Properties

Label 1632.2.a.r.1.3
Level $1632$
Weight $2$
Character 1632.1
Self dual yes
Analytic conductor $13.032$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1632,2,Mod(1,1632)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1632, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1632.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1632 = 2^{5} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1632.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.0315856099\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.470683\) of defining polynomial
Character \(\chi\) \(=\) 1632.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +3.77846 q^{5} -0.941367 q^{7} +1.00000 q^{9} -2.71982 q^{11} -0.719824 q^{13} -3.77846 q^{15} +1.00000 q^{17} +2.71982 q^{19} +0.941367 q^{21} +1.77846 q^{23} +9.27674 q^{25} -1.00000 q^{27} +8.61555 q^{29} +8.05520 q^{31} +2.71982 q^{33} -3.55691 q^{35} +2.94137 q^{37} +0.719824 q^{39} -8.27674 q^{41} -0.837090 q^{43} +3.77846 q^{45} +1.88273 q^{47} -6.11383 q^{49} -1.00000 q^{51} -1.55691 q^{53} -10.2767 q^{55} -2.71982 q^{57} +0.443086 q^{59} -2.49828 q^{61} -0.941367 q^{63} -2.71982 q^{65} +12.9966 q^{67} -1.77846 q^{69} -6.61555 q^{71} +7.43965 q^{73} -9.27674 q^{75} +2.56035 q^{77} -2.82410 q^{79} +1.00000 q^{81} +17.2311 q^{83} +3.77846 q^{85} -8.61555 q^{87} +9.11383 q^{89} +0.677618 q^{91} -8.05520 q^{93} +10.2767 q^{95} +8.11727 q^{97} -2.71982 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 3 q^{5} - 2 q^{7} + 3 q^{9} + q^{11} + 7 q^{13} - 3 q^{15} + 3 q^{17} - q^{19} + 2 q^{21} - 3 q^{23} + 2 q^{25} - 3 q^{27} + 10 q^{29} - 10 q^{31} - q^{33} + 6 q^{35} + 8 q^{37} - 7 q^{39}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 3.77846 1.68978 0.844889 0.534942i \(-0.179667\pi\)
0.844889 + 0.534942i \(0.179667\pi\)
\(6\) 0 0
\(7\) −0.941367 −0.355803 −0.177902 0.984048i \(-0.556931\pi\)
−0.177902 + 0.984048i \(0.556931\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.71982 −0.820058 −0.410029 0.912073i \(-0.634481\pi\)
−0.410029 + 0.912073i \(0.634481\pi\)
\(12\) 0 0
\(13\) −0.719824 −0.199643 −0.0998216 0.995005i \(-0.531827\pi\)
−0.0998216 + 0.995005i \(0.531827\pi\)
\(14\) 0 0
\(15\) −3.77846 −0.975593
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 2.71982 0.623970 0.311985 0.950087i \(-0.399006\pi\)
0.311985 + 0.950087i \(0.399006\pi\)
\(20\) 0 0
\(21\) 0.941367 0.205423
\(22\) 0 0
\(23\) 1.77846 0.370834 0.185417 0.982660i \(-0.440636\pi\)
0.185417 + 0.982660i \(0.440636\pi\)
\(24\) 0 0
\(25\) 9.27674 1.85535
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 8.61555 1.59987 0.799933 0.600089i \(-0.204868\pi\)
0.799933 + 0.600089i \(0.204868\pi\)
\(30\) 0 0
\(31\) 8.05520 1.44676 0.723378 0.690452i \(-0.242588\pi\)
0.723378 + 0.690452i \(0.242588\pi\)
\(32\) 0 0
\(33\) 2.71982 0.473461
\(34\) 0 0
\(35\) −3.55691 −0.601228
\(36\) 0 0
\(37\) 2.94137 0.483558 0.241779 0.970331i \(-0.422269\pi\)
0.241779 + 0.970331i \(0.422269\pi\)
\(38\) 0 0
\(39\) 0.719824 0.115264
\(40\) 0 0
\(41\) −8.27674 −1.29261 −0.646305 0.763079i \(-0.723686\pi\)
−0.646305 + 0.763079i \(0.723686\pi\)
\(42\) 0 0
\(43\) −0.837090 −0.127655 −0.0638275 0.997961i \(-0.520331\pi\)
−0.0638275 + 0.997961i \(0.520331\pi\)
\(44\) 0 0
\(45\) 3.77846 0.563259
\(46\) 0 0
\(47\) 1.88273 0.274625 0.137312 0.990528i \(-0.456154\pi\)
0.137312 + 0.990528i \(0.456154\pi\)
\(48\) 0 0
\(49\) −6.11383 −0.873404
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 0 0
\(53\) −1.55691 −0.213859 −0.106929 0.994267i \(-0.534102\pi\)
−0.106929 + 0.994267i \(0.534102\pi\)
\(54\) 0 0
\(55\) −10.2767 −1.38572
\(56\) 0 0
\(57\) −2.71982 −0.360249
\(58\) 0 0
\(59\) 0.443086 0.0576849 0.0288424 0.999584i \(-0.490818\pi\)
0.0288424 + 0.999584i \(0.490818\pi\)
\(60\) 0 0
\(61\) −2.49828 −0.319872 −0.159936 0.987127i \(-0.551129\pi\)
−0.159936 + 0.987127i \(0.551129\pi\)
\(62\) 0 0
\(63\) −0.941367 −0.118601
\(64\) 0 0
\(65\) −2.71982 −0.337353
\(66\) 0 0
\(67\) 12.9966 1.58778 0.793891 0.608060i \(-0.208052\pi\)
0.793891 + 0.608060i \(0.208052\pi\)
\(68\) 0 0
\(69\) −1.77846 −0.214101
\(70\) 0 0
\(71\) −6.61555 −0.785121 −0.392561 0.919726i \(-0.628411\pi\)
−0.392561 + 0.919726i \(0.628411\pi\)
\(72\) 0 0
\(73\) 7.43965 0.870745 0.435372 0.900250i \(-0.356617\pi\)
0.435372 + 0.900250i \(0.356617\pi\)
\(74\) 0 0
\(75\) −9.27674 −1.07119
\(76\) 0 0
\(77\) 2.56035 0.291779
\(78\) 0 0
\(79\) −2.82410 −0.317736 −0.158868 0.987300i \(-0.550784\pi\)
−0.158868 + 0.987300i \(0.550784\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 17.2311 1.89136 0.945679 0.325101i \(-0.105398\pi\)
0.945679 + 0.325101i \(0.105398\pi\)
\(84\) 0 0
\(85\) 3.77846 0.409831
\(86\) 0 0
\(87\) −8.61555 −0.923684
\(88\) 0 0
\(89\) 9.11383 0.966064 0.483032 0.875603i \(-0.339535\pi\)
0.483032 + 0.875603i \(0.339535\pi\)
\(90\) 0 0
\(91\) 0.677618 0.0710337
\(92\) 0 0
\(93\) −8.05520 −0.835285
\(94\) 0 0
\(95\) 10.2767 1.05437
\(96\) 0 0
\(97\) 8.11727 0.824184 0.412092 0.911142i \(-0.364798\pi\)
0.412092 + 0.911142i \(0.364798\pi\)
\(98\) 0 0
\(99\) −2.71982 −0.273353
\(100\) 0 0
\(101\) 9.32238 0.927612 0.463806 0.885937i \(-0.346484\pi\)
0.463806 + 0.885937i \(0.346484\pi\)
\(102\) 0 0
\(103\) −10.7198 −1.05626 −0.528128 0.849165i \(-0.677106\pi\)
−0.528128 + 0.849165i \(0.677106\pi\)
\(104\) 0 0
\(105\) 3.55691 0.347119
\(106\) 0 0
\(107\) 16.1595 1.56220 0.781098 0.624409i \(-0.214660\pi\)
0.781098 + 0.624409i \(0.214660\pi\)
\(108\) 0 0
\(109\) −3.17590 −0.304196 −0.152098 0.988365i \(-0.548603\pi\)
−0.152098 + 0.988365i \(0.548603\pi\)
\(110\) 0 0
\(111\) −2.94137 −0.279182
\(112\) 0 0
\(113\) −0.954357 −0.0897783 −0.0448892 0.998992i \(-0.514293\pi\)
−0.0448892 + 0.998992i \(0.514293\pi\)
\(114\) 0 0
\(115\) 6.71982 0.626627
\(116\) 0 0
\(117\) −0.719824 −0.0665477
\(118\) 0 0
\(119\) −0.941367 −0.0862950
\(120\) 0 0
\(121\) −3.60256 −0.327505
\(122\) 0 0
\(123\) 8.27674 0.746288
\(124\) 0 0
\(125\) 16.1595 1.44535
\(126\) 0 0
\(127\) 4.60256 0.408411 0.204205 0.978928i \(-0.434539\pi\)
0.204205 + 0.978928i \(0.434539\pi\)
\(128\) 0 0
\(129\) 0.837090 0.0737017
\(130\) 0 0
\(131\) −0.159472 −0.0139331 −0.00696656 0.999976i \(-0.502218\pi\)
−0.00696656 + 0.999976i \(0.502218\pi\)
\(132\) 0 0
\(133\) −2.56035 −0.222011
\(134\) 0 0
\(135\) −3.77846 −0.325198
\(136\) 0 0
\(137\) −18.5535 −1.58513 −0.792565 0.609787i \(-0.791255\pi\)
−0.792565 + 0.609787i \(0.791255\pi\)
\(138\) 0 0
\(139\) −2.11727 −0.179584 −0.0897921 0.995961i \(-0.528620\pi\)
−0.0897921 + 0.995961i \(0.528620\pi\)
\(140\) 0 0
\(141\) −1.88273 −0.158555
\(142\) 0 0
\(143\) 1.95779 0.163719
\(144\) 0 0
\(145\) 32.5535 2.70342
\(146\) 0 0
\(147\) 6.11383 0.504260
\(148\) 0 0
\(149\) −3.43965 −0.281787 −0.140893 0.990025i \(-0.544998\pi\)
−0.140893 + 0.990025i \(0.544998\pi\)
\(150\) 0 0
\(151\) −20.0000 −1.62758 −0.813788 0.581161i \(-0.802599\pi\)
−0.813788 + 0.581161i \(0.802599\pi\)
\(152\) 0 0
\(153\) 1.00000 0.0808452
\(154\) 0 0
\(155\) 30.4362 2.44470
\(156\) 0 0
\(157\) 15.3906 1.22830 0.614150 0.789189i \(-0.289499\pi\)
0.614150 + 0.789189i \(0.289499\pi\)
\(158\) 0 0
\(159\) 1.55691 0.123471
\(160\) 0 0
\(161\) −1.67418 −0.131944
\(162\) 0 0
\(163\) −16.5535 −1.29657 −0.648284 0.761398i \(-0.724513\pi\)
−0.648284 + 0.761398i \(0.724513\pi\)
\(164\) 0 0
\(165\) 10.2767 0.800043
\(166\) 0 0
\(167\) −20.4492 −1.58241 −0.791203 0.611553i \(-0.790545\pi\)
−0.791203 + 0.611553i \(0.790545\pi\)
\(168\) 0 0
\(169\) −12.4819 −0.960143
\(170\) 0 0
\(171\) 2.71982 0.207990
\(172\) 0 0
\(173\) 18.8923 1.43635 0.718177 0.695861i \(-0.244977\pi\)
0.718177 + 0.695861i \(0.244977\pi\)
\(174\) 0 0
\(175\) −8.73281 −0.660139
\(176\) 0 0
\(177\) −0.443086 −0.0333044
\(178\) 0 0
\(179\) 24.5535 1.83521 0.917606 0.397490i \(-0.130119\pi\)
0.917606 + 0.397490i \(0.130119\pi\)
\(180\) 0 0
\(181\) −15.9379 −1.18466 −0.592328 0.805697i \(-0.701791\pi\)
−0.592328 + 0.805697i \(0.701791\pi\)
\(182\) 0 0
\(183\) 2.49828 0.184678
\(184\) 0 0
\(185\) 11.1138 0.817105
\(186\) 0 0
\(187\) −2.71982 −0.198893
\(188\) 0 0
\(189\) 0.941367 0.0684744
\(190\) 0 0
\(191\) 6.11727 0.442630 0.221315 0.975202i \(-0.428965\pi\)
0.221315 + 0.975202i \(0.428965\pi\)
\(192\) 0 0
\(193\) 15.2311 1.09636 0.548179 0.836361i \(-0.315321\pi\)
0.548179 + 0.836361i \(0.315321\pi\)
\(194\) 0 0
\(195\) 2.71982 0.194771
\(196\) 0 0
\(197\) 12.7750 0.910182 0.455091 0.890445i \(-0.349607\pi\)
0.455091 + 0.890445i \(0.349607\pi\)
\(198\) 0 0
\(199\) −8.94137 −0.633837 −0.316918 0.948453i \(-0.602648\pi\)
−0.316918 + 0.948453i \(0.602648\pi\)
\(200\) 0 0
\(201\) −12.9966 −0.916707
\(202\) 0 0
\(203\) −8.11039 −0.569238
\(204\) 0 0
\(205\) −31.2733 −2.18422
\(206\) 0 0
\(207\) 1.77846 0.123611
\(208\) 0 0
\(209\) −7.39744 −0.511692
\(210\) 0 0
\(211\) −7.55691 −0.520239 −0.260120 0.965576i \(-0.583762\pi\)
−0.260120 + 0.965576i \(0.583762\pi\)
\(212\) 0 0
\(213\) 6.61555 0.453290
\(214\) 0 0
\(215\) −3.16291 −0.215709
\(216\) 0 0
\(217\) −7.58289 −0.514760
\(218\) 0 0
\(219\) −7.43965 −0.502725
\(220\) 0 0
\(221\) −0.719824 −0.0484206
\(222\) 0 0
\(223\) −19.5078 −1.30634 −0.653171 0.757211i \(-0.726562\pi\)
−0.653171 + 0.757211i \(0.726562\pi\)
\(224\) 0 0
\(225\) 9.27674 0.618449
\(226\) 0 0
\(227\) 1.72326 0.114377 0.0571885 0.998363i \(-0.481786\pi\)
0.0571885 + 0.998363i \(0.481786\pi\)
\(228\) 0 0
\(229\) −20.8793 −1.37974 −0.689871 0.723932i \(-0.742333\pi\)
−0.689871 + 0.723932i \(0.742333\pi\)
\(230\) 0 0
\(231\) −2.56035 −0.168459
\(232\) 0 0
\(233\) 11.5991 0.759884 0.379942 0.925010i \(-0.375944\pi\)
0.379942 + 0.925010i \(0.375944\pi\)
\(234\) 0 0
\(235\) 7.11383 0.464055
\(236\) 0 0
\(237\) 2.82410 0.183445
\(238\) 0 0
\(239\) 14.4362 0.933801 0.466900 0.884310i \(-0.345371\pi\)
0.466900 + 0.884310i \(0.345371\pi\)
\(240\) 0 0
\(241\) 11.8827 0.765434 0.382717 0.923866i \(-0.374988\pi\)
0.382717 + 0.923866i \(0.374988\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −23.1008 −1.47586
\(246\) 0 0
\(247\) −1.95779 −0.124571
\(248\) 0 0
\(249\) −17.2311 −1.09198
\(250\) 0 0
\(251\) 27.1138 1.71141 0.855705 0.517464i \(-0.173124\pi\)
0.855705 + 0.517464i \(0.173124\pi\)
\(252\) 0 0
\(253\) −4.83709 −0.304105
\(254\) 0 0
\(255\) −3.77846 −0.236616
\(256\) 0 0
\(257\) −24.8793 −1.55193 −0.775964 0.630777i \(-0.782736\pi\)
−0.775964 + 0.630777i \(0.782736\pi\)
\(258\) 0 0
\(259\) −2.76891 −0.172051
\(260\) 0 0
\(261\) 8.61555 0.533289
\(262\) 0 0
\(263\) 24.9966 1.54135 0.770677 0.637226i \(-0.219918\pi\)
0.770677 + 0.637226i \(0.219918\pi\)
\(264\) 0 0
\(265\) −5.88273 −0.361373
\(266\) 0 0
\(267\) −9.11383 −0.557757
\(268\) 0 0
\(269\) −21.8957 −1.33501 −0.667503 0.744607i \(-0.732637\pi\)
−0.667503 + 0.744607i \(0.732637\pi\)
\(270\) 0 0
\(271\) 4.60256 0.279585 0.139793 0.990181i \(-0.455356\pi\)
0.139793 + 0.990181i \(0.455356\pi\)
\(272\) 0 0
\(273\) −0.677618 −0.0410113
\(274\) 0 0
\(275\) −25.2311 −1.52149
\(276\) 0 0
\(277\) −7.82754 −0.470311 −0.235156 0.971958i \(-0.575560\pi\)
−0.235156 + 0.971958i \(0.575560\pi\)
\(278\) 0 0
\(279\) 8.05520 0.482252
\(280\) 0 0
\(281\) 25.1138 1.49817 0.749083 0.662476i \(-0.230495\pi\)
0.749083 + 0.662476i \(0.230495\pi\)
\(282\) 0 0
\(283\) −3.32238 −0.197495 −0.0987475 0.995113i \(-0.531484\pi\)
−0.0987475 + 0.995113i \(0.531484\pi\)
\(284\) 0 0
\(285\) −10.2767 −0.608741
\(286\) 0 0
\(287\) 7.79145 0.459915
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −8.11727 −0.475843
\(292\) 0 0
\(293\) −29.4328 −1.71948 −0.859740 0.510731i \(-0.829375\pi\)
−0.859740 + 0.510731i \(0.829375\pi\)
\(294\) 0 0
\(295\) 1.67418 0.0974746
\(296\) 0 0
\(297\) 2.71982 0.157820
\(298\) 0 0
\(299\) −1.28018 −0.0740345
\(300\) 0 0
\(301\) 0.788009 0.0454201
\(302\) 0 0
\(303\) −9.32238 −0.535557
\(304\) 0 0
\(305\) −9.43965 −0.540513
\(306\) 0 0
\(307\) −15.3484 −0.875977 −0.437989 0.898981i \(-0.644309\pi\)
−0.437989 + 0.898981i \(0.644309\pi\)
\(308\) 0 0
\(309\) 10.7198 0.609829
\(310\) 0 0
\(311\) −31.6121 −1.79256 −0.896279 0.443490i \(-0.853740\pi\)
−0.896279 + 0.443490i \(0.853740\pi\)
\(312\) 0 0
\(313\) −15.4656 −0.874169 −0.437084 0.899420i \(-0.643989\pi\)
−0.437084 + 0.899420i \(0.643989\pi\)
\(314\) 0 0
\(315\) −3.55691 −0.200409
\(316\) 0 0
\(317\) −22.6087 −1.26983 −0.634915 0.772582i \(-0.718965\pi\)
−0.634915 + 0.772582i \(0.718965\pi\)
\(318\) 0 0
\(319\) −23.4328 −1.31198
\(320\) 0 0
\(321\) −16.1595 −0.901934
\(322\) 0 0
\(323\) 2.71982 0.151335
\(324\) 0 0
\(325\) −6.67762 −0.370408
\(326\) 0 0
\(327\) 3.17590 0.175628
\(328\) 0 0
\(329\) −1.77234 −0.0977124
\(330\) 0 0
\(331\) −29.3906 −1.61545 −0.807726 0.589558i \(-0.799302\pi\)
−0.807726 + 0.589558i \(0.799302\pi\)
\(332\) 0 0
\(333\) 2.94137 0.161186
\(334\) 0 0
\(335\) 49.1070 2.68300
\(336\) 0 0
\(337\) −7.67418 −0.418039 −0.209020 0.977911i \(-0.567027\pi\)
−0.209020 + 0.977911i \(0.567027\pi\)
\(338\) 0 0
\(339\) 0.954357 0.0518335
\(340\) 0 0
\(341\) −21.9087 −1.18642
\(342\) 0 0
\(343\) 12.3449 0.666563
\(344\) 0 0
\(345\) −6.71982 −0.361783
\(346\) 0 0
\(347\) −0.234533 −0.0125904 −0.00629519 0.999980i \(-0.502004\pi\)
−0.00629519 + 0.999980i \(0.502004\pi\)
\(348\) 0 0
\(349\) 8.48529 0.454207 0.227104 0.973871i \(-0.427074\pi\)
0.227104 + 0.973871i \(0.427074\pi\)
\(350\) 0 0
\(351\) 0.719824 0.0384214
\(352\) 0 0
\(353\) −16.8793 −0.898394 −0.449197 0.893433i \(-0.648290\pi\)
−0.449197 + 0.893433i \(0.648290\pi\)
\(354\) 0 0
\(355\) −24.9966 −1.32668
\(356\) 0 0
\(357\) 0.941367 0.0498224
\(358\) 0 0
\(359\) 30.2277 1.59535 0.797677 0.603084i \(-0.206062\pi\)
0.797677 + 0.603084i \(0.206062\pi\)
\(360\) 0 0
\(361\) −11.6026 −0.610661
\(362\) 0 0
\(363\) 3.60256 0.189085
\(364\) 0 0
\(365\) 28.1104 1.47137
\(366\) 0 0
\(367\) 3.50172 0.182788 0.0913941 0.995815i \(-0.470868\pi\)
0.0913941 + 0.995815i \(0.470868\pi\)
\(368\) 0 0
\(369\) −8.27674 −0.430870
\(370\) 0 0
\(371\) 1.46563 0.0760916
\(372\) 0 0
\(373\) −22.7620 −1.17857 −0.589287 0.807924i \(-0.700591\pi\)
−0.589287 + 0.807924i \(0.700591\pi\)
\(374\) 0 0
\(375\) −16.1595 −0.834472
\(376\) 0 0
\(377\) −6.20168 −0.319403
\(378\) 0 0
\(379\) 28.7880 1.47874 0.739370 0.673299i \(-0.235123\pi\)
0.739370 + 0.673299i \(0.235123\pi\)
\(380\) 0 0
\(381\) −4.60256 −0.235796
\(382\) 0 0
\(383\) −28.6639 −1.46466 −0.732328 0.680952i \(-0.761566\pi\)
−0.732328 + 0.680952i \(0.761566\pi\)
\(384\) 0 0
\(385\) 9.67418 0.493042
\(386\) 0 0
\(387\) −0.837090 −0.0425517
\(388\) 0 0
\(389\) −22.7880 −1.15540 −0.577699 0.816250i \(-0.696049\pi\)
−0.577699 + 0.816250i \(0.696049\pi\)
\(390\) 0 0
\(391\) 1.77846 0.0899404
\(392\) 0 0
\(393\) 0.159472 0.00804429
\(394\) 0 0
\(395\) −10.6707 −0.536903
\(396\) 0 0
\(397\) −18.0812 −0.907468 −0.453734 0.891137i \(-0.649908\pi\)
−0.453734 + 0.891137i \(0.649908\pi\)
\(398\) 0 0
\(399\) 2.56035 0.128178
\(400\) 0 0
\(401\) 1.71639 0.0857122 0.0428561 0.999081i \(-0.486354\pi\)
0.0428561 + 0.999081i \(0.486354\pi\)
\(402\) 0 0
\(403\) −5.79832 −0.288835
\(404\) 0 0
\(405\) 3.77846 0.187753
\(406\) 0 0
\(407\) −8.00000 −0.396545
\(408\) 0 0
\(409\) −25.1629 −1.24423 −0.622113 0.782928i \(-0.713726\pi\)
−0.622113 + 0.782928i \(0.713726\pi\)
\(410\) 0 0
\(411\) 18.5535 0.915175
\(412\) 0 0
\(413\) −0.417106 −0.0205245
\(414\) 0 0
\(415\) 65.1070 3.19597
\(416\) 0 0
\(417\) 2.11727 0.103683
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) 21.5078 1.04823 0.524114 0.851648i \(-0.324397\pi\)
0.524114 + 0.851648i \(0.324397\pi\)
\(422\) 0 0
\(423\) 1.88273 0.0915416
\(424\) 0 0
\(425\) 9.27674 0.449988
\(426\) 0 0
\(427\) 2.35180 0.113812
\(428\) 0 0
\(429\) −1.95779 −0.0945232
\(430\) 0 0
\(431\) −4.73281 −0.227972 −0.113986 0.993482i \(-0.536362\pi\)
−0.113986 + 0.993482i \(0.536362\pi\)
\(432\) 0 0
\(433\) 10.2836 0.494199 0.247099 0.968990i \(-0.420523\pi\)
0.247099 + 0.968990i \(0.420523\pi\)
\(434\) 0 0
\(435\) −32.5535 −1.56082
\(436\) 0 0
\(437\) 4.83709 0.231389
\(438\) 0 0
\(439\) −25.7294 −1.22800 −0.613998 0.789308i \(-0.710440\pi\)
−0.613998 + 0.789308i \(0.710440\pi\)
\(440\) 0 0
\(441\) −6.11383 −0.291135
\(442\) 0 0
\(443\) 23.3484 1.10931 0.554657 0.832079i \(-0.312849\pi\)
0.554657 + 0.832079i \(0.312849\pi\)
\(444\) 0 0
\(445\) 34.4362 1.63243
\(446\) 0 0
\(447\) 3.43965 0.162690
\(448\) 0 0
\(449\) −28.6448 −1.35183 −0.675915 0.736980i \(-0.736251\pi\)
−0.675915 + 0.736980i \(0.736251\pi\)
\(450\) 0 0
\(451\) 22.5113 1.06001
\(452\) 0 0
\(453\) 20.0000 0.939682
\(454\) 0 0
\(455\) 2.56035 0.120031
\(456\) 0 0
\(457\) 17.7164 0.828738 0.414369 0.910109i \(-0.364002\pi\)
0.414369 + 0.910109i \(0.364002\pi\)
\(458\) 0 0
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) 13.8759 0.646263 0.323132 0.946354i \(-0.395264\pi\)
0.323132 + 0.946354i \(0.395264\pi\)
\(462\) 0 0
\(463\) 36.1104 1.67819 0.839096 0.543983i \(-0.183084\pi\)
0.839096 + 0.543983i \(0.183084\pi\)
\(464\) 0 0
\(465\) −30.4362 −1.41145
\(466\) 0 0
\(467\) −30.4622 −1.40962 −0.704811 0.709395i \(-0.748968\pi\)
−0.704811 + 0.709395i \(0.748968\pi\)
\(468\) 0 0
\(469\) −12.2345 −0.564938
\(470\) 0 0
\(471\) −15.3906 −0.709160
\(472\) 0 0
\(473\) 2.27674 0.104685
\(474\) 0 0
\(475\) 25.2311 1.15768
\(476\) 0 0
\(477\) −1.55691 −0.0712862
\(478\) 0 0
\(479\) −10.5665 −0.482794 −0.241397 0.970426i \(-0.577606\pi\)
−0.241397 + 0.970426i \(0.577606\pi\)
\(480\) 0 0
\(481\) −2.11727 −0.0965390
\(482\) 0 0
\(483\) 1.67418 0.0761779
\(484\) 0 0
\(485\) 30.6707 1.39269
\(486\) 0 0
\(487\) −5.28629 −0.239545 −0.119772 0.992801i \(-0.538216\pi\)
−0.119772 + 0.992801i \(0.538216\pi\)
\(488\) 0 0
\(489\) 16.5535 0.748574
\(490\) 0 0
\(491\) −14.4622 −0.652669 −0.326335 0.945254i \(-0.605814\pi\)
−0.326335 + 0.945254i \(0.605814\pi\)
\(492\) 0 0
\(493\) 8.61555 0.388025
\(494\) 0 0
\(495\) −10.2767 −0.461905
\(496\) 0 0
\(497\) 6.22766 0.279349
\(498\) 0 0
\(499\) −1.23109 −0.0551114 −0.0275557 0.999620i \(-0.508772\pi\)
−0.0275557 + 0.999620i \(0.508772\pi\)
\(500\) 0 0
\(501\) 20.4492 0.913603
\(502\) 0 0
\(503\) 4.33881 0.193458 0.0967290 0.995311i \(-0.469162\pi\)
0.0967290 + 0.995311i \(0.469162\pi\)
\(504\) 0 0
\(505\) 35.2242 1.56746
\(506\) 0 0
\(507\) 12.4819 0.554339
\(508\) 0 0
\(509\) 14.9706 0.663559 0.331780 0.943357i \(-0.392351\pi\)
0.331780 + 0.943357i \(0.392351\pi\)
\(510\) 0 0
\(511\) −7.00344 −0.309814
\(512\) 0 0
\(513\) −2.71982 −0.120083
\(514\) 0 0
\(515\) −40.5044 −1.78484
\(516\) 0 0
\(517\) −5.12070 −0.225208
\(518\) 0 0
\(519\) −18.8923 −0.829279
\(520\) 0 0
\(521\) 25.7164 1.12666 0.563328 0.826234i \(-0.309521\pi\)
0.563328 + 0.826234i \(0.309521\pi\)
\(522\) 0 0
\(523\) 28.9966 1.26793 0.633966 0.773361i \(-0.281426\pi\)
0.633966 + 0.773361i \(0.281426\pi\)
\(524\) 0 0
\(525\) 8.73281 0.381131
\(526\) 0 0
\(527\) 8.05520 0.350890
\(528\) 0 0
\(529\) −19.8371 −0.862482
\(530\) 0 0
\(531\) 0.443086 0.0192283
\(532\) 0 0
\(533\) 5.95779 0.258061
\(534\) 0 0
\(535\) 61.0579 2.63976
\(536\) 0 0
\(537\) −24.5535 −1.05956
\(538\) 0 0
\(539\) 16.6285 0.716242
\(540\) 0 0
\(541\) −34.8172 −1.49691 −0.748455 0.663186i \(-0.769204\pi\)
−0.748455 + 0.663186i \(0.769204\pi\)
\(542\) 0 0
\(543\) 15.9379 0.683962
\(544\) 0 0
\(545\) −12.0000 −0.514024
\(546\) 0 0
\(547\) −24.4431 −1.04511 −0.522555 0.852605i \(-0.675021\pi\)
−0.522555 + 0.852605i \(0.675021\pi\)
\(548\) 0 0
\(549\) −2.49828 −0.106624
\(550\) 0 0
\(551\) 23.4328 0.998270
\(552\) 0 0
\(553\) 2.65851 0.113052
\(554\) 0 0
\(555\) −11.1138 −0.471756
\(556\) 0 0
\(557\) 1.00344 0.0425170 0.0212585 0.999774i \(-0.493233\pi\)
0.0212585 + 0.999774i \(0.493233\pi\)
\(558\) 0 0
\(559\) 0.602558 0.0254855
\(560\) 0 0
\(561\) 2.71982 0.114831
\(562\) 0 0
\(563\) 10.9053 0.459603 0.229801 0.973238i \(-0.426192\pi\)
0.229801 + 0.973238i \(0.426192\pi\)
\(564\) 0 0
\(565\) −3.60600 −0.151705
\(566\) 0 0
\(567\) −0.941367 −0.0395337
\(568\) 0 0
\(569\) −1.34836 −0.0565262 −0.0282631 0.999601i \(-0.508998\pi\)
−0.0282631 + 0.999601i \(0.508998\pi\)
\(570\) 0 0
\(571\) 12.3189 0.515532 0.257766 0.966207i \(-0.417014\pi\)
0.257766 + 0.966207i \(0.417014\pi\)
\(572\) 0 0
\(573\) −6.11727 −0.255552
\(574\) 0 0
\(575\) 16.4983 0.688026
\(576\) 0 0
\(577\) 33.2993 1.38627 0.693134 0.720809i \(-0.256230\pi\)
0.693134 + 0.720809i \(0.256230\pi\)
\(578\) 0 0
\(579\) −15.2311 −0.632983
\(580\) 0 0
\(581\) −16.2208 −0.672951
\(582\) 0 0
\(583\) 4.23453 0.175376
\(584\) 0 0
\(585\) −2.71982 −0.112451
\(586\) 0 0
\(587\) 22.4622 0.927114 0.463557 0.886067i \(-0.346573\pi\)
0.463557 + 0.886067i \(0.346573\pi\)
\(588\) 0 0
\(589\) 21.9087 0.902733
\(590\) 0 0
\(591\) −12.7750 −0.525494
\(592\) 0 0
\(593\) 1.21199 0.0497705 0.0248853 0.999690i \(-0.492078\pi\)
0.0248853 + 0.999690i \(0.492078\pi\)
\(594\) 0 0
\(595\) −3.55691 −0.145819
\(596\) 0 0
\(597\) 8.94137 0.365946
\(598\) 0 0
\(599\) −37.3415 −1.52573 −0.762866 0.646557i \(-0.776208\pi\)
−0.762866 + 0.646557i \(0.776208\pi\)
\(600\) 0 0
\(601\) −20.2277 −0.825103 −0.412552 0.910934i \(-0.635362\pi\)
−0.412552 + 0.910934i \(0.635362\pi\)
\(602\) 0 0
\(603\) 12.9966 0.529261
\(604\) 0 0
\(605\) −13.6121 −0.553411
\(606\) 0 0
\(607\) −22.4914 −0.912898 −0.456449 0.889750i \(-0.650879\pi\)
−0.456449 + 0.889750i \(0.650879\pi\)
\(608\) 0 0
\(609\) 8.11039 0.328650
\(610\) 0 0
\(611\) −1.35524 −0.0548270
\(612\) 0 0
\(613\) 3.62510 0.146416 0.0732082 0.997317i \(-0.476676\pi\)
0.0732082 + 0.997317i \(0.476676\pi\)
\(614\) 0 0
\(615\) 31.2733 1.26106
\(616\) 0 0
\(617\) −9.23797 −0.371907 −0.185953 0.982559i \(-0.559537\pi\)
−0.185953 + 0.982559i \(0.559537\pi\)
\(618\) 0 0
\(619\) −5.67418 −0.228065 −0.114032 0.993477i \(-0.536377\pi\)
−0.114032 + 0.993477i \(0.536377\pi\)
\(620\) 0 0
\(621\) −1.77846 −0.0713670
\(622\) 0 0
\(623\) −8.57946 −0.343729
\(624\) 0 0
\(625\) 14.6742 0.586967
\(626\) 0 0
\(627\) 7.39744 0.295425
\(628\) 0 0
\(629\) 2.94137 0.117280
\(630\) 0 0
\(631\) −30.3871 −1.20969 −0.604846 0.796342i \(-0.706765\pi\)
−0.604846 + 0.796342i \(0.706765\pi\)
\(632\) 0 0
\(633\) 7.55691 0.300360
\(634\) 0 0
\(635\) 17.3906 0.690124
\(636\) 0 0
\(637\) 4.40088 0.174369
\(638\) 0 0
\(639\) −6.61555 −0.261707
\(640\) 0 0
\(641\) 8.04221 0.317648 0.158824 0.987307i \(-0.449230\pi\)
0.158824 + 0.987307i \(0.449230\pi\)
\(642\) 0 0
\(643\) −5.67418 −0.223768 −0.111884 0.993721i \(-0.535688\pi\)
−0.111884 + 0.993721i \(0.535688\pi\)
\(644\) 0 0
\(645\) 3.16291 0.124539
\(646\) 0 0
\(647\) −2.76891 −0.108857 −0.0544284 0.998518i \(-0.517334\pi\)
−0.0544284 + 0.998518i \(0.517334\pi\)
\(648\) 0 0
\(649\) −1.20512 −0.0473049
\(650\) 0 0
\(651\) 7.58289 0.297197
\(652\) 0 0
\(653\) −18.4492 −0.721973 −0.360986 0.932571i \(-0.617560\pi\)
−0.360986 + 0.932571i \(0.617560\pi\)
\(654\) 0 0
\(655\) −0.602558 −0.0235439
\(656\) 0 0
\(657\) 7.43965 0.290248
\(658\) 0 0
\(659\) 5.46563 0.212911 0.106455 0.994317i \(-0.466050\pi\)
0.106455 + 0.994317i \(0.466050\pi\)
\(660\) 0 0
\(661\) −13.7424 −0.534516 −0.267258 0.963625i \(-0.586118\pi\)
−0.267258 + 0.963625i \(0.586118\pi\)
\(662\) 0 0
\(663\) 0.719824 0.0279556
\(664\) 0 0
\(665\) −9.67418 −0.375149
\(666\) 0 0
\(667\) 15.3224 0.593285
\(668\) 0 0
\(669\) 19.5078 0.754216
\(670\) 0 0
\(671\) 6.79488 0.262314
\(672\) 0 0
\(673\) 32.4362 1.25032 0.625162 0.780495i \(-0.285033\pi\)
0.625162 + 0.780495i \(0.285033\pi\)
\(674\) 0 0
\(675\) −9.27674 −0.357062
\(676\) 0 0
\(677\) 3.56990 0.137203 0.0686013 0.997644i \(-0.478146\pi\)
0.0686013 + 0.997644i \(0.478146\pi\)
\(678\) 0 0
\(679\) −7.64133 −0.293247
\(680\) 0 0
\(681\) −1.72326 −0.0660355
\(682\) 0 0
\(683\) −36.9215 −1.41276 −0.706381 0.707832i \(-0.749673\pi\)
−0.706381 + 0.707832i \(0.749673\pi\)
\(684\) 0 0
\(685\) −70.1035 −2.67852
\(686\) 0 0
\(687\) 20.8793 0.796595
\(688\) 0 0
\(689\) 1.12070 0.0426954
\(690\) 0 0
\(691\) 30.1035 1.14519 0.572596 0.819838i \(-0.305936\pi\)
0.572596 + 0.819838i \(0.305936\pi\)
\(692\) 0 0
\(693\) 2.56035 0.0972597
\(694\) 0 0
\(695\) −8.00000 −0.303457
\(696\) 0 0
\(697\) −8.27674 −0.313504
\(698\) 0 0
\(699\) −11.5991 −0.438719
\(700\) 0 0
\(701\) −5.79145 −0.218740 −0.109370 0.994001i \(-0.534883\pi\)
−0.109370 + 0.994001i \(0.534883\pi\)
\(702\) 0 0
\(703\) 8.00000 0.301726
\(704\) 0 0
\(705\) −7.11383 −0.267922
\(706\) 0 0
\(707\) −8.77578 −0.330047
\(708\) 0 0
\(709\) −30.9414 −1.16203 −0.581014 0.813894i \(-0.697344\pi\)
−0.581014 + 0.813894i \(0.697344\pi\)
\(710\) 0 0
\(711\) −2.82410 −0.105912
\(712\) 0 0
\(713\) 14.3258 0.536506
\(714\) 0 0
\(715\) 7.39744 0.276649
\(716\) 0 0
\(717\) −14.4362 −0.539130
\(718\) 0 0
\(719\) −47.5370 −1.77283 −0.886416 0.462889i \(-0.846813\pi\)
−0.886416 + 0.462889i \(0.846813\pi\)
\(720\) 0 0
\(721\) 10.0913 0.375819
\(722\) 0 0
\(723\) −11.8827 −0.441924
\(724\) 0 0
\(725\) 79.9242 2.96831
\(726\) 0 0
\(727\) −12.8862 −0.477922 −0.238961 0.971029i \(-0.576807\pi\)
−0.238961 + 0.971029i \(0.576807\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −0.837090 −0.0309609
\(732\) 0 0
\(733\) 9.23797 0.341212 0.170606 0.985339i \(-0.445427\pi\)
0.170606 + 0.985339i \(0.445427\pi\)
\(734\) 0 0
\(735\) 23.1008 0.852087
\(736\) 0 0
\(737\) −35.3484 −1.30207
\(738\) 0 0
\(739\) −35.9249 −1.32152 −0.660760 0.750597i \(-0.729766\pi\)
−0.660760 + 0.750597i \(0.729766\pi\)
\(740\) 0 0
\(741\) 1.95779 0.0719214
\(742\) 0 0
\(743\) 52.3741 1.92142 0.960710 0.277553i \(-0.0895233\pi\)
0.960710 + 0.277553i \(0.0895233\pi\)
\(744\) 0 0
\(745\) −12.9966 −0.476157
\(746\) 0 0
\(747\) 17.2311 0.630453
\(748\) 0 0
\(749\) −15.2120 −0.555834
\(750\) 0 0
\(751\) −37.8138 −1.37984 −0.689922 0.723883i \(-0.742355\pi\)
−0.689922 + 0.723883i \(0.742355\pi\)
\(752\) 0 0
\(753\) −27.1138 −0.988083
\(754\) 0 0
\(755\) −75.5691 −2.75024
\(756\) 0 0
\(757\) 30.6026 1.11227 0.556134 0.831092i \(-0.312284\pi\)
0.556134 + 0.831092i \(0.312284\pi\)
\(758\) 0 0
\(759\) 4.83709 0.175575
\(760\) 0 0
\(761\) 14.6516 0.531121 0.265561 0.964094i \(-0.414443\pi\)
0.265561 + 0.964094i \(0.414443\pi\)
\(762\) 0 0
\(763\) 2.98969 0.108234
\(764\) 0 0
\(765\) 3.77846 0.136610
\(766\) 0 0
\(767\) −0.318944 −0.0115164
\(768\) 0 0
\(769\) −53.6182 −1.93352 −0.966761 0.255681i \(-0.917700\pi\)
−0.966761 + 0.255681i \(0.917700\pi\)
\(770\) 0 0
\(771\) 24.8793 0.896006
\(772\) 0 0
\(773\) 37.7655 1.35833 0.679165 0.733986i \(-0.262342\pi\)
0.679165 + 0.733986i \(0.262342\pi\)
\(774\) 0 0
\(775\) 74.7259 2.68423
\(776\) 0 0
\(777\) 2.76891 0.0993339
\(778\) 0 0
\(779\) −22.5113 −0.806550
\(780\) 0 0
\(781\) 17.9931 0.643845
\(782\) 0 0
\(783\) −8.61555 −0.307895
\(784\) 0 0
\(785\) 58.1526 2.07556
\(786\) 0 0
\(787\) 19.7914 0.705489 0.352744 0.935720i \(-0.385249\pi\)
0.352744 + 0.935720i \(0.385249\pi\)
\(788\) 0 0
\(789\) −24.9966 −0.889901
\(790\) 0 0
\(791\) 0.898400 0.0319434
\(792\) 0 0
\(793\) 1.79832 0.0638603
\(794\) 0 0
\(795\) 5.88273 0.208639
\(796\) 0 0
\(797\) 50.0122 1.77152 0.885762 0.464140i \(-0.153636\pi\)
0.885762 + 0.464140i \(0.153636\pi\)
\(798\) 0 0
\(799\) 1.88273 0.0666063
\(800\) 0 0
\(801\) 9.11383 0.322021
\(802\) 0 0
\(803\) −20.2345 −0.714061
\(804\) 0 0
\(805\) −6.32582 −0.222956
\(806\) 0 0
\(807\) 21.8957 0.770766
\(808\) 0 0
\(809\) −15.8077 −0.555768 −0.277884 0.960615i \(-0.589633\pi\)
−0.277884 + 0.960615i \(0.589633\pi\)
\(810\) 0 0
\(811\) −44.6898 −1.56927 −0.784636 0.619956i \(-0.787150\pi\)
−0.784636 + 0.619956i \(0.787150\pi\)
\(812\) 0 0
\(813\) −4.60256 −0.161419
\(814\) 0 0
\(815\) −62.5466 −2.19091
\(816\) 0 0
\(817\) −2.27674 −0.0796530
\(818\) 0 0
\(819\) 0.677618 0.0236779
\(820\) 0 0
\(821\) −29.6872 −1.03609 −0.518045 0.855354i \(-0.673340\pi\)
−0.518045 + 0.855354i \(0.673340\pi\)
\(822\) 0 0
\(823\) −7.84664 −0.273517 −0.136758 0.990604i \(-0.543668\pi\)
−0.136758 + 0.990604i \(0.543668\pi\)
\(824\) 0 0
\(825\) 25.2311 0.878434
\(826\) 0 0
\(827\) −43.5078 −1.51292 −0.756458 0.654043i \(-0.773072\pi\)
−0.756458 + 0.654043i \(0.773072\pi\)
\(828\) 0 0
\(829\) 17.7655 0.617020 0.308510 0.951221i \(-0.400170\pi\)
0.308510 + 0.951221i \(0.400170\pi\)
\(830\) 0 0
\(831\) 7.82754 0.271534
\(832\) 0 0
\(833\) −6.11383 −0.211832
\(834\) 0 0
\(835\) −77.2664 −2.67391
\(836\) 0 0
\(837\) −8.05520 −0.278428
\(838\) 0 0
\(839\) 1.98701 0.0685992 0.0342996 0.999412i \(-0.489080\pi\)
0.0342996 + 0.999412i \(0.489080\pi\)
\(840\) 0 0
\(841\) 45.2277 1.55957
\(842\) 0 0
\(843\) −25.1138 −0.864966
\(844\) 0 0
\(845\) −47.1621 −1.62243
\(846\) 0 0
\(847\) 3.39133 0.116527
\(848\) 0 0
\(849\) 3.32238 0.114024
\(850\) 0 0
\(851\) 5.23109 0.179320
\(852\) 0 0
\(853\) 53.1430 1.81958 0.909792 0.415065i \(-0.136241\pi\)
0.909792 + 0.415065i \(0.136241\pi\)
\(854\) 0 0
\(855\) 10.2767 0.351457
\(856\) 0 0
\(857\) 49.3346 1.68524 0.842619 0.538510i \(-0.181013\pi\)
0.842619 + 0.538510i \(0.181013\pi\)
\(858\) 0 0
\(859\) 5.77234 0.196950 0.0984749 0.995140i \(-0.468604\pi\)
0.0984749 + 0.995140i \(0.468604\pi\)
\(860\) 0 0
\(861\) −7.79145 −0.265532
\(862\) 0 0
\(863\) 38.9637 1.32634 0.663170 0.748469i \(-0.269211\pi\)
0.663170 + 0.748469i \(0.269211\pi\)
\(864\) 0 0
\(865\) 71.3837 2.42712
\(866\) 0 0
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) 7.68106 0.260562
\(870\) 0 0
\(871\) −9.35524 −0.316990
\(872\) 0 0
\(873\) 8.11727 0.274728
\(874\) 0 0
\(875\) −15.2120 −0.514259
\(876\) 0 0
\(877\) 11.9379 0.403115 0.201558 0.979477i \(-0.435400\pi\)
0.201558 + 0.979477i \(0.435400\pi\)
\(878\) 0 0
\(879\) 29.4328 0.992743
\(880\) 0 0
\(881\) −3.23109 −0.108858 −0.0544292 0.998518i \(-0.517334\pi\)
−0.0544292 + 0.998518i \(0.517334\pi\)
\(882\) 0 0
\(883\) 4.49217 0.151173 0.0755867 0.997139i \(-0.475917\pi\)
0.0755867 + 0.997139i \(0.475917\pi\)
\(884\) 0 0
\(885\) −1.67418 −0.0562770
\(886\) 0 0
\(887\) −0.671504 −0.0225469 −0.0112735 0.999936i \(-0.503589\pi\)
−0.0112735 + 0.999936i \(0.503589\pi\)
\(888\) 0 0
\(889\) −4.33270 −0.145314
\(890\) 0 0
\(891\) −2.71982 −0.0911175
\(892\) 0 0
\(893\) 5.12070 0.171358
\(894\) 0 0
\(895\) 92.7743 3.10110
\(896\) 0 0
\(897\) 1.28018 0.0427438
\(898\) 0 0
\(899\) 69.3999 2.31462
\(900\) 0 0
\(901\) −1.55691 −0.0518683
\(902\) 0 0
\(903\) −0.788009 −0.0262233
\(904\) 0 0
\(905\) −60.2208 −2.00181
\(906\) 0 0
\(907\) −13.4656 −0.447119 −0.223559 0.974690i \(-0.571768\pi\)
−0.223559 + 0.974690i \(0.571768\pi\)
\(908\) 0 0
\(909\) 9.32238 0.309204
\(910\) 0 0
\(911\) 45.2372 1.49878 0.749388 0.662131i \(-0.230348\pi\)
0.749388 + 0.662131i \(0.230348\pi\)
\(912\) 0 0
\(913\) −46.8655 −1.55102
\(914\) 0 0
\(915\) 9.43965 0.312065
\(916\) 0 0
\(917\) 0.150122 0.00495745
\(918\) 0 0
\(919\) −8.04908 −0.265515 −0.132757 0.991149i \(-0.542383\pi\)
−0.132757 + 0.991149i \(0.542383\pi\)
\(920\) 0 0
\(921\) 15.3484 0.505746
\(922\) 0 0
\(923\) 4.76203 0.156744
\(924\) 0 0
\(925\) 27.2863 0.897168
\(926\) 0 0
\(927\) −10.7198 −0.352085
\(928\) 0 0
\(929\) −8.59568 −0.282015 −0.141008 0.990009i \(-0.545034\pi\)
−0.141008 + 0.990009i \(0.545034\pi\)
\(930\) 0 0
\(931\) −16.6285 −0.544978
\(932\) 0 0
\(933\) 31.6121 1.03493
\(934\) 0 0
\(935\) −10.2767 −0.336085
\(936\) 0 0
\(937\) 19.9931 0.653147 0.326573 0.945172i \(-0.394106\pi\)
0.326573 + 0.945172i \(0.394106\pi\)
\(938\) 0 0
\(939\) 15.4656 0.504702
\(940\) 0 0
\(941\) 40.7259 1.32763 0.663814 0.747898i \(-0.268937\pi\)
0.663814 + 0.747898i \(0.268937\pi\)
\(942\) 0 0
\(943\) −14.7198 −0.479343
\(944\) 0 0
\(945\) 3.55691 0.115706
\(946\) 0 0
\(947\) 0.344923 0.0112085 0.00560425 0.999984i \(-0.498216\pi\)
0.00560425 + 0.999984i \(0.498216\pi\)
\(948\) 0 0
\(949\) −5.35524 −0.173838
\(950\) 0 0
\(951\) 22.6087 0.733136
\(952\) 0 0
\(953\) 39.0225 1.26406 0.632032 0.774942i \(-0.282221\pi\)
0.632032 + 0.774942i \(0.282221\pi\)
\(954\) 0 0
\(955\) 23.1138 0.747946
\(956\) 0 0
\(957\) 23.4328 0.757474
\(958\) 0 0
\(959\) 17.4656 0.563995
\(960\) 0 0
\(961\) 33.8862 1.09310
\(962\) 0 0
\(963\) 16.1595 0.520732
\(964\) 0 0
\(965\) 57.5500 1.85260
\(966\) 0 0
\(967\) −51.4097 −1.65322 −0.826612 0.562773i \(-0.809735\pi\)
−0.826612 + 0.562773i \(0.809735\pi\)
\(968\) 0 0
\(969\) −2.71982 −0.0873733
\(970\) 0 0
\(971\) 54.8915 1.76155 0.880776 0.473532i \(-0.157021\pi\)
0.880776 + 0.473532i \(0.157021\pi\)
\(972\) 0 0
\(973\) 1.99312 0.0638966
\(974\) 0 0
\(975\) 6.67762 0.213855
\(976\) 0 0
\(977\) 16.6967 0.534175 0.267088 0.963672i \(-0.413939\pi\)
0.267088 + 0.963672i \(0.413939\pi\)
\(978\) 0 0
\(979\) −24.7880 −0.792228
\(980\) 0 0
\(981\) −3.17590 −0.101399
\(982\) 0 0
\(983\) −2.24752 −0.0716848 −0.0358424 0.999357i \(-0.511411\pi\)
−0.0358424 + 0.999357i \(0.511411\pi\)
\(984\) 0 0
\(985\) 48.2699 1.53801
\(986\) 0 0
\(987\) 1.77234 0.0564143
\(988\) 0 0
\(989\) −1.48873 −0.0473388
\(990\) 0 0
\(991\) 7.05863 0.224225 0.112112 0.993696i \(-0.464238\pi\)
0.112112 + 0.993696i \(0.464238\pi\)
\(992\) 0 0
\(993\) 29.3906 0.932681
\(994\) 0 0
\(995\) −33.7846 −1.07104
\(996\) 0 0
\(997\) −1.61211 −0.0510560 −0.0255280 0.999674i \(-0.508127\pi\)
−0.0255280 + 0.999674i \(0.508127\pi\)
\(998\) 0 0
\(999\) −2.94137 −0.0930607
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1632.2.a.r.1.3 3
3.2 odd 2 4896.2.a.ba.1.1 3
4.3 odd 2 1632.2.a.t.1.3 yes 3
8.3 odd 2 3264.2.a.bq.1.1 3
8.5 even 2 3264.2.a.bs.1.1 3
12.11 even 2 4896.2.a.bb.1.1 3
24.5 odd 2 9792.2.a.dk.1.3 3
24.11 even 2 9792.2.a.dl.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1632.2.a.r.1.3 3 1.1 even 1 trivial
1632.2.a.t.1.3 yes 3 4.3 odd 2
3264.2.a.bq.1.1 3 8.3 odd 2
3264.2.a.bs.1.1 3 8.5 even 2
4896.2.a.ba.1.1 3 3.2 odd 2
4896.2.a.bb.1.1 3 12.11 even 2
9792.2.a.dk.1.3 3 24.5 odd 2
9792.2.a.dl.1.3 3 24.11 even 2