gp: [N,k,chi] = [1682,2,Mod(1,1682)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1682.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8,-8,-1,8,5]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 − x 7 − 18 x 6 + 17 x 5 + 95 x 4 − 77 x 3 − 128 x 2 + 51 x + 31 x^{8} - x^{7} - 18x^{6} + 17x^{5} + 95x^{4} - 77x^{3} - 128x^{2} + 51x + 31 x 8 − x 7 − 1 8 x 6 + 1 7 x 5 + 9 5 x 4 − 7 7 x 3 − 1 2 8 x 2 + 5 1 x + 3 1
x^8 - x^7 - 18*x^6 + 17*x^5 + 95*x^4 - 77*x^3 - 128*x^2 + 51*x + 31
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( 18 ν 7 − 151 ν 6 − 168 ν 5 + 2008 ν 4 + 386 ν 3 − 6004 ν 2 − 1858 ν + 1364 ) / 2073 ( 18\nu^{7} - 151\nu^{6} - 168\nu^{5} + 2008\nu^{4} + 386\nu^{3} - 6004\nu^{2} - 1858\nu + 1364 ) / 2073 ( 1 8 ν 7 − 1 5 1 ν 6 − 1 6 8 ν 5 + 2 0 0 8 ν 4 + 3 8 6 ν 3 − 6 0 0 4 ν 2 − 1 8 5 8 ν + 1 3 6 4 ) / 2 0 7 3
(18*v^7 - 151*v^6 - 168*v^5 + 2008*v^4 + 386*v^3 - 6004*v^2 - 1858*v + 1364) / 2073
β 3 \beta_{3} β 3 = = =
( − 28 ν 7 − 149 ν 6 + 31 ν 5 + 1867 ν 4 + 2010 ν 3 − 5325 ν 2 − 3252 ν + 28 ) / 2073 ( -28\nu^{7} - 149\nu^{6} + 31\nu^{5} + 1867\nu^{4} + 2010\nu^{3} - 5325\nu^{2} - 3252\nu + 28 ) / 2073 ( − 2 8 ν 7 − 1 4 9 ν 6 + 3 1 ν 5 + 1 8 6 7 ν 4 + 2 0 1 0 ν 3 − 5 3 2 5 ν 2 − 3 2 5 2 ν + 2 8 ) / 2 0 7 3
(-28*v^7 - 149*v^6 + 31*v^5 + 1867*v^4 + 2010*v^3 - 5325*v^2 - 3252*v + 28) / 2073
β 4 \beta_{4} β 4 = = =
( 44 ν 7 − 62 ν 6 − 641 ν 5 + 916 ν 4 + 2172 ν 3 − 3774 ν 2 + 372 ν + 4102 ) / 2073 ( 44\nu^{7} - 62\nu^{6} - 641\nu^{5} + 916\nu^{4} + 2172\nu^{3} - 3774\nu^{2} + 372\nu + 4102 ) / 2073 ( 4 4 ν 7 − 6 2 ν 6 − 6 4 1 ν 5 + 9 1 6 ν 4 + 2 1 7 2 ν 3 − 3 7 7 4 ν 2 + 3 7 2 ν + 4 1 0 2 ) / 2 0 7 3
(44*v^7 - 62*v^6 - 641*v^5 + 916*v^4 + 2172*v^3 - 3774*v^2 + 372*v + 4102) / 2073
β 5 \beta_{5} β 5 = = =
( 45 ν 7 − 32 ν 6 − 420 ν 5 + 1565 ν 4 + 274 ν 3 − 11555 ν 2 + 883 ν + 8938 ) / 2073 ( 45\nu^{7} - 32\nu^{6} - 420\nu^{5} + 1565\nu^{4} + 274\nu^{3} - 11555\nu^{2} + 883\nu + 8938 ) / 2073 ( 4 5 ν 7 − 3 2 ν 6 − 4 2 0 ν 5 + 1 5 6 5 ν 4 + 2 7 4 ν 3 − 1 1 5 5 5 ν 2 + 8 8 3 ν + 8 9 3 8 ) / 2 0 7 3
(45*v^7 - 32*v^6 - 420*v^5 + 1565*v^4 + 274*v^3 - 11555*v^2 + 883*v + 8938) / 2073
β 6 \beta_{6} β 6 = = =
( 54 ν 7 + 238 ν 6 − 504 ν 5 − 2959 ν 4 − 224 ν 3 + 9628 ν 2 + 5482 ν − 7655 ) / 2073 ( 54\nu^{7} + 238\nu^{6} - 504\nu^{5} - 2959\nu^{4} - 224\nu^{3} + 9628\nu^{2} + 5482\nu - 7655 ) / 2073 ( 5 4 ν 7 + 2 3 8 ν 6 − 5 0 4 ν 5 − 2 9 5 9 ν 4 − 2 2 4 ν 3 + 9 6 2 8 ν 2 + 5 4 8 2 ν − 7 6 5 5 ) / 2 0 7 3
(54*v^7 + 238*v^6 - 504*v^5 - 2959*v^4 - 224*v^3 + 9628*v^2 + 5482*v - 7655) / 2073
β 7 \beta_{7} β 7 = = =
( 140 ν 7 + 54 ν 6 − 2228 ν 5 − 352 ν 4 + 9989 ν 3 − 1015 ν 2 − 9307 ν + 1242 ) / 2073 ( 140\nu^{7} + 54\nu^{6} - 2228\nu^{5} - 352\nu^{4} + 9989\nu^{3} - 1015\nu^{2} - 9307\nu + 1242 ) / 2073 ( 1 4 0 ν 7 + 5 4 ν 6 − 2 2 2 8 ν 5 − 3 5 2 ν 4 + 9 9 8 9 ν 3 − 1 0 1 5 ν 2 − 9 3 0 7 ν + 1 2 4 2 ) / 2 0 7 3
(140*v^7 + 54*v^6 - 2228*v^5 - 352*v^4 + 9989*v^3 - 1015*v^2 - 9307*v + 1242) / 2073
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 6 − β 4 + β 3 + β 2 + 5 \beta_{6} - \beta_{4} + \beta_{3} + \beta_{2} + 5 β 6 − β 4 + β 3 + β 2 + 5
b6 - b4 + b3 + b2 + 5
ν 3 \nu^{3} ν 3 = = =
β 7 − β 6 − 3 β 4 − β 3 + β 2 + 7 β 1 + 1 \beta_{7} - \beta_{6} - 3\beta_{4} - \beta_{3} + \beta_{2} + 7\beta _1 + 1 β 7 − β 6 − 3 β 4 − β 3 + β 2 + 7 β 1 + 1
b7 - b6 - 3*b4 - b3 + b2 + 7*b1 + 1
ν 4 \nu^{4} ν 4 = = =
9 β 6 + 2 β 5 − 10 β 4 + 10 β 3 + 8 β 2 + 39 9\beta_{6} + 2\beta_{5} - 10\beta_{4} + 10\beta_{3} + 8\beta_{2} + 39 9 β 6 + 2 β 5 − 1 0 β 4 + 1 0 β 3 + 8 β 2 + 3 9
9*b6 + 2*b5 - 10*b4 + 10*b3 + 8*b2 + 39
ν 5 \nu^{5} ν 5 = = =
8 β 7 − 10 β 6 − 27 β 4 − 14 β 3 + 12 β 2 + 56 β 1 + 4 8\beta_{7} - 10\beta_{6} - 27\beta_{4} - 14\beta_{3} + 12\beta_{2} + 56\beta _1 + 4 8 β 7 − 1 0 β 6 − 2 7 β 4 − 1 4 β 3 + 1 2 β 2 + 5 6 β 1 + 4
8*b7 - 10*b6 - 27*b4 - 14*b3 + 12*b2 + 56*b1 + 4
ν 6 \nu^{6} ν 6 = = =
2 β 7 + 78 β 6 + 26 β 5 − 96 β 4 + 88 β 3 + 57 β 2 − 2 β 1 + 326 2\beta_{7} + 78\beta_{6} + 26\beta_{5} - 96\beta_{4} + 88\beta_{3} + 57\beta_{2} - 2\beta _1 + 326 2 β 7 + 7 8 β 6 + 2 6 β 5 − 9 6 β 4 + 8 8 β 3 + 5 7 β 2 − 2 β 1 + 3 2 6
2*b7 + 78*b6 + 26*b5 - 96*b4 + 88*b3 + 57*b2 - 2*b1 + 326
ν 7 \nu^{7} ν 7 = = =
70 β 7 − 88 β 6 − 5 β 5 − 211 β 4 − 153 β 3 + 125 β 2 + 459 β 1 − 8 70\beta_{7} - 88\beta_{6} - 5\beta_{5} - 211\beta_{4} - 153\beta_{3} + 125\beta_{2} + 459\beta _1 - 8 7 0 β 7 − 8 8 β 6 − 5 β 5 − 2 1 1 β 4 − 1 5 3 β 3 + 1 2 5 β 2 + 4 5 9 β 1 − 8
70*b7 - 88*b6 - 5*b5 - 211*b4 - 153*b3 + 125*b2 + 459*b1 - 8
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
29 29 2 9
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 1682 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(1682)) S 2 n e w ( Γ 0 ( 1 6 8 2 ) ) :
T 3 8 + T 3 7 − 18 T 3 6 − 17 T 3 5 + 95 T 3 4 + 77 T 3 3 − 128 T 3 2 − 51 T 3 + 31 T_{3}^{8} + T_{3}^{7} - 18T_{3}^{6} - 17T_{3}^{5} + 95T_{3}^{4} + 77T_{3}^{3} - 128T_{3}^{2} - 51T_{3} + 31 T 3 8 + T 3 7 − 1 8 T 3 6 − 1 7 T 3 5 + 9 5 T 3 4 + 7 7 T 3 3 − 1 2 8 T 3 2 − 5 1 T 3 + 3 1
T3^8 + T3^7 - 18*T3^6 - 17*T3^5 + 95*T3^4 + 77*T3^3 - 128*T3^2 - 51*T3 + 31
T 5 8 − 5 T 5 7 − 30 T 5 6 + 160 T 5 5 + 265 T 5 4 − 1650 T 5 3 − 300 T 5 2 + 5400 T 5 − 3600 T_{5}^{8} - 5T_{5}^{7} - 30T_{5}^{6} + 160T_{5}^{5} + 265T_{5}^{4} - 1650T_{5}^{3} - 300T_{5}^{2} + 5400T_{5} - 3600 T 5 8 − 5 T 5 7 − 3 0 T 5 6 + 1 6 0 T 5 5 + 2 6 5 T 5 4 − 1 6 5 0 T 5 3 − 3 0 0 T 5 2 + 5 4 0 0 T 5 − 3 6 0 0
T5^8 - 5*T5^7 - 30*T5^6 + 160*T5^5 + 265*T5^4 - 1650*T5^3 - 300*T5^2 + 5400*T5 - 3600
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T + 1 ) 8 (T + 1)^{8} ( T + 1 ) 8
(T + 1)^8
3 3 3
T 8 + T 7 + ⋯ + 31 T^{8} + T^{7} + \cdots + 31 T 8 + T 7 + ⋯ + 3 1
T^8 + T^7 - 18*T^6 - 17*T^5 + 95*T^4 + 77*T^3 - 128*T^2 - 51*T + 31
5 5 5
T 8 − 5 T 7 + ⋯ − 3600 T^{8} - 5 T^{7} + \cdots - 3600 T 8 − 5 T 7 + ⋯ − 3 6 0 0
T^8 - 5*T^7 - 30*T^6 + 160*T^5 + 265*T^4 - 1650*T^3 - 300*T^2 + 5400*T - 3600
7 7 7
T 8 − 7 T 7 + ⋯ + 976 T^{8} - 7 T^{7} + \cdots + 976 T 8 − 7 T 7 + ⋯ + 9 7 6
T^8 - 7*T^7 - 17*T^6 + 221*T^5 - 285*T^4 - 1424*T^3 + 4528*T^2 - 4232*T + 976
11 11 1 1
T 8 − 7 T 7 + ⋯ − 1629 T^{8} - 7 T^{7} + \cdots - 1629 T 8 − 7 T 7 + ⋯ − 1 6 2 9
T^8 - 7*T^7 - 22*T^6 + 196*T^5 + 130*T^4 - 1749*T^3 + 48*T^2 + 4968*T - 1629
13 13 1 3
T 8 − 13 T 7 + ⋯ − 464 T^{8} - 13 T^{7} + \cdots - 464 T 8 − 1 3 T 7 + ⋯ − 4 6 4
T^8 - 13*T^7 + 28*T^6 + 284*T^5 - 1545*T^4 + 1954*T^3 + 1108*T^2 - 1208*T - 464
17 17 1 7
T 8 + 9 T 7 + ⋯ + 2511 T^{8} + 9 T^{7} + \cdots + 2511 T 8 + 9 T 7 + ⋯ + 2 5 1 1
T^8 + 9*T^7 - 33*T^6 - 423*T^5 - 360*T^4 + 2403*T^3 + 1107*T^2 - 5184*T + 2511
19 19 1 9
T 8 − 13 T 7 + ⋯ + 1611 T^{8} - 13 T^{7} + \cdots + 1611 T 8 − 1 3 T 7 + ⋯ + 1 6 1 1
T^8 - 13*T^7 + 38*T^6 + 139*T^5 - 845*T^4 + 669*T^3 + 2478*T^2 - 4383*T + 1611
23 23 2 3
T 8 − 12 T 7 + ⋯ − 144 T^{8} - 12 T^{7} + \cdots - 144 T 8 − 1 2 T 7 + ⋯ − 1 4 4
T^8 - 12*T^7 + 8*T^6 + 246*T^5 - 65*T^4 - 1914*T^3 - 2712*T^2 - 1152*T - 144
29 29 2 9
T 8 T^{8} T 8
T^8
31 31 3 1
T 8 + 15 T 7 + ⋯ − 26480 T^{8} + 15 T^{7} + \cdots - 26480 T 8 + 1 5 T 7 + ⋯ − 2 6 4 8 0
T^8 + 15*T^7 + 10*T^6 - 680*T^5 - 1915*T^4 + 8090*T^3 + 25680*T^2 - 17680*T - 26480
37 37 3 7
T 8 + 4 T 7 + ⋯ + 50896 T^{8} + 4 T^{7} + \cdots + 50896 T 8 + 4 T 7 + ⋯ + 5 0 8 9 6
T^8 + 4*T^7 - 73*T^6 - 218*T^5 + 1795*T^4 + 3188*T^3 - 17008*T^2 - 13744*T + 50896
41 41 4 1
T 8 + 8 T 7 + ⋯ − 279 T^{8} + 8 T^{7} + \cdots - 279 T 8 + 8 T 7 + ⋯ − 2 7 9
T^8 + 8*T^7 - 52*T^6 - 464*T^5 + 430*T^4 + 5736*T^3 + 1308*T^2 - 2592*T - 279
43 43 4 3
T 8 + 12 T 7 + ⋯ − 3689264 T^{8} + 12 T^{7} + \cdots - 3689264 T 8 + 1 2 T 7 + ⋯ − 3 6 8 9 2 6 4
T^8 + 12*T^7 - 132*T^6 - 1866*T^5 + 4235*T^4 + 96174*T^3 + 67368*T^2 - 1646208*T - 3689264
47 47 4 7
T 8 − 13 T 7 + ⋯ − 2471184 T^{8} - 13 T^{7} + \cdots - 2471184 T 8 − 1 3 T 7 + ⋯ − 2 4 7 1 1 8 4
T^8 - 13*T^7 - 112*T^6 + 1954*T^5 + 655*T^4 - 84486*T^3 + 193128*T^2 + 811152*T - 2471184
53 53 5 3
T 8 − 4 T 7 + ⋯ − 924624 T^{8} - 4 T^{7} + \cdots - 924624 T 8 − 4 T 7 + ⋯ − 9 2 4 6 2 4
T^8 - 4*T^7 - 213*T^6 + 758*T^5 + 11335*T^4 - 52428*T^3 - 102648*T^2 + 769464*T - 924624
59 59 5 9
T 8 − 8 T 7 + ⋯ + 5024961 T^{8} - 8 T^{7} + \cdots + 5024961 T 8 − 8 T 7 + ⋯ + 5 0 2 4 9 6 1
T^8 - 8*T^7 - 217*T^6 + 1169*T^5 + 16630*T^4 - 48891*T^3 - 519177*T^2 + 504927*T + 5024961
61 61 6 1
T 8 + 9 T 7 + ⋯ + 416656 T^{8} + 9 T^{7} + \cdots + 416656 T 8 + 9 T 7 + ⋯ + 4 1 6 6 5 6
T^8 + 9*T^7 - 128*T^6 - 1748*T^5 - 2065*T^4 + 54818*T^3 + 304872*T^2 + 609296*T + 416656
67 67 6 7
T 8 − 34 T 7 + ⋯ + 967471 T^{8} - 34 T^{7} + \cdots + 967471 T 8 − 3 4 T 7 + ⋯ + 9 6 7 4 7 1
T^8 - 34*T^7 + 337*T^6 + 473*T^5 - 28290*T^4 + 173287*T^3 - 336623*T^2 - 201221*T + 967471
71 71 7 1
T 8 + 11 T 7 + ⋯ + 6717456 T^{8} + 11 T^{7} + \cdots + 6717456 T 8 + 1 1 T 7 + ⋯ + 6 7 1 7 4 5 6
T^8 + 11*T^7 - 238*T^6 - 2252*T^5 + 17635*T^4 + 113292*T^3 - 613608*T^2 - 1403496*T + 6717456
73 73 7 3
T 8 − 13 T 7 + ⋯ + 1321 T^{8} - 13 T^{7} + \cdots + 1321 T 8 − 1 3 T 7 + ⋯ + 1 3 2 1
T^8 - 13*T^7 - 62*T^6 + 854*T^5 + 765*T^4 - 11126*T^3 - 2582*T^2 + 40237*T + 1321
79 79 7 9
T 8 − 8 T 7 + ⋯ − 3550544 T^{8} - 8 T^{7} + \cdots - 3550544 T 8 − 8 T 7 + ⋯ − 3 5 5 0 5 4 4
T^8 - 8*T^7 - 252*T^6 + 2149*T^5 + 13745*T^4 - 126226*T^3 - 103832*T^2 + 2158512*T - 3550544
83 83 8 3
T 8 − 10 T 7 + ⋯ + 110386845 T^{8} - 10 T^{7} + \cdots + 110386845 T 8 − 1 0 T 7 + ⋯ + 1 1 0 3 8 6 8 4 5
T^8 - 10*T^7 - 435*T^6 + 3500*T^5 + 67630*T^4 - 353550*T^3 - 4639200*T^2 + 10060920*T + 110386845
89 89 8 9
T 8 + 6 T 7 + ⋯ − 2505339 T^{8} + 6 T^{7} + \cdots - 2505339 T 8 + 6 T 7 + ⋯ − 2 5 0 5 3 3 9
T^8 + 6*T^7 - 238*T^6 - 1782*T^5 + 14935*T^4 + 142962*T^3 - 52143*T^2 - 2208321*T - 2505339
97 97 9 7
T 8 − 11 T 7 + ⋯ + 49865776 T^{8} - 11 T^{7} + \cdots + 49865776 T 8 − 1 1 T 7 + ⋯ + 4 9 8 6 5 7 7 6
T^8 - 11*T^7 - 448*T^6 + 3232*T^5 + 73885*T^4 - 213892*T^3 - 4687888*T^2 - 3029464*T + 49865776
show more
show less