Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1682,2,Mod(1,1682)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1682.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1682.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 8.8.32836640625.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−1.00000 | −2.88972 | 1.00000 | −2.81297 | 2.88972 | 3.85101 | −1.00000 | 5.35050 | 2.81297 | ||||||||||||||||||||||||||||||||||||||||||
1.2 | −1.00000 | −2.79588 | 1.00000 | 0.869361 | 2.79588 | 2.55676 | −1.00000 | 4.81692 | −0.869361 | |||||||||||||||||||||||||||||||||||||||||||
1.3 | −1.00000 | −1.70955 | 1.00000 | 4.23180 | 1.70955 | 1.69226 | −1.00000 | −0.0774536 | −4.23180 | |||||||||||||||||||||||||||||||||||||||||||
1.4 | −1.00000 | −0.710020 | 1.00000 | −3.33469 | 0.710020 | 4.40617 | −1.00000 | −2.49587 | 3.33469 | |||||||||||||||||||||||||||||||||||||||||||
1.5 | −1.00000 | 0.371284 | 1.00000 | −3.64078 | −0.371284 | −3.75542 | −1.00000 | −2.86215 | 3.64078 | |||||||||||||||||||||||||||||||||||||||||||
1.6 | −1.00000 | 1.06263 | 1.00000 | 4.09274 | −1.06263 | 2.34135 | −1.00000 | −1.87081 | −4.09274 | |||||||||||||||||||||||||||||||||||||||||||
1.7 | −1.00000 | 2.66631 | 1.00000 | 1.88957 | −2.66631 | −4.43319 | −1.00000 | 4.10924 | −1.88957 | |||||||||||||||||||||||||||||||||||||||||||
1.8 | −1.00000 | 3.00493 | 1.00000 | 3.70497 | −3.00493 | 0.341047 | −1.00000 | 6.02962 | −3.70497 | |||||||||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1682.2.a.u | ✓ | 8 |
29.b | even | 2 | 1 | 1682.2.a.v | yes | 8 | |
29.c | odd | 4 | 2 | 1682.2.b.k | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1682.2.a.u | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
1682.2.a.v | yes | 8 | 29.b | even | 2 | 1 | |
1682.2.b.k | 16 | 29.c | odd | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|