L(s) = 1 | + i·2-s + 2.88i·3-s − 4-s + 2.81·5-s − 2.88·6-s + 3.85·7-s − i·8-s − 5.35·9-s + 2.81i·10-s + 2.90i·11-s − 2.88i·12-s + 0.364·13-s + 3.85i·14-s + 8.12i·15-s + 16-s − 0.925i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.66i·3-s − 0.5·4-s + 1.25·5-s − 1.17·6-s + 1.45·7-s − 0.353i·8-s − 1.78·9-s + 0.889i·10-s + 0.876i·11-s − 0.834i·12-s + 0.101·13-s + 1.02i·14-s + 2.09i·15-s + 0.250·16-s − 0.224i·17-s + ⋯ |
Λ(s)=(=(1682s/2ΓC(s)L(s)(−0.989−0.141i)Λ(2−s)
Λ(s)=(=(1682s/2ΓC(s+1/2)L(s)(−0.989−0.141i)Λ(1−s)
Degree: |
2 |
Conductor: |
1682
= 2⋅292
|
Sign: |
−0.989−0.141i
|
Analytic conductor: |
13.4308 |
Root analytic conductor: |
3.66481 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1682(1681,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1682, ( :1/2), −0.989−0.141i)
|
Particular Values
L(1) |
≈ |
2.272996751 |
L(21) |
≈ |
2.272996751 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 29 | 1 |
good | 3 | 1−2.88iT−3T2 |
| 5 | 1−2.81T+5T2 |
| 7 | 1−3.85T+7T2 |
| 11 | 1−2.90iT−11T2 |
| 13 | 1−0.364T+13T2 |
| 17 | 1+0.925iT−17T2 |
| 19 | 1+5.15iT−19T2 |
| 23 | 1+2.53T+23T2 |
| 31 | 1−8.03iT−31T2 |
| 37 | 1−3.62iT−37T2 |
| 41 | 1+4.99iT−41T2 |
| 43 | 1−8.55iT−43T2 |
| 47 | 1−7.50iT−47T2 |
| 53 | 1+9.16T+53T2 |
| 59 | 1+4.66T+59T2 |
| 61 | 1−6.85iT−61T2 |
| 67 | 1−1.40T+67T2 |
| 71 | 1−4.31T+71T2 |
| 73 | 1−12.5iT−73T2 |
| 79 | 1+12.0iT−79T2 |
| 83 | 1−14.5T+83T2 |
| 89 | 1+11.4iT−89T2 |
| 97 | 1+12.4iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.617397322650222683943807783940, −9.082776953316463275870123612334, −8.372636027775550897483432205449, −7.38441643697355189228920853813, −6.29533982985320044601714023126, −5.40906125250230330894555940311, −4.77303665223866491057415088614, −4.44582938694923730169300578471, −2.98803071366726838731385772621, −1.70508040777107485058005780019,
0.898344286791321625907857709007, 1.92812615418588373601155604097, 2.13709702147950374047655033403, 3.63360343215276494722032065958, 5.07127992496119563403588717908, 5.86924895764484201513929794542, 6.33649293421323134509840427149, 7.69322815596617329915033735389, 8.073161155591694097760190676853, 8.827925399722118377653916982609