029i \(-0.949486\pi\)
0.356860 0.934158i \(-0.383847\pi\)
\(620\) 526.430 + 911.804i 0.0340999 + 0.0590628i
\(621\) −140.045 + 242.566i −0.00904964 + 0.0156744i
\(622\) −38193.0 −2.46206
\(623\) 12902.6 + 775.964i 0.829743 + 0.0499010i
\(624\) 833.483 0.0534712
\(625\) −6042.02 + 10465.1i −0.386690 + 0.669766i
\(626\) −7947.49 13765.5i −0.507421 0.878879i
\(627\) −5.65264 9.79066i −0.000360039 0.000623606i
\(628\) −9146.12 + 15841.5i −0.581162 + 1.00660i
\(629\) 518.183 0.0328479
\(630\) −2517.68 5036.83i −0.159217 0.318527i
\(631\) −11350.4 −0.716087 −0.358044 0.933705i \(-0.616556\pi\)
−0.358044 + 0.933705i \(0.616556\pi\)
\(632\) 6351.48 11001.1i 0.399760 0.692404i
\(633\) −490.981 850.403i −0.0308290 0.0533973i
\(634\) 5578.71 + 9662.61i 0.349462 + 0.605286i
\(635\) 3257.67 5642.45i 0.203585 0.352620i
\(636\) −33.0269 −0.00205912
\(637\) 9656.35 12868.9i 0.600625 0.800444i
\(638\) −11454.3 −0.710783
\(639\) 4938.43 8553.62i 0.305730 0.529540i
\(640\) 1937.79 + 3356.36i 0.119684 + 0.207300i
\(641\) 6336.68 + 10975.5i 0.390459 + 0.676294i 0.992510 0.122163i \(-0.0389831\pi\)
−0.602051 + 0.798457i \(0.705650\pi\)
\(642\) 681.567 1180.51i 0.0418992 0.0725715i
\(643\) 9799.06 0.600991 0.300496 0.953783i \(-0.402848\pi\)
0.300496 + 0.953783i \(0.402848\pi\)
\(644\) 977.410 + 1955.39i 0.0598065 + 0.119648i
\(645\) 140.749 0.00859226
\(646\) 201.775 349.485i 0.0122891 0.0212853i
\(647\) −1726.43 2990.27i −0.104904 0.181700i 0.808795 0.588091i \(-0.200120\pi\)
−0.913699 + 0.406391i \(0.866787\pi\)
\(648\) −3766.82 6524.33i −0.228356 0.395524i
\(649\) −700.019 + 1212.47i −0.0423392 + 0.0733337i
\(650\) −19599.9 −1.18272
\(651\) −274.980 16.5374i −0.0165550 0.000995625i
\(652\) 7370.66 0.442726
\(653\) −339.381 + 587.825i −0.0203385 + 0.0352272i −0.876015 0.482283i \(-0.839808\pi\)
0.855677 + 0.517510i \(0.173141\pi\)
\(654\) 168.163 + 291.267i 0.0100546 + 0.0174151i
\(655\) −1787.55 3096.13i −0.106634 0.184696i
\(656\) 5103.08 8838.80i 0.303722 0.526063i
\(657\) 24536.0 1.45699
\(658\) −2875.86 + 4354.58i −0.170384 + 0.257993i
\(659\) −7398.18 −0.437317 −0.218659 0.975801i \(-0.570168\pi\)
−0.218659 + 0.975801i \(0.570168\pi\)
\(660\) −49.2684 + 85.3353i −0.00290571 + 0.00503284i
\(661\) −10574.9 18316.3i −0.622264 1.07779i −0.989063 0.147492i \(-0.952880\pi\)
0.366800 0.930300i \(-0.380454\pi\)
\(662\) −10949.0 18964.2i −0.642817 1.11339i
\(663\) 321.602 557.031i 0.0188386 0.0326294i
\(664\) 8575.29 0.501184
\(665\) −58.2507 + 88.2022i −0.00339679 + 0.00514336i
\(666\) 833.034 0.0484676
\(667\) 1330.48 2304.46i 0.0772361 0.133777i
\(668\) −320.533 555.179i −0.0185656 0.0321565i
\(669\) −717.798 1243.26i −0.0414823 0.0718495i
\(670\) −97.5851 + 169.022i −0.00562693 + 0.00974613i
\(671\) −1669.56 −0.0960545
\(672\) 843.438 + 50.7246i 0.0484172 + 0.00291182i
\(673\) −7170.68 −0.410712 −0.205356 0.978687i \(-0.565835\pi\)
−0.205356 + 0.978687i \(0.565835\pi\)
\(674\) −13046.8 + 22597.8i −0.745616 + 1.29145i
\(675\) −702.096 1216.07i −0.0400351 0.0693428i
\(676\) −8.24381 14.2787i −0.000469038 0.000812398i
\(677\) −251.763 + 436.065i −0.0142925 + 0.0247553i −0.873083 0.487571i \(-0.837883\pi\)
0.858791 + 0.512327i \(0.171216\pi\)
\(678\) −710.121 −0.0402243
\(679\) 5453.40 + 10910.0i 0.308221 + 0.616622i
\(680\) 1965.63 0.110851
\(681\) −342.849 + 593.832i −0.0192922 + 0.0334151i
\(682\) −3261.96 5649.88i −0.183148 0.317222i
\(683\) 10911.1 + 18898.5i 0.611274 + 1.05876i 0.991026 + 0.133669i \(0.0426759\pi\)
−0.379752 + 0.925088i \(0.623991\pi\)
\(684\) 126.766 219.566i 0.00708631 0.0122738i
\(685\) −471.696 −0.0263103
\(686\) 14896.8 17550.2i 0.829099 0.976779i
\(687\) 1399.30 0.0777100
\(688\) 7882.71 13653.3i 0.436810 0.756578i
\(689\) −668.643 1158.12i −0.0369714 0.0640363i
\(690\) −29.2875 50.7274i −0.00161588 0.00279878i
\(691\) −9969.22 + 17267.2i −0.548838 + 0.950615i 0.449517 + 0.893272i \(0.351596\pi\)
−0.998355 + 0.0573433i \(0.981737\pi\)
\(692\) 3326.72 0.182750
\(693\) 6096.71 + 12197.0i 0.334192 + 0.668579i
\(694\) −22508.9 −1.23116
\(695\) −2931.43 + 5077.39i −0.159994 + 0.277117i
\(696\) −135.709 235.056i −0.00739088 0.0128014i
\(697\) −3938.08 6820.96i −0.214011 0.370678i
\(698\) 6082.45 10535.1i 0.329834 0.571290i
\(699\) 853.562 0.0461870
\(700\) −10939.7 657.919i −0.590690 0.0355243i
\(701\) 27263.6 1.46894 0.734472 0.678639i \(-0.237430\pi\)
0.734472 + 0.678639i \(0.237430\pi\)
\(702\) 1035.00 1792.67i 0.0556459 0.0963816i
\(703\) −7.81855 13.5421i −0.000419463 0.000726530i
\(704\) 1402.73 + 2429.60i 0.0750957 + 0.130070i
\(705\) 27.3227 47.3242i 0.00145962 0.00252813i
\(706\) −29502.3 −1.57271
\(707\) 17626.1 26689.2i 0.937621 1.41973i
\(708\) 59.3641 0.00315119
\(709\) 9285.96 16083.8i 0.491878 0.851958i −0.508078 0.861311i \(-0.669644\pi\)
0.999956 + 0.00935314i \(0.00297724\pi\)
\(710\) 2067.49 + 3580.99i 0.109284 + 0.189285i
\(711\) −16469.4 28525.8i −0.868705 1.50464i
\(712\) −3626.81 + 6281.81i −0.190899 + 0.330647i
\(713\) 1515.58 0.0796059
\(714\) 507.166 767.942i 0.0265829 0.0402514i
\(715\) −3989.83 −0.208687
\(716\) 6101.16 10567.5i 0.318451 0.551573i
\(717\) −457.215 791.920i −0.0238145 0.0412480i
\(718\) −1795.97 3110.71i −0.0933495 0.161686i
\(719\) 8530.13 14774.6i 0.442448 0.766342i −0.555423 0.831568i \(-0.687444\pi\)
0.997871 + 0.0652261i \(0.0207769\pi\)
\(720\) 6604.67 0.341863
\(721\) −10646.6 640.292i −0.549933 0.0330731i
\(722\) 24843.6 1.28058
\(723\) −599.909 + 1039.07i −0.0308587 + 0.0534488i
\(724\) −2387.78 4135.76i −0.122571 0.212299i
\(725\) 6670.16 + 11553.1i 0.341688 + 0.591820i
\(726\) −239.093 + 414.122i −0.0122226 + 0.0211701i
\(727\) 24057.0 1.22727 0.613636 0.789589i \(-0.289706\pi\)
0.613636 + 0.789589i \(0.289706\pi\)
\(728\) 4036.78 + 8075.91i 0.205512 + 0.411144i
\(729\) −19460.5 −0.988695
\(730\) −5136.03 + 8895.87i −0.260401 + 0.451028i
\(731\) −6083.14 10536.3i −0.307788 0.533105i
\(732\) 35.3961 + 61.3079i 0.00178727 + 0.00309564i
\(733\) 6432.17 11140.8i 0.324117 0.561387i −0.657216 0.753702i \(-0.728266\pi\)
0.981333 + 0.192315i \(0.0615996\pi\)
\(734\) 7924.26 0.398487
\(735\) −144.677 + 192.809i −0.00726052 + 0.00967599i
\(736\) −4648.69 −0.232817
\(737\) 236.308 409.297i 0.0118107 0.0204568i
\(738\) −6330.89 10965.4i −0.315777 0.546942i
\(739\) 12335.3 + 21365.4i 0.614022 + 1.06352i 0.990555 + 0.137114i \(0.0437826\pi\)
−0.376534 + 0.926403i \(0.622884\pi\)
\(740\) −68.1464 + 118.033i −0.00338529 + 0.00586349i
\(741\) −19.4098 −0.000962265
\(742\) −855.497 1711.49i −0.0423265 0.0846778i
\(743\) −34449.1 −1.70096 −0.850482 0.526004i \(-0.823690\pi\)
−0.850482 + 0.526004i \(0.823690\pi\)
\(744\) 77.2948 133.879i 0.00380883 0.00659708i
\(745\) 629.827 + 1090.89i 0.0309733 + 0.0536473i
\(746\) 10659.7 + 18463.1i 0.523161 + 0.906142i
\(747\) 11117.8 19256.7i 0.544553 0.943193i
\(748\) 8517.44 0.416348
\(749\) 30806.9 + 1852.74i 1.50288 + 0.0903839i
\(750\) 611.998 0.0297960
\(751\) −11144.8 + 19303.3i −0.541516 + 0.937933i 0.457301 + 0.889312i \(0.348816\pi\)
−0.998817 + 0.0486213i \(0.984517\pi\)
\(752\) −3060.42 5300.81i −0.148407 0.257049i
\(753\) −755.065 1307.81i −0.0365420 0.0632926i
\(754\) −9832.84 + 17031.0i −0.474922 + 0.822589i
\(755\) 6953.18 0.335169
\(756\) 637.862 965.841i 0.0306863 0.0464647i
\(757\) −26620.9 −1.27814 −0.639070 0.769148i \(-0.720681\pi\)
−0.639070 + 0.769148i \(0.720681\pi\)
\(758\) −13719.6 + 23763.0i −0.657412 + 1.13867i
\(759\) 70.9213 + 122.839i 0.00339167 + 0.00587455i
\(760\) −29.6582 51.3695i −0.00141555 0.00245180i
\(761\) −7786.46 + 13486.6i −0.370906 + 0.642427i −0.989705 0.143122i \(-0.954286\pi\)
0.618800 + 0.785549i \(0.287619\pi\)
\(762\) 1711.82 0.0813817
\(763\) −4196.39 + 6354.10i −0.199108 + 0.301486i
\(764\) −830.234 −0.0393152
\(765\) 2548.44 4414.02i 0.120443 0.208613i
\(766\) 10789.7 + 18688.4i 0.508941 + 0.881512i
\(767\) 1201.85 + 2081.67i 0.0565793 + 0.0979982i
\(768\) −601.848 + 1042.43i −0.0282778 + 0.0489786i
\(769\) 25603.0 1.20061 0.600305 0.799771i \(-0.295046\pi\)
0.600305 + 0.799771i \(0.295046\pi\)
\(770\) −5698.38 342.702i −0.266695 0.0160391i
\(771\) 411.718 0.0192317
\(772\) 2018.00 3495.27i 0.0940793 0.162950i
\(773\) −12861.0 22276.0i −0.598421 1.03650i −0.993054 0.117657i \(-0.962462\pi\)
0.394633 0.918839i \(-0.370872\pi\)
\(774\) −9779.30 16938.2i −0.454147 0.786606i
\(775\) −3799.07 + 6580.18i −0.176086 + 0.304990i
\(776\) −6844.60 −0.316633
\(777\) −15.9442 31.8976i −0.000736156 0.00147274i
\(778\) 34361.3 1.58343
\(779\) −118.839 + 205.835i −0.00546578 + 0.00946700i
\(780\) 84.5881 + 146.511i 0.00388300 + 0.00672555i
\(781\) −5006.54 8671.58i −0.229383 0.397303i
\(782\) −2531.59 + 4384.84i −0.115766 + 0.200513i
\(783\) −1408.91 −0.0643042
\(784\) 10600.5 + 24832.5i 0.482896 + 1.13122i
\(785\) 11097.1 0.504551
\(786\) 469.657 813.470i 0.0213131 0.0369154i
\(787\) 780.983 + 1352.70i 0.0353736 + 0.0612689i 0.883170 0.469053i \(-0.155405\pi\)
−0.847797 + 0.530322i \(0.822071\pi\)
\(788\) 7383.89 + 12789.3i 0.333807 + 0.578171i
\(789\) 296.527 513.600i 0.0133798 0.0231745i
\(790\) 13789.9 0.621039
\(791\) −7188.53 14381.3i −0.323129 0.646446i
\(792\) −7652.03 −0.343312
\(793\) −1433.22 + 2482.41i −0.0641804 + 0.111164i
\(794\) 26676.8 + 46205.6i 1.19235 + 2.06521i
\(795\) 10.0180 + 17.3517i 0.000446920 + 0.000774088i
\(796\) −12383.2 + 21448.4i −0.551396 + 0.955046i
\(797\) 44762.5 1.98942 0.994710 0.102719i \(-0.0327543\pi\)
0.994710 + 0.102719i \(0.0327543\pi\)
\(798\) −27.7216 1.66719i −0.00122974 7.39571e-5i
\(799\) −4723.50 −0.209143
\(800\) 11652.7 20183.2i 0.514984 0.891978i
\(801\) 9404.29 + 16288.7i 0.414837 + 0.718519i
\(802\) 18626.0 + 32261.2i 0.820084 + 1.42043i
\(803\) 12437.2 21541.8i 0.546574 0.946694i
\(804\) −20.0398 −0.000879040
\(805\) 730.847 1106.64i 0.0319987 0.0484519i
\(806\) −11200.8 −0.489494
\(807\) −180.325 + 312.332i −0.00786584 + 0.0136240i
\(808\) 8974.30 + 15543.9i 0.390736 + 0.676775i
\(809\) −10760.3 18637.4i −0.467629 0.809957i 0.531687 0.846941i \(-0.321558\pi\)
−0.999316 + 0.0369838i \(0.988225\pi\)
\(810\) 4089.12 7082.57i 0.177379 0.307230i
\(811\) 567.298 0.0245629 0.0122814 0.999925i \(-0.496091\pi\)
0.0122814 + 0.999925i \(0.496091\pi\)
\(812\) −6059.92 + 9175.83i −0.261898 + 0.396562i
\(813\) −442.583 −0.0190923
\(814\) 422.261 731.378i 0.0181821 0.0314923i
\(815\) −2235.73 3872.40i −0.0960910 0.166434i
\(816\) 539.714 + 934.812i 0.0231541 + 0.0401041i
\(817\) −183.570 + 317.952i −0.00786082 + 0.0136153i
\(818\) 43379.6 1.85420
\(819\) 23368.9 + 1405.41i 0.997041 + 0.0599623i
\(820\) 2071.60 0.0882235
\(821\) −23005.2 + 39846.2i −0.977939 + 1.69384i −0.308064 + 0.951366i \(0.599681\pi\)
−0.669875 + 0.742474i \(0.733652\pi\)
\(822\) −61.9661 107.328i −0.00262934 0.00455415i
\(823\) −12623.0 21863.7i −0.534643 0.926029i −0.999181 0.0404756i \(-0.987113\pi\)
0.464537 0.885554i \(-0.346221\pi\)
\(824\) 2992.68 5183.48i 0.126523 0.219145i
\(825\) −711.106 −0.0300091
\(826\) 1537.71 + 3076.32i 0.0647746 + 0.129587i
\(827\) 8676.16 0.364812 0.182406 0.983223i \(-0.441611\pi\)
0.182406 + 0.983223i \(0.441611\pi\)
\(828\) −1590.49 + 2754.80i −0.0667551 + 0.115623i
\(829\) 13778.3 + 23864.7i 0.577250 + 0.999825i 0.995793 + 0.0916288i \(0.0292073\pi\)
−0.418544 + 0.908197i \(0.637459\pi\)
\(830\) 4654.51 + 8061.85i 0.194651 + 0.337146i
\(831\) 10.0126 17.3423i 0.000417970 0.000723945i
\(832\) 4816.65 0.200706
\(833\) 20686.3 + 2497.19i 0.860428 + 0.103868i
\(834\) −1540.39 −0.0639562
\(835\) −194.453 + 336.803i −0.00805908 + 0.0139587i
\(836\) −128.515 222.594i −0.00531671 0.00920881i
\(837\) −401.229 694.949i −0.0165693 0.0286989i
\(838\) −12710.2 + 22014.7i −0.523946 + 0.907502i
\(839\) −34858.0 −1.43436 −0.717182 0.696886i \(-0.754569\pi\)
−0.717182 + 0.696886i \(0.754569\pi\)
\(840\) −60.4812 120.998i −0.00248429 0.00497002i
\(841\) −11003.9 −0.451182
\(842\) 4128.24 7150.32i 0.168965 0.292656i
\(843\) −242.597 420.190i −0.00991159 0.0171674i
\(844\) −11162.6 19334.2i −0.455252 0.788520i
\(845\) −5.00116 + 8.66226i −0.000203604 + 0.000352652i
\(846\) −7593.53 −0.308595
\(847\) −10807.1 649.939i −0.438412 0.0263662i
\(848\) 2244.24 0.0908815
\(849\) −164.849 + 285.526i −0.00666382 + 0.0115421i
\(850\) −12691.7 21982.7i −0.512144 0.887059i
\(851\) 98.0961 + 169.907i 0.00395146 + 0.00684412i
\(852\) −212.286 + 367.690i −0.00853615 + 0.0147851i
\(853\) 43761.4 1.75658 0.878289 0.478130i \(-0.158685\pi\)
0.878289 + 0.478130i \(0.158685\pi\)
\(854\) −2260.18 + 3422.33i −0.0905642 + 0.137131i
\(855\) −153.807 −0.00615216
\(856\) −8659.58 + 14998.8i −0.345769 + 0.598890i
\(857\) −18232.7 31580.0i −0.726741 1.25875i −0.958253 0.285920i \(-0.907701\pi\)
0.231512 0.972832i \(-0.425633\pi\)
\(858\) −524.139 907.836i −0.0208553 0.0361224i
\(859\) −4238.52 + 7341.33i −0.168354 + 0.291598i −0.937841 0.347064i \(-0.887179\pi\)
0.769487 + 0.638662i \(0.220512\pi\)
\(860\) 3199.99 0.126882
\(861\) −298.704 + 452.292i −0.0118232 + 0.0179025i
\(862\) 37543.6 1.48346
\(863\) −10041.2 + 17391.9i −0.396067 + 0.686009i −0.993237 0.116106i \(-0.962959\pi\)
0.597169 + 0.802115i \(0.296292\pi\)
\(864\) 1230.68 + 2131.60i 0.0484589 + 0.0839333i
\(865\) −1009.09 1747.79i −0.0396648 0.0687014i
\(866\) −8487.72 + 14701.2i −0.333054 + 0.576866i
\(867\) −276.005 −0.0108115
\(868\) −6251.77 375.983i −0.244469 0.0147024i
\(869\) −33392.9 −1.30354
\(870\) 147.321 255.168i 0.00574098 0.00994367i
\(871\) −405.713 702.716i −0.0157831 0.0273371i
\(872\) −2136.58 3700.67i −0.0829746 0.143716i
\(873\) −8874.01 + 15370.2i −0.344032 + 0.595881i
\(874\) 152.790 0.00591329
\(875\) 6195.24 + 12394.1i 0.239357 + 0.478853i
\(876\) −1054.72 −0.0406800
\(877\) −10453.8 + 18106.6i −0.402509 + 0.697167i −0.994028 0.109125i \(-0.965195\pi\)
0.591519 + 0.806291i \(0.298529\pi\)
\(878\) −12379.6 21442.1i −0.475845 0.824187i
\(879\) 591.599 + 1024.68i 0.0227009 + 0.0393192i
\(880\) 3347.88 5798.69i 0.128246 0.222129i
\(881\) −34959.5 −1.33691 −0.668453 0.743754i \(-0.733043\pi\)
−0.668453 + 0.743754i \(0.733043\pi\)
\(882\) 33255.4 + 4014.49i 1.26958 + 0.153260i
\(883\) −16807.4 −0.640560 −0.320280 0.947323i \(-0.603777\pi\)
−0.320280 + 0.947323i \(0.603777\pi\)
\(884\) 7311.73 12664.3i 0.278190 0.481839i
\(885\) −18.0068 31.1887i −0.000683946 0.00118463i
\(886\) 2167.32 + 3753.90i 0.0821810 + 0.142342i
\(887\) 796.267 1379.17i 0.0301421 0.0522076i −0.850561 0.525877i \(-0.823737\pi\)
0.880703 + 0.473669i \(0.157071\pi\)
\(888\) 20.0116 0.000756246
\(889\) 17328.7 + 34667.6i 0.653754 + 1.30789i
\(890\) −7874.26 −0.296568
\(891\) −9902.04 + 17150.8i −0.372313 + 0.644865i
\(892\) −16319.4 28266.0i −0.612570 1.06100i
\(893\) 71.2701 + 123.443i 0.00267073 + 0.00462584i
\(894\) −165.479 + 286.618i −0.00619066 + 0.0107225i
\(895\) −7402.61 −0.276471
\(896\) −23012.8 1384.00i −0.858041 0.0516028i
\(897\) 243.527 0.00906481
\(898\) 20851.7 36116.1i 0.774865 1.34211i
\(899\) 3811.82 + 6602.27i 0.141414 + 0.244937i
\(900\) −7973.65 13810.8i −0.295320 0.511510i
\(901\) 865.947 1499.86i 0.0320187 0.0554581i
\(902\) −12836.4 −0.473842
\(903\) −461.406 + 698.654i −0.0170040 + 0.0257472i
\(904\) 9022.38 0.331947
\(905\) −1448.56 + 2508.98i −0.0532065 + 0.0921563i
\(906\) 913.431 + 1582.11i 0.0334953 + 0.0580155i
\(907\) −12186.8 21108.2i −0.446149 0.772753i 0.551982 0.833856i \(-0.313872\pi\)
−0.998131 + 0.0611026i \(0.980538\pi\)
\(908\) −7794.79 + 13501.0i −0.284889 + 0.493442i
\(909\) 46540.7 1.69819
\(910\) −5401.28 + 8178.53i −0.196759 + 0.297929i
\(911\) −41830.0 −1.52128 −0.760641 0.649172i \(-0.775115\pi\)
−0.760641 + 0.649172i \(0.775115\pi\)
\(912\) 16.2868 28.2096i 0.000591350 0.00102425i
\(913\) −11271.2 19522.2i −0.408566 0.707658i
\(914\) 2433.49 + 4214.93i 0.0880664 + 0.152535i
\(915\) 21.4733 37.1928i 0.000775830 0.00134378i
\(916\) 31813.6 1.14755
\(917\) 21228.6 + 1276.69i 0.764482 + 0.0459762i
\(918\) 2680.81 0.0963834
\(919\) 6405.44 11094.5i 0.229919 0.398232i −0.727865 0.685721i \(-0.759487\pi\)
0.957784 + 0.287489i \(0.0928204\pi\)
\(920\) 372.109 + 644.512i 0.0133349 + 0.0230967i
\(921\) −1026.51 1777.97i −0.0367261 0.0636114i
\(922\) −11595.2 + 20083.5i −0.414174 + 0.717370i
\(923\) −17191.3 −0.613064
\(924\) −262.076 524.306i −0.00933082 0.0186671i
\(925\) −983.579 −0.0349620
\(926\) −8506.44 + 14733.6i −0.301878 + 0.522868i
\(927\) −7760.02 13440.7i −0.274943 0.476216i
\(928\) −11691.9 20250.9i −0.413582 0.716346i
\(929\) 4799.62 8313.19i 0.169505 0.293592i −0.768741 0.639561i \(-0.779116\pi\)
0.938246 + 0.345969i \(0.112450\pi\)
\(930\) 167.817 0.00591713
\(931\) −246.861 578.290i −0.00869017 0.0203574i
\(932\) 19406.0 0.682044
\(933\) −1189.53 + 2060.33i −0.0417401 + 0.0722959i
\(934\) −16985.9 29420.4i −0.595070 1.03069i
\(935\) −2583.58 4474.89i −0.0903659 0.156518i
\(936\) −6568.82 + 11377.5i −0.229390 + 0.397314i
\(937\) 11704.8 0.408088 0.204044 0.978962i \(-0.434591\pi\)
0.204044 + 0.978962i \(0.434591\pi\)
\(938\) −519.091 1038.48i −0.0180692 0.0361490i
\(939\) −990.106 −0.0344099
\(940\) 621.190 1075.93i 0.0215542 0.0373330i
\(941\) −16659.2 28854.6i −0.577126 0.999611i −0.995807 0.0914778i \(-0.970841\pi\)
0.418681 0.908133i \(-0.362492\pi\)
\(942\) 1457.81 + 2525.00i 0.0504226 + 0.0873345i
\(943\) 1491.02 2582.52i 0.0514892 0.0891819i
\(944\) −4033.90 −0.139081
\(945\) −700.915 42.1532i −0.0241278 0.00145105i
\(946\) −19828.3 −0.681474
\(947\) −2875.16 + 4979.93i −0.0986591 + 0.170883i −0.911130 0.412119i \(-0.864789\pi\)
0.812471 + 0.583002i \(0.198122\pi\)
\(948\) 707.960 + 1226.22i 0.0242547 + 0.0420104i
\(949\) −21353.2 36984.8i −0.730405 1.26510i
\(950\) −382.995 + 663.368i −0.0130800 + 0.0226552i
\(951\) 695.000 0.0236981
\(952\) −6443.75 + 9757.02i −0.219373 + 0.332171i
\(953\) −2522.27 −0.0857339 −0.0428669 0.999081i \(-0.513649\pi\)
−0.0428669 + 0.999081i \(0.513649\pi\)
\(954\) 1392.10 2411.19i 0.0472442 0.0818294i
\(955\) 251.833 + 436.188i 0.00853313 + 0.0147798i
\(956\) −10394.9 18004.6i −0.351670 0.609110i
\(957\) −356.747 + 617.903i −0.0120501 + 0.0208714i
\(958\) 59906.8 2.02036
\(959\) 1546.32 2341.41i 0.0520680 0.0788405i
\(960\) −72.1657 −0.00242619
\(961\) 12724.4 22039.4i 0.427123 0.739799i
\(962\) −724.973 1255.69i −0.0242974 0.0420843i
\(963\) 22454.3 + 38891.9i 0.751379 + 1.30143i
\(964\) −13639.1 + 23623.6i −0.455691 + 0.789280i
\(965\) −2448.46 −0.0816774
\(966\) 347.812 + 20.9175i 0.0115845 + 0.000696697i
\(967\) −25074.8 −0.833868 −0.416934 0.908937i \(-0.636895\pi\)
−0.416934 + 0.908937i \(0.636895\pi\)
\(968\) 3037.78 5261.59i 0.100866 0.174704i
\(969\) −12.5687 21.7696i −0.000416681 0.000721712i
\(970\) −3715.12 6434.78i −0.122975 0.212998i
\(971\) 20734.4 35913.1i 0.685272 1.18693i −0.288080 0.957606i \(-0.593017\pi\)
0.973351 0.229319i \(-0.0736499\pi\)
\(972\) 2527.15 0.0833934
\(973\) −15593.3 31195.8i −0.513772 1.02784i
\(974\) −23992.6 −0.789294
\(975\) −610.443 + 1057.32i −0.0200511 + 0.0347295i
\(976\) −2405.23 4165.98i −0.0788828 0.136629i
\(977\) −1264.42 2190.04i −0.0414048 0.0717152i 0.844580 0.535429i \(-0.179850\pi\)
−0.885985 + 0.463714i \(0.846517\pi\)
\(978\) 587.410 1017.42i 0.0192058 0.0332655i
\(979\) 19068.0 0.622487
\(980\) −3289.27 + 4383.57i −0.107216 + 0.142886i
\(981\) −11080.3 −0.360619
\(982\) 34949.6 60534.4i 1.13573 1.96714i
\(983\) −12037.3 20849.2i −0.390569 0.676485i 0.601956 0.798529i \(-0.294388\pi\)
−0.992525 + 0.122044i \(0.961055\pi\)
\(984\) −152.084 263.418i −0.00492711 0.00853400i
\(985\) 4479.48 7758.69i 0.144902 0.250977i
\(986\) −25468.7 −0.822604
\(987\) 145.339 + 290.763i 0.00468713 + 0.00937699i
\(988\) −441.289 −0.0142098
\(989\) 2303.17 3989.21i 0.0740512 0.128260i
\(990\) −4153.38 7193.86i −0.133336 0.230945i
\(991\) −17078.9 29581.6i −0.547458 0.948225i −0.998448 0.0556957i \(-0.982262\pi\)
0.450990 0.892529i \(-0.351071\pi\)
\(992\) 6659.24 11534.1i 0.213136 0.369163i
\(993\) −1364.04 −0.0435915
\(994\) −24553.0 1476.63i −0.783475 0.0471184i
\(995\) 15024.7 0.478709
\(996\) −477.918 + 827.778i −0.0152042 + 0.0263345i
\(997\) −22516.2 38999.2i −0.715241 1.23883i −0.962867 0.269977i \(-0.912984\pi\)
0.247626 0.968856i \(-0.420350\pi\)
\(998\) 15017.3 + 26010.7i 0.476317 + 0.825005i
\(999\) 51.9391 89.9612i 0.00164493 0.00284910i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.e.a.93.18 44
7.2 even 3 1127.4.a.l.1.5 22
7.4 even 3 inner 161.4.e.a.116.18 yes 44
7.5 odd 6 1127.4.a.k.1.5 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.e.a.93.18 44 1.1 even 1 trivial
161.4.e.a.116.18 yes 44 7.4 even 3 inner
1127.4.a.k.1.5 22 7.5 odd 6
1127.4.a.l.1.5 22 7.2 even 3