L(s) = 1 | + i·2-s + 2.88i·3-s − 4-s + 2.81·5-s − 2.88·6-s + 3.85·7-s − i·8-s − 5.35·9-s + 2.81i·10-s + 2.90i·11-s − 2.88i·12-s + 0.364·13-s + 3.85i·14-s + 8.12i·15-s + 16-s − 0.925i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.66i·3-s − 0.5·4-s + 1.25·5-s − 1.17·6-s + 1.45·7-s − 0.353i·8-s − 1.78·9-s + 0.889i·10-s + 0.876i·11-s − 0.834i·12-s + 0.101·13-s + 1.02i·14-s + 2.09i·15-s + 0.250·16-s − 0.224i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1682 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.989 - 0.141i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1682 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.989 - 0.141i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.272996751\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.272996751\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 29 | \( 1 \) |
good | 3 | \( 1 - 2.88iT - 3T^{2} \) |
| 5 | \( 1 - 2.81T + 5T^{2} \) |
| 7 | \( 1 - 3.85T + 7T^{2} \) |
| 11 | \( 1 - 2.90iT - 11T^{2} \) |
| 13 | \( 1 - 0.364T + 13T^{2} \) |
| 17 | \( 1 + 0.925iT - 17T^{2} \) |
| 19 | \( 1 + 5.15iT - 19T^{2} \) |
| 23 | \( 1 + 2.53T + 23T^{2} \) |
| 31 | \( 1 - 8.03iT - 31T^{2} \) |
| 37 | \( 1 - 3.62iT - 37T^{2} \) |
| 41 | \( 1 + 4.99iT - 41T^{2} \) |
| 43 | \( 1 - 8.55iT - 43T^{2} \) |
| 47 | \( 1 - 7.50iT - 47T^{2} \) |
| 53 | \( 1 + 9.16T + 53T^{2} \) |
| 59 | \( 1 + 4.66T + 59T^{2} \) |
| 61 | \( 1 - 6.85iT - 61T^{2} \) |
| 67 | \( 1 - 1.40T + 67T^{2} \) |
| 71 | \( 1 - 4.31T + 71T^{2} \) |
| 73 | \( 1 - 12.5iT - 73T^{2} \) |
| 79 | \( 1 + 12.0iT - 79T^{2} \) |
| 83 | \( 1 - 14.5T + 83T^{2} \) |
| 89 | \( 1 + 11.4iT - 89T^{2} \) |
| 97 | \( 1 + 12.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.617397322650222683943807783940, −9.082776953316463275870123612334, −8.372636027775550897483432205449, −7.38441643697355189228920853813, −6.29533982985320044601714023126, −5.40906125250230330894555940311, −4.77303665223866491057415088614, −4.44582938694923730169300578471, −2.98803071366726838731385772621, −1.70508040777107485058005780019,
0.898344286791321625907857709007, 1.92812615418588373601155604097, 2.13709702147950374047655033403, 3.63360343215276494722032065958, 5.07127992496119563403588717908, 5.86924895764484201513929794542, 6.33649293421323134509840427149, 7.69322815596617329915033735389, 8.073161155591694097760190676853, 8.827925399722118377653916982609