Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1682,2,Mod(1681,1682)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1682.1681");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1682.b (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1681.1 |
|
− | 1.00000i | − | 2.88972i | −1.00000 | 2.81297 | −2.88972 | 3.85101 | 1.00000i | −5.35050 | − | 2.81297i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1681.2 | − | 1.00000i | − | 2.79588i | −1.00000 | −0.869361 | −2.79588 | 2.55676 | 1.00000i | −4.81692 | 0.869361i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1681.3 | − | 1.00000i | − | 1.70955i | −1.00000 | −4.23180 | −1.70955 | 1.69226 | 1.00000i | 0.0774536 | 4.23180i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1681.4 | − | 1.00000i | − | 0.710020i | −1.00000 | 3.33469 | −0.710020 | 4.40617 | 1.00000i | 2.49587 | − | 3.33469i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1681.5 | − | 1.00000i | 0.371284i | −1.00000 | 3.64078 | 0.371284 | −3.75542 | 1.00000i | 2.86215 | − | 3.64078i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1681.6 | − | 1.00000i | 1.06263i | −1.00000 | −4.09274 | 1.06263 | 2.34135 | 1.00000i | 1.87081 | 4.09274i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1681.7 | − | 1.00000i | 2.66631i | −1.00000 | −1.88957 | 2.66631 | −4.43319 | 1.00000i | −4.10924 | 1.88957i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1681.8 | − | 1.00000i | 3.00493i | −1.00000 | −3.70497 | 3.00493 | 0.341047 | 1.00000i | −6.02962 | 3.70497i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1681.9 | 1.00000i | − | 3.00493i | −1.00000 | −3.70497 | 3.00493 | 0.341047 | − | 1.00000i | −6.02962 | − | 3.70497i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1681.10 | 1.00000i | − | 2.66631i | −1.00000 | −1.88957 | 2.66631 | −4.43319 | − | 1.00000i | −4.10924 | − | 1.88957i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1681.11 | 1.00000i | − | 1.06263i | −1.00000 | −4.09274 | 1.06263 | 2.34135 | − | 1.00000i | 1.87081 | − | 4.09274i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1681.12 | 1.00000i | − | 0.371284i | −1.00000 | 3.64078 | 0.371284 | −3.75542 | − | 1.00000i | 2.86215 | 3.64078i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1681.13 | 1.00000i | 0.710020i | −1.00000 | 3.33469 | −0.710020 | 4.40617 | − | 1.00000i | 2.49587 | 3.33469i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1681.14 | 1.00000i | 1.70955i | −1.00000 | −4.23180 | −1.70955 | 1.69226 | − | 1.00000i | 0.0774536 | − | 4.23180i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1681.15 | 1.00000i | 2.79588i | −1.00000 | −0.869361 | −2.79588 | 2.55676 | − | 1.00000i | −4.81692 | − | 0.869361i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1681.16 | 1.00000i | 2.88972i | −1.00000 | 2.81297 | −2.88972 | 3.85101 | − | 1.00000i | −5.35050 | 2.81297i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
29.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1682.2.b.k | 16 | |
29.b | even | 2 | 1 | inner | 1682.2.b.k | 16 | |
29.c | odd | 4 | 1 | 1682.2.a.u | ✓ | 8 | |
29.c | odd | 4 | 1 | 1682.2.a.v | yes | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1682.2.a.u | ✓ | 8 | 29.c | odd | 4 | 1 | |
1682.2.a.v | yes | 8 | 29.c | odd | 4 | 1 | |
1682.2.b.k | 16 | 1.a | even | 1 | 1 | trivial | |
1682.2.b.k | 16 | 29.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|