Properties

Label 1682.2.a.u
Level 16821682
Weight 22
Character orbit 1682.a
Self dual yes
Analytic conductor 13.43113.431
Analytic rank 00
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1682=2292 1682 = 2 \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1682.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 13.430837620013.4308376200
Analytic rank: 00
Dimension: 88
Coefficient field: 8.8.32836640625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x718x6+17x5+95x477x3128x2+51x+31 x^{8} - x^{7} - 18x^{6} + 17x^{5} + 95x^{4} - 77x^{3} - 128x^{2} + 51x + 31 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq2β1q3+q4+(β5β4β1+1)q5+β1q6+(β7β4β3++1)q7q8+(β6β4+β3++2)q9++(3β73β6+4)q99+O(q100) q - q^{2} - \beta_1 q^{3} + q^{4} + ( - \beta_{5} - \beta_{4} - \beta_1 + 1) q^{5} + \beta_1 q^{6} + ( - \beta_{7} - \beta_{4} - \beta_{3} + \cdots + 1) q^{7} - q^{8} + (\beta_{6} - \beta_{4} + \beta_{3} + \cdots + 2) q^{9}+ \cdots + ( - 3 \beta_{7} - 3 \beta_{6} + \cdots - 4) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q2q3+8q4+5q5+q6+7q78q8+13q95q10+7q11q12+13q137q14+20q15+8q169q1713q18+13q19+5q20++2q99+O(q100) 8 q - 8 q^{2} - q^{3} + 8 q^{4} + 5 q^{5} + q^{6} + 7 q^{7} - 8 q^{8} + 13 q^{9} - 5 q^{10} + 7 q^{11} - q^{12} + 13 q^{13} - 7 q^{14} + 20 q^{15} + 8 q^{16} - 9 q^{17} - 13 q^{18} + 13 q^{19} + 5 q^{20}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8x718x6+17x5+95x477x3128x2+51x+31 x^{8} - x^{7} - 18x^{6} + 17x^{5} + 95x^{4} - 77x^{3} - 128x^{2} + 51x + 31 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (18ν7151ν6168ν5+2008ν4+386ν36004ν21858ν+1364)/2073 ( 18\nu^{7} - 151\nu^{6} - 168\nu^{5} + 2008\nu^{4} + 386\nu^{3} - 6004\nu^{2} - 1858\nu + 1364 ) / 2073 Copy content Toggle raw display
β3\beta_{3}== (28ν7149ν6+31ν5+1867ν4+2010ν35325ν23252ν+28)/2073 ( -28\nu^{7} - 149\nu^{6} + 31\nu^{5} + 1867\nu^{4} + 2010\nu^{3} - 5325\nu^{2} - 3252\nu + 28 ) / 2073 Copy content Toggle raw display
β4\beta_{4}== (44ν762ν6641ν5+916ν4+2172ν33774ν2+372ν+4102)/2073 ( 44\nu^{7} - 62\nu^{6} - 641\nu^{5} + 916\nu^{4} + 2172\nu^{3} - 3774\nu^{2} + 372\nu + 4102 ) / 2073 Copy content Toggle raw display
β5\beta_{5}== (45ν732ν6420ν5+1565ν4+274ν311555ν2+883ν+8938)/2073 ( 45\nu^{7} - 32\nu^{6} - 420\nu^{5} + 1565\nu^{4} + 274\nu^{3} - 11555\nu^{2} + 883\nu + 8938 ) / 2073 Copy content Toggle raw display
β6\beta_{6}== (54ν7+238ν6504ν52959ν4224ν3+9628ν2+5482ν7655)/2073 ( 54\nu^{7} + 238\nu^{6} - 504\nu^{5} - 2959\nu^{4} - 224\nu^{3} + 9628\nu^{2} + 5482\nu - 7655 ) / 2073 Copy content Toggle raw display
β7\beta_{7}== (140ν7+54ν62228ν5352ν4+9989ν31015ν29307ν+1242)/2073 ( 140\nu^{7} + 54\nu^{6} - 2228\nu^{5} - 352\nu^{4} + 9989\nu^{3} - 1015\nu^{2} - 9307\nu + 1242 ) / 2073 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β6β4+β3+β2+5 \beta_{6} - \beta_{4} + \beta_{3} + \beta_{2} + 5 Copy content Toggle raw display
ν3\nu^{3}== β7β63β4β3+β2+7β1+1 \beta_{7} - \beta_{6} - 3\beta_{4} - \beta_{3} + \beta_{2} + 7\beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== 9β6+2β510β4+10β3+8β2+39 9\beta_{6} + 2\beta_{5} - 10\beta_{4} + 10\beta_{3} + 8\beta_{2} + 39 Copy content Toggle raw display
ν5\nu^{5}== 8β710β627β414β3+12β2+56β1+4 8\beta_{7} - 10\beta_{6} - 27\beta_{4} - 14\beta_{3} + 12\beta_{2} + 56\beta _1 + 4 Copy content Toggle raw display
ν6\nu^{6}== 2β7+78β6+26β596β4+88β3+57β22β1+326 2\beta_{7} + 78\beta_{6} + 26\beta_{5} - 96\beta_{4} + 88\beta_{3} + 57\beta_{2} - 2\beta _1 + 326 Copy content Toggle raw display
ν7\nu^{7}== 70β788β65β5211β4153β3+125β2+459β18 70\beta_{7} - 88\beta_{6} - 5\beta_{5} - 211\beta_{4} - 153\beta_{3} + 125\beta_{2} + 459\beta _1 - 8 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.88972
2.79588
1.70955
0.710020
−0.371284
−1.06263
−2.66631
−3.00493
−1.00000 −2.88972 1.00000 −2.81297 2.88972 3.85101 −1.00000 5.35050 2.81297
1.2 −1.00000 −2.79588 1.00000 0.869361 2.79588 2.55676 −1.00000 4.81692 −0.869361
1.3 −1.00000 −1.70955 1.00000 4.23180 1.70955 1.69226 −1.00000 −0.0774536 −4.23180
1.4 −1.00000 −0.710020 1.00000 −3.33469 0.710020 4.40617 −1.00000 −2.49587 3.33469
1.5 −1.00000 0.371284 1.00000 −3.64078 −0.371284 −3.75542 −1.00000 −2.86215 3.64078
1.6 −1.00000 1.06263 1.00000 4.09274 −1.06263 2.34135 −1.00000 −1.87081 −4.09274
1.7 −1.00000 2.66631 1.00000 1.88957 −2.66631 −4.43319 −1.00000 4.10924 −1.88957
1.8 −1.00000 3.00493 1.00000 3.70497 −3.00493 0.341047 −1.00000 6.02962 −3.70497
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
2929 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1682.2.a.u 8
29.b even 2 1 1682.2.a.v yes 8
29.c odd 4 2 1682.2.b.k 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1682.2.a.u 8 1.a even 1 1 trivial
1682.2.a.v yes 8 29.b even 2 1
1682.2.b.k 16 29.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(1682))S_{2}^{\mathrm{new}}(\Gamma_0(1682)):

T38+T3718T3617T35+95T34+77T33128T3251T3+31 T_{3}^{8} + T_{3}^{7} - 18T_{3}^{6} - 17T_{3}^{5} + 95T_{3}^{4} + 77T_{3}^{3} - 128T_{3}^{2} - 51T_{3} + 31 Copy content Toggle raw display
T585T5730T56+160T55+265T541650T53300T52+5400T53600 T_{5}^{8} - 5T_{5}^{7} - 30T_{5}^{6} + 160T_{5}^{5} + 265T_{5}^{4} - 1650T_{5}^{3} - 300T_{5}^{2} + 5400T_{5} - 3600 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+1)8 (T + 1)^{8} Copy content Toggle raw display
33 T8+T7++31 T^{8} + T^{7} + \cdots + 31 Copy content Toggle raw display
55 T85T7+3600 T^{8} - 5 T^{7} + \cdots - 3600 Copy content Toggle raw display
77 T87T7++976 T^{8} - 7 T^{7} + \cdots + 976 Copy content Toggle raw display
1111 T87T7+1629 T^{8} - 7 T^{7} + \cdots - 1629 Copy content Toggle raw display
1313 T813T7+464 T^{8} - 13 T^{7} + \cdots - 464 Copy content Toggle raw display
1717 T8+9T7++2511 T^{8} + 9 T^{7} + \cdots + 2511 Copy content Toggle raw display
1919 T813T7++1611 T^{8} - 13 T^{7} + \cdots + 1611 Copy content Toggle raw display
2323 T812T7+144 T^{8} - 12 T^{7} + \cdots - 144 Copy content Toggle raw display
2929 T8 T^{8} Copy content Toggle raw display
3131 T8+15T7+26480 T^{8} + 15 T^{7} + \cdots - 26480 Copy content Toggle raw display
3737 T8+4T7++50896 T^{8} + 4 T^{7} + \cdots + 50896 Copy content Toggle raw display
4141 T8+8T7+279 T^{8} + 8 T^{7} + \cdots - 279 Copy content Toggle raw display
4343 T8+12T7+3689264 T^{8} + 12 T^{7} + \cdots - 3689264 Copy content Toggle raw display
4747 T813T7+2471184 T^{8} - 13 T^{7} + \cdots - 2471184 Copy content Toggle raw display
5353 T84T7+924624 T^{8} - 4 T^{7} + \cdots - 924624 Copy content Toggle raw display
5959 T88T7++5024961 T^{8} - 8 T^{7} + \cdots + 5024961 Copy content Toggle raw display
6161 T8+9T7++416656 T^{8} + 9 T^{7} + \cdots + 416656 Copy content Toggle raw display
6767 T834T7++967471 T^{8} - 34 T^{7} + \cdots + 967471 Copy content Toggle raw display
7171 T8+11T7++6717456 T^{8} + 11 T^{7} + \cdots + 6717456 Copy content Toggle raw display
7373 T813T7++1321 T^{8} - 13 T^{7} + \cdots + 1321 Copy content Toggle raw display
7979 T88T7+3550544 T^{8} - 8 T^{7} + \cdots - 3550544 Copy content Toggle raw display
8383 T810T7++110386845 T^{8} - 10 T^{7} + \cdots + 110386845 Copy content Toggle raw display
8989 T8+6T7+2505339 T^{8} + 6 T^{7} + \cdots - 2505339 Copy content Toggle raw display
9797 T811T7++49865776 T^{8} - 11 T^{7} + \cdots + 49865776 Copy content Toggle raw display
show more
show less