Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [161,4,Mod(93,161)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(161, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("161.93");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 161 = 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 161.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.49930751092\) |
Analytic rank: | \(0\) |
Dimension: | \(44\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
93.1 | −2.59283 | + | 4.49091i | −3.54145 | − | 6.13398i | −9.44551 | − | 16.3601i | 2.19895 | − | 3.80869i | 36.7295 | −4.74084 | − | 17.9032i | 56.4771 | −11.5838 | + | 20.0637i | 11.4030 | + | 19.7505i | ||||
93.2 | −2.51222 | + | 4.35130i | −0.509513 | − | 0.882503i | −8.62252 | − | 14.9346i | −5.35622 | + | 9.27725i | 5.12004 | 18.4112 | + | 2.00676i | 46.4512 | 12.9808 | − | 22.4834i | −26.9120 | − | 46.6130i | ||||
93.3 | −2.44746 | + | 4.23912i | 3.42021 | + | 5.92398i | −7.98009 | − | 13.8219i | −9.57184 | + | 16.5789i | −33.4833 | −17.5280 | + | 5.98075i | 38.9644 | −9.89567 | + | 17.1398i | −46.8533 | − | 81.1523i | ||||
93.4 | −2.21363 | + | 3.83412i | −4.64135 | − | 8.03905i | −5.80032 | − | 10.0465i | −8.69922 | + | 15.0675i | 41.0969 | −7.29013 | + | 17.0251i | 15.9410 | −29.5843 | + | 51.2414i | −38.5137 | − | 66.7078i | ||||
93.5 | −1.86723 | + | 3.23414i | 1.89237 | + | 3.27768i | −2.97311 | − | 5.14958i | 5.27939 | − | 9.14417i | −14.1340 | 18.0686 | − | 4.06535i | −7.66976 | 6.33786 | − | 10.9775i | 19.7157 | + | 34.1486i | ||||
93.6 | −1.82844 | + | 3.16696i | −0.0618046 | − | 0.107049i | −2.68642 | − | 4.65302i | 4.27095 | − | 7.39750i | 0.452025 | −9.80694 | + | 15.7106i | −9.60722 | 13.4924 | − | 23.3695i | 15.6184 | + | 27.0518i | ||||
93.7 | −1.29395 | + | 2.24118i | 2.49222 | + | 4.31665i | 0.651400 | + | 1.12826i | −1.97487 | + | 3.42057i | −12.8992 | −16.1811 | − | 9.00953i | −24.0747 | 1.07767 | − | 1.86659i | −5.11074 | − | 8.85207i | ||||
93.8 | −0.702984 | + | 1.21760i | 4.90053 | + | 8.48797i | 3.01163 | + | 5.21629i | −2.29818 | + | 3.98056i | −13.7800 | 4.61323 | − | 17.9365i | −19.7162 | −34.5305 | + | 59.8085i | −3.23116 | − | 5.59654i | ||||
93.9 | −0.428463 | + | 0.742119i | −2.51902 | − | 4.36308i | 3.63284 | + | 6.29226i | 8.85981 | − | 15.3456i | 4.31723 | −14.5237 | − | 11.4918i | −13.0815 | 0.809047 | − | 1.40131i | 7.59219 | + | 13.1501i | ||||
93.10 | −0.263205 | + | 0.455884i | −1.93918 | − | 3.35876i | 3.86145 | + | 6.68822i | −10.0597 | + | 17.4239i | 2.04161 | −16.7081 | − | 7.98998i | −8.27668 | 5.97916 | − | 10.3562i | −5.29553 | − | 9.17212i | ||||
93.11 | −0.224025 | + | 0.388023i | 0.0803360 | + | 0.139146i | 3.89963 | + | 6.75435i | 2.97104 | − | 5.14599i | −0.0719892 | 13.9349 | + | 12.1992i | −7.07886 | 13.4871 | − | 23.3603i | 1.33117 | + | 2.30566i | ||||
93.12 | −0.125710 | + | 0.217736i | −4.73599 | − | 8.20297i | 3.96839 | + | 6.87346i | 2.14049 | − | 3.70743i | 2.38144 | 1.43047 | + | 18.4649i | −4.00682 | −31.3591 | + | 54.3156i | 0.538160 | + | 0.932121i | ||||
93.13 | 0.408313 | − | 0.707219i | 2.18838 | + | 3.79038i | 3.66656 | + | 6.35067i | −10.2780 | + | 17.8020i | 3.57417 | 17.0320 | − | 7.27397i | 12.5214 | 3.92202 | − | 6.79314i | 8.39327 | + | 14.5376i | ||||
93.14 | 0.674796 | − | 1.16878i | 3.89262 | + | 6.74221i | 3.08930 | + | 5.35082i | 3.28419 | − | 5.68839i | 10.5069 | 14.9503 | + | 10.9311i | 19.1353 | −16.8050 | + | 29.1070i | −4.43232 | − | 7.67701i | ||||
93.15 | 1.15757 | − | 2.00498i | −4.37132 | − | 7.57134i | 1.32004 | + | 2.28638i | 7.70847 | − | 13.3515i | −20.2405 | 2.31770 | − | 18.3747i | 24.6334 | −24.7168 | + | 42.8108i | −17.8463 | − | 30.9106i | ||||
93.16 | 1.16398 | − | 2.01608i | 0.912712 | + | 1.58086i | 1.29028 | + | 2.23483i | 7.25165 | − | 12.5602i | 4.24953 | −16.6871 | + | 8.03367i | 24.6312 | 11.8339 | − | 20.4969i | −16.8816 | − | 29.2398i | ||||
93.17 | 1.60577 | − | 2.78127i | −1.32439 | − | 2.29391i | −1.15697 | − | 2.00393i | −7.10907 | + | 12.3133i | −8.50665 | −2.29977 | + | 18.3769i | 18.2610 | 9.99197 | − | 17.3066i | 22.8310 | + | 39.5445i | ||||
93.18 | 1.81191 | − | 3.13831i | −0.112864 | − | 0.195487i | −2.56601 | − | 4.44446i | −1.55669 | + | 2.69626i | −0.818000 | −8.28058 | − | 16.5660i | 10.3930 | 13.4745 | − | 23.3386i | 5.64114 | + | 9.77074i | ||||
93.19 | 2.08672 | − | 3.61431i | 3.80998 | + | 6.59908i | −4.70881 | − | 8.15590i | −1.49553 | + | 2.59033i | 31.8015 | 1.97882 | + | 18.4142i | −5.91636 | −15.5319 | + | 26.9021i | 6.24150 | + | 10.8106i | ||||
93.20 | 2.42180 | − | 4.19468i | −4.52353 | − | 7.83499i | −7.73021 | − | 13.3891i | −7.08114 | + | 12.2649i | −43.8204 | 17.4156 | + | 6.30053i | −36.1353 | −27.4247 | + | 47.5010i | 34.2982 | + | 59.4062i | ||||
See all 44 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 161.4.e.a | ✓ | 44 |
7.c | even | 3 | 1 | inner | 161.4.e.a | ✓ | 44 |
7.c | even | 3 | 1 | 1127.4.a.l | 22 | ||
7.d | odd | 6 | 1 | 1127.4.a.k | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
161.4.e.a | ✓ | 44 | 1.a | even | 1 | 1 | trivial |
161.4.e.a | ✓ | 44 | 7.c | even | 3 | 1 | inner |
1127.4.a.k | 22 | 7.d | odd | 6 | 1 | ||
1127.4.a.l | 22 | 7.c | even | 3 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{44} + 132 T_{2}^{42} - 14 T_{2}^{41} + 10053 T_{2}^{40} - 1739 T_{2}^{39} + 519681 T_{2}^{38} + \cdots + 28\!\cdots\!64 \) acting on \(S_{4}^{\mathrm{new}}(161, [\chi])\).