L(s) = 1 | − 3·3-s + 3·5-s − 2·7-s + 6·9-s + 11-s + 7·13-s − 9·15-s + 3·17-s − 19-s + 6·21-s − 3·23-s − 2·25-s − 10·27-s + 10·29-s − 10·31-s − 3·33-s − 6·35-s + 8·37-s − 21·39-s + 41-s + 5·43-s + 18·45-s + 4·47-s − 49-s − 9·51-s + 12·53-s + 3·55-s + ⋯ |
L(s) = 1 | − 1.73·3-s + 1.34·5-s − 0.755·7-s + 2·9-s + 0.301·11-s + 1.94·13-s − 2.32·15-s + 0.727·17-s − 0.229·19-s + 1.30·21-s − 0.625·23-s − 2/5·25-s − 1.92·27-s + 1.85·29-s − 1.79·31-s − 0.522·33-s − 1.01·35-s + 1.31·37-s − 3.36·39-s + 0.156·41-s + 0.762·43-s + 2.68·45-s + 0.583·47-s − 1/7·49-s − 1.26·51-s + 1.64·53-s + 0.404·55-s + ⋯ |
Λ(s)=(=((215⋅33⋅173)s/2ΓC(s)3L(s)Λ(2−s)
Λ(s)=(=((215⋅33⋅173)s/2ΓC(s+1/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
215⋅33⋅173
|
Sign: |
1
|
Analytic conductor: |
2213.05 |
Root analytic conductor: |
3.60992 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 215⋅33⋅173, ( :1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.442529754 |
L(21) |
≈ |
2.442529754 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1+T)3 |
| 17 | C1 | (1−T)3 |
good | 5 | S4×C2 | 1−3T+11T2−26T3+11pT4−3p2T5+p3T6 |
| 7 | S4×C2 | 1+2T+5T2+12T3+5pT4+2p2T5+p3T6 |
| 11 | S4×C2 | 1−T+17T2−38T3+17pT4−p2T5+p3T6 |
| 13 | S4×C2 | 1−7T+3pT2−178T3+3p2T4−7p2T5+p3T6 |
| 19 | S4×C2 | 1+T+41T2+54T3+41pT4+p2T5+p3T6 |
| 23 | S4×C2 | 1+3T+65T2+130T3+65pT4+3p2T5+p3T6 |
| 29 | S4×C2 | 1−10T+59T2−236T3+59pT4−10p2T5+p3T6 |
| 31 | S4×C2 | 1+10T+29T2−36T3+29pT4+10p2T5+p3T6 |
| 37 | S4×C2 | 1−8T+115T2−560T3+115pT4−8p2T5+p3T6 |
| 41 | S4×C2 | 1−T+67T2+90T3+67pT4−p2T5+p3T6 |
| 43 | S4×C2 | 1−5T+105T2−446T3+105pT4−5p2T5+p3T6 |
| 47 | S4×C2 | 1−4T+77T2−248T3+77pT4−4p2T5+p3T6 |
| 53 | S4×C2 | 1−12T+179T2−1208T3+179pT4−12p2T5+p3T6 |
| 59 | S4×C2 | 1−18T+257T2−2156T3+257pT4−18p2T5+p3T6 |
| 61 | S4×C2 | 1−10T+187T2−1132T3+187pT4−10p2T5+p3T6 |
| 67 | S4×C2 | 1−4T+89T2−600T3+89pT4−4p2T5+p3T6 |
| 71 | S4×C2 | 1+4T+157T2+312T3+157pT4+4p2T5+p3T6 |
| 73 | S4×C2 | 1−4T+159T2−328T3+159pT4−4p2T5+p3T6 |
| 79 | S4×C2 | 1+6T+93T2+516T3+93pT4+6p2T5+p3T6 |
| 83 | S4×C2 | 1−20T+137T2−568T3+137pT4−20p2T5+p3T6 |
| 89 | S4×C2 | 1+6T+167T2+724T3+167pT4+6p2T5+p3T6 |
| 97 | S4×C2 | 1−26T+447T2−5132T3+447pT4−26p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.594015502636873465158281821512, −7.942431518440154927691131929358, −7.75851013819455600339650013143, −7.47943411447964275621539690898, −7.13947454856216394228161297581, −6.74375000903032064334040761224, −6.60452074660752177535631638824, −6.24873559705433383046865173703, −6.16306778987565442368096537443, −5.91068392849339819467755840037, −5.67257651735996096288572285333, −5.39392241753206658975643861617, −5.24000959711364024903925359218, −4.83080084139464838887104804343, −4.29227166477465897982427676619, −4.09109046053841299230864449990, −3.73872720323261031582607913637, −3.63152726020550958510695039269, −3.15110185021728928535561738674, −2.42140397895564582618677977968, −2.28889447086047333377323055724, −1.88820488620305467050661342958, −1.19821336359186939643948134767, −1.02075818104333479442614380884, −0.54333767801081341089932029220,
0.54333767801081341089932029220, 1.02075818104333479442614380884, 1.19821336359186939643948134767, 1.88820488620305467050661342958, 2.28889447086047333377323055724, 2.42140397895564582618677977968, 3.15110185021728928535561738674, 3.63152726020550958510695039269, 3.73872720323261031582607913637, 4.09109046053841299230864449990, 4.29227166477465897982427676619, 4.83080084139464838887104804343, 5.24000959711364024903925359218, 5.39392241753206658975643861617, 5.67257651735996096288572285333, 5.91068392849339819467755840037, 6.16306778987565442368096537443, 6.24873559705433383046865173703, 6.60452074660752177535631638824, 6.74375000903032064334040761224, 7.13947454856216394228161297581, 7.47943411447964275621539690898, 7.75851013819455600339650013143, 7.942431518440154927691131929358, 8.594015502636873465158281821512