Properties

Label 1682.2.b.k
Level 16821682
Weight 22
Character orbit 1682.b
Analytic conductor 13.43113.431
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1681,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1681");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1682=2292 1682 = 2 \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1682.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 13.430837620013.4308376200
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+37x14+548x12+4119x10+16415x8+33099x6+30128x4+10537x2+961 x^{16} + 37x^{14} + 548x^{12} + 4119x^{10} + 16415x^{8} + 33099x^{6} + 30128x^{4} + 10537x^{2} + 961 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ13q2+β1q3q4+(β8β6β3+1)q5+β6q6+(β7β6+β4++1)q7+β13q8++(3β15+2β14++β1)q99+O(q100) q - \beta_{13} q^{2} + \beta_1 q^{3} - q^{4} + ( - \beta_{8} - \beta_{6} - \beta_{3} + \cdots - 1) q^{5} + \beta_{6} q^{6} + ( - \beta_{7} - \beta_{6} + \beta_{4} + \cdots + 1) q^{7} + \beta_{13} q^{8}+ \cdots + ( - 3 \beta_{15} + 2 \beta_{14} + \cdots + \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q16q410q52q6+14q726q926q13+16q16+10q20+14q22+24q23+2q24+90q2514q2840q30+8q3318q34+26q36+26q38+2q96+O(q100) 16 q - 16 q^{4} - 10 q^{5} - 2 q^{6} + 14 q^{7} - 26 q^{9} - 26 q^{13} + 16 q^{16} + 10 q^{20} + 14 q^{22} + 24 q^{23} + 2 q^{24} + 90 q^{25} - 14 q^{28} - 40 q^{30} + 8 q^{33} - 18 q^{34} + 26 q^{36} + 26 q^{38}+ \cdots - 2 q^{96}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16+37x14+548x12+4119x10+16415x8+33099x6+30128x4+10537x2+961 x^{16} + 37x^{14} + 548x^{12} + 4119x^{10} + 16415x^{8} + 33099x^{6} + 30128x^{4} + 10537x^{2} + 961 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (1284ν14+2104ν12607273ν108639916ν844272376ν6++6710203)/6652257 ( 1284 \nu^{14} + 2104 \nu^{12} - 607273 \nu^{10} - 8639916 \nu^{8} - 44272376 \nu^{6} + \cdots + 6710203 ) / 6652257 Copy content Toggle raw display
β3\beta_{3}== (27407ν14+991285ν12+14477445ν10+104632823ν8+356706384ν6+465992667)/73174827 ( 27407 \nu^{14} + 991285 \nu^{12} + 14477445 \nu^{10} + 104632823 \nu^{8} + 356706384 \nu^{6} + \cdots - 465992667 ) / 73174827 Copy content Toggle raw display
β4\beta_{4}== (83062ν14+2028858ν12+15594884ν10+19187494ν8260579504ν6+272137079)/73174827 ( 83062 \nu^{14} + 2028858 \nu^{12} + 15594884 \nu^{10} + 19187494 \nu^{8} - 260579504 \nu^{6} + \cdots - 272137079 ) / 73174827 Copy content Toggle raw display
β5\beta_{5}== (111310ν142075146ν122234878ν10+170890658ν8+1234571776ν6++563561575)/73174827 ( - 111310 \nu^{14} - 2075146 \nu^{12} - 2234878 \nu^{10} + 170890658 \nu^{8} + 1234571776 \nu^{6} + \cdots + 563561575 ) / 73174827 Copy content Toggle raw display
β6\beta_{6}== (97ν14+3198ν12+40629ν10+249235ν8+759007ν6+1071058ν4++73501)/35299 ( 97 \nu^{14} + 3198 \nu^{12} + 40629 \nu^{10} + 249235 \nu^{8} + 759007 \nu^{6} + 1071058 \nu^{4} + \cdots + 73501 ) / 35299 Copy content Toggle raw display
β7\beta_{7}== (210476ν14+7093859ν12+95469962ν10+648806909ν8+2301318694ν6++372298774)/73174827 ( 210476 \nu^{14} + 7093859 \nu^{12} + 95469962 \nu^{10} + 648806909 \nu^{8} + 2301318694 \nu^{6} + \cdots + 372298774 ) / 73174827 Copy content Toggle raw display
β8\beta_{8}== (297522ν148735498ν1296829366ν10496888416ν81147603841ν6++167012926)/73174827 ( - 297522 \nu^{14} - 8735498 \nu^{12} - 96829366 \nu^{10} - 496888416 \nu^{8} - 1147603841 \nu^{6} + \cdots + 167012926 ) / 73174827 Copy content Toggle raw display
β9\beta_{9}== (1284ν15+2104ν13607273ν118639916ν944272376ν7++6710203ν)/6652257 ( 1284 \nu^{15} + 2104 \nu^{13} - 607273 \nu^{11} - 8639916 \nu^{9} - 44272376 \nu^{7} + \cdots + 6710203 \nu ) / 6652257 Copy content Toggle raw display
β10\beta_{10}== (836497ν1530535640ν13456007590ν113538203628ν9+7632738708ν)/2268419637 ( - 836497 \nu^{15} - 30535640 \nu^{13} - 456007590 \nu^{11} - 3538203628 \nu^{9} + \cdots - 7632738708 \nu ) / 2268419637 Copy content Toggle raw display
β11\beta_{11}== (1126355ν15+25028414ν13+126772847ν11793255129ν9+16490385368ν)/2268419637 ( 1126355 \nu^{15} + 25028414 \nu^{13} + 126772847 \nu^{11} - 793255129 \nu^{9} + \cdots - 16490385368 \nu ) / 2268419637 Copy content Toggle raw display
β12\beta_{12}== (2276840ν15+95943751ν13+1564112238ν11+12441794609ν9++4712034027ν)/2268419637 ( 2276840 \nu^{15} + 95943751 \nu^{13} + 1564112238 \nu^{11} + 12441794609 \nu^{9} + \cdots + 4712034027 \nu ) / 2268419637 Copy content Toggle raw display
β13\beta_{13}== (2371ν15+84720ν13+1200170ν11+8506650ν9+31193680ν7++7251940ν)/1094269 ( 2371 \nu^{15} + 84720 \nu^{13} + 1200170 \nu^{11} + 8506650 \nu^{9} + 31193680 \nu^{7} + \cdots + 7251940 \nu ) / 1094269 Copy content Toggle raw display
β14\beta_{14}== (5002886ν15+210639250ν13+3491805708ν11+28921496975ν9++68484475212ν)/2268419637 ( 5002886 \nu^{15} + 210639250 \nu^{13} + 3491805708 \nu^{11} + 28921496975 \nu^{9} + \cdots + 68484475212 \nu ) / 2268419637 Copy content Toggle raw display
β15\beta_{15}== (10751328ν15+371223239ν13+5113668292ν11+35594343402ν9++45353098205ν)/2268419637 ( 10751328 \nu^{15} + 371223239 \nu^{13} + 5113668292 \nu^{11} + 35594343402 \nu^{9} + \cdots + 45353098205 \nu ) / 2268419637 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β5+β4+2β26 \beta_{5} + \beta_{4} + 2\beta_{2} - 6 Copy content Toggle raw display
ν3\nu^{3}== β152β13+β12β11+3β10+β97β1 \beta_{15} - 2\beta_{13} + \beta_{12} - \beta_{11} + 3\beta_{10} + \beta_{9} - 7\beta_1 Copy content Toggle raw display
ν4\nu^{4}== 9β58β42β320β2+47 -9\beta_{5} - 8\beta_{4} - 2\beta_{3} - 20\beta_{2} + 47 Copy content Toggle raw display
ν5\nu^{5}== 10β15+23β1314β12+8β1127β1012β9+56β1 -10\beta_{15} + 23\beta_{13} - 14\beta_{12} + 8\beta_{11} - 27\beta_{10} - 12\beta_{9} + 56\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 5β82β72β6+78β5+57β4+26β3+182β2381 -5\beta_{8} - 2\beta_{7} - 2\beta_{6} + 78\beta_{5} + 57\beta_{4} + 26\beta_{3} + 182\beta_{2} - 381 Copy content Toggle raw display
ν7\nu^{7}== 88β155β14214β13+148β1275β11+211β10+459β1 88 \beta_{15} - 5 \beta_{14} - 214 \beta_{13} + 148 \beta_{12} - 75 \beta_{11} + 211 \beta_{10} + \cdots - 459 \beta_1 Copy content Toggle raw display
ν8\nu^{8}== 105β8+47β7+41β6682β5392β4273β31612β2+3118 105\beta_{8} + 47\beta_{7} + 41\beta_{6} - 682\beta_{5} - 392\beta_{4} - 273\beta_{3} - 1612\beta_{2} + 3118 Copy content Toggle raw display
ν9\nu^{9}== 764β15+105β14+1905β131454β12+746β11++3800β1 - 764 \beta_{15} + 105 \beta_{14} + 1905 \beta_{13} - 1454 \beta_{12} + 746 \beta_{11} + \cdots + 3800 \beta_1 Copy content Toggle raw display
ν10\nu^{10}== 1476β8672β7596β6+6000β5+2608β4+2680β3+25693 - 1476 \beta_{8} - 672 \beta_{7} - 596 \beta_{6} + 6000 \beta_{5} + 2608 \beta_{4} + 2680 \beta_{3} + \cdots - 25693 Copy content Toggle raw display
ν11\nu^{11}== 6688β151476β1416884β13+13872β127384β11+31693β1 6688 \beta_{15} - 1476 \beta_{14} - 16884 \beta_{13} + 13872 \beta_{12} - 7384 \beta_{11} + \cdots - 31693 \beta_1 Copy content Toggle raw display
ν12\nu^{12}== 17603β8+7880β7+7509β652949β516546β425495β3++213109 17603 \beta_{8} + 7880 \beta_{7} + 7509 \beta_{6} - 52949 \beta_{5} - 16546 \beta_{4} - 25495 \beta_{3} + \cdots + 213109 Copy content Toggle raw display
ν13\nu^{13}== 59273β15+17603β14+150533β13130248β12+71737β11++266058β1 - 59273 \beta_{15} + 17603 \beta_{14} + 150533 \beta_{13} - 130248 \beta_{12} + 71737 \beta_{11} + \cdots + 266058 \beta_1 Copy content Toggle raw display
ν14\nu^{14}== 192790β883439β787260β6+468043β5+96772β4+1778929 - 192790 \beta_{8} - 83439 \beta_{7} - 87260 \beta_{6} + 468043 \beta_{5} + 96772 \beta_{4} + \cdots - 1778929 Copy content Toggle raw display
ν15\nu^{15}== 531490β15192790β141351947β13+1209998β12684646β11+2246972β1 531490 \beta_{15} - 192790 \beta_{14} - 1351947 \beta_{13} + 1209998 \beta_{12} - 684646 \beta_{11} + \cdots - 2246972 \beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1682Z)×\left(\mathbb{Z}/1682\mathbb{Z}\right)^\times.

nn 843843
χ(n)\chi(n) 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1681.1
2.88972i
2.79588i
1.70955i
0.710020i
0.371284i
1.06263i
2.66631i
3.00493i
3.00493i
2.66631i
1.06263i
0.371284i
0.710020i
1.70955i
2.79588i
2.88972i
1.00000i 2.88972i −1.00000 2.81297 −2.88972 3.85101 1.00000i −5.35050 2.81297i
1681.2 1.00000i 2.79588i −1.00000 −0.869361 −2.79588 2.55676 1.00000i −4.81692 0.869361i
1681.3 1.00000i 1.70955i −1.00000 −4.23180 −1.70955 1.69226 1.00000i 0.0774536 4.23180i
1681.4 1.00000i 0.710020i −1.00000 3.33469 −0.710020 4.40617 1.00000i 2.49587 3.33469i
1681.5 1.00000i 0.371284i −1.00000 3.64078 0.371284 −3.75542 1.00000i 2.86215 3.64078i
1681.6 1.00000i 1.06263i −1.00000 −4.09274 1.06263 2.34135 1.00000i 1.87081 4.09274i
1681.7 1.00000i 2.66631i −1.00000 −1.88957 2.66631 −4.43319 1.00000i −4.10924 1.88957i
1681.8 1.00000i 3.00493i −1.00000 −3.70497 3.00493 0.341047 1.00000i −6.02962 3.70497i
1681.9 1.00000i 3.00493i −1.00000 −3.70497 3.00493 0.341047 1.00000i −6.02962 3.70497i
1681.10 1.00000i 2.66631i −1.00000 −1.88957 2.66631 −4.43319 1.00000i −4.10924 1.88957i
1681.11 1.00000i 1.06263i −1.00000 −4.09274 1.06263 2.34135 1.00000i 1.87081 4.09274i
1681.12 1.00000i 0.371284i −1.00000 3.64078 0.371284 −3.75542 1.00000i 2.86215 3.64078i
1681.13 1.00000i 0.710020i −1.00000 3.33469 −0.710020 4.40617 1.00000i 2.49587 3.33469i
1681.14 1.00000i 1.70955i −1.00000 −4.23180 −1.70955 1.69226 1.00000i 0.0774536 4.23180i
1681.15 1.00000i 2.79588i −1.00000 −0.869361 −2.79588 2.55676 1.00000i −4.81692 0.869361i
1681.16 1.00000i 2.88972i −1.00000 2.81297 −2.88972 3.85101 1.00000i −5.35050 2.81297i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1681.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1682.2.b.k 16
29.b even 2 1 inner 1682.2.b.k 16
29.c odd 4 1 1682.2.a.u 8
29.c odd 4 1 1682.2.a.v yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1682.2.a.u 8 29.c odd 4 1
1682.2.a.v yes 8 29.c odd 4 1
1682.2.b.k 16 1.a even 1 1 trivial
1682.2.b.k 16 29.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1682,[χ])S_{2}^{\mathrm{new}}(1682, [\chi]):

T316+37T314+548T312+4119T310+16415T38+33099T36+30128T34+10537T32+961 T_{3}^{16} + 37T_{3}^{14} + 548T_{3}^{12} + 4119T_{3}^{10} + 16415T_{3}^{8} + 33099T_{3}^{6} + 30128T_{3}^{4} + 10537T_{3}^{2} + 961 Copy content Toggle raw display
T58+5T5730T56160T55+265T54+1650T53300T525400T53600 T_{5}^{8} + 5T_{5}^{7} - 30T_{5}^{6} - 160T_{5}^{5} + 265T_{5}^{4} + 1650T_{5}^{3} - 300T_{5}^{2} - 5400T_{5} - 3600 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+1)8 (T^{2} + 1)^{8} Copy content Toggle raw display
33 T16+37T14++961 T^{16} + 37 T^{14} + \cdots + 961 Copy content Toggle raw display
55 (T8+5T7+3600)2 (T^{8} + 5 T^{7} + \cdots - 3600)^{2} Copy content Toggle raw display
77 (T87T7++976)2 (T^{8} - 7 T^{7} + \cdots + 976)^{2} Copy content Toggle raw display
1111 T16+93T14++2653641 T^{16} + 93 T^{14} + \cdots + 2653641 Copy content Toggle raw display
1313 (T8+13T7+464)2 (T^{8} + 13 T^{7} + \cdots - 464)^{2} Copy content Toggle raw display
1717 T16+147T14++6305121 T^{16} + 147 T^{14} + \cdots + 6305121 Copy content Toggle raw display
1919 T16+93T14++2595321 T^{16} + 93 T^{14} + \cdots + 2595321 Copy content Toggle raw display
2323 (T812T7+144)2 (T^{8} - 12 T^{7} + \cdots - 144)^{2} Copy content Toggle raw display
2929 T16 T^{16} Copy content Toggle raw display
3131 T16++701190400 T^{16} + \cdots + 701190400 Copy content Toggle raw display
3737 T16++2590402816 T^{16} + \cdots + 2590402816 Copy content Toggle raw display
4141 T16+168T14++77841 T^{16} + 168 T^{14} + \cdots + 77841 Copy content Toggle raw display
4343 T16++13610668861696 T^{16} + \cdots + 13610668861696 Copy content Toggle raw display
4747 T16++6106750361856 T^{16} + \cdots + 6106750361856 Copy content Toggle raw display
5353 (T84T7+924624)2 (T^{8} - 4 T^{7} + \cdots - 924624)^{2} Copy content Toggle raw display
5959 (T88T7++5024961)2 (T^{8} - 8 T^{7} + \cdots + 5024961)^{2} Copy content Toggle raw display
6161 T16++173602222336 T^{16} + \cdots + 173602222336 Copy content Toggle raw display
6767 (T8+34T7++967471)2 (T^{8} + 34 T^{7} + \cdots + 967471)^{2} Copy content Toggle raw display
7171 (T811T7++6717456)2 (T^{8} - 11 T^{7} + \cdots + 6717456)^{2} Copy content Toggle raw display
7373 T16+293T14++1745041 T^{16} + 293 T^{14} + \cdots + 1745041 Copy content Toggle raw display
7979 T16++12606362695936 T^{16} + \cdots + 12606362695936 Copy content Toggle raw display
8383 (T810T7++110386845)2 (T^{8} - 10 T^{7} + \cdots + 110386845)^{2} Copy content Toggle raw display
8989 T16++6276723504921 T^{16} + \cdots + 6276723504921 Copy content Toggle raw display
9797 T16++24 ⁣ ⁣76 T^{16} + \cdots + 24\!\cdots\!76 Copy content Toggle raw display
show more
show less