Properties

Label 1682.2.a.u
Level $1682$
Weight $2$
Character orbit 1682.a
Self dual yes
Analytic conductor $13.431$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1682,2,Mod(1,1682)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1682, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1682.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1682 = 2 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1682.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.4308376200\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.32836640625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 18x^{6} + 17x^{5} + 95x^{4} - 77x^{3} - 128x^{2} + 51x + 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - \beta_1 q^{3} + q^{4} + ( - \beta_{5} - \beta_{4} - \beta_1 + 1) q^{5} + \beta_1 q^{6} + ( - \beta_{7} - \beta_{4} - \beta_{3} + \cdots + 1) q^{7}+ \cdots + (\beta_{6} - \beta_{4} + \beta_{3} + \cdots + 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} - \beta_1 q^{3} + q^{4} + ( - \beta_{5} - \beta_{4} - \beta_1 + 1) q^{5} + \beta_1 q^{6} + ( - \beta_{7} - \beta_{4} - \beta_{3} + \cdots + 1) q^{7}+ \cdots + ( - 3 \beta_{7} - 3 \beta_{6} + \cdots - 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - q^{3} + 8 q^{4} + 5 q^{5} + q^{6} + 7 q^{7} - 8 q^{8} + 13 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{2} - q^{3} + 8 q^{4} + 5 q^{5} + q^{6} + 7 q^{7} - 8 q^{8} + 13 q^{9} - 5 q^{10} + 7 q^{11} - q^{12} + 13 q^{13} - 7 q^{14} + 20 q^{15} + 8 q^{16} - 9 q^{17} - 13 q^{18} + 13 q^{19} + 5 q^{20} - 34 q^{21} - 7 q^{22} + 12 q^{23} + q^{24} + 45 q^{25} - 13 q^{26} + 2 q^{27} + 7 q^{28} - 20 q^{30} - 15 q^{31} - 8 q^{32} - 4 q^{33} + 9 q^{34} + 13 q^{36} - 4 q^{37} - 13 q^{38} + 9 q^{39} - 5 q^{40} - 8 q^{41} + 34 q^{42} - 12 q^{43} + 7 q^{44} + 30 q^{45} - 12 q^{46} + 13 q^{47} - q^{48} + 27 q^{49} - 45 q^{50} - 42 q^{51} + 13 q^{52} + 4 q^{53} - 2 q^{54} + 35 q^{55} - 7 q^{56} - 11 q^{57} + 8 q^{59} + 20 q^{60} - 9 q^{61} + 15 q^{62} + 12 q^{63} + 8 q^{64} - 15 q^{65} + 4 q^{66} + 34 q^{67} - 9 q^{68} - 4 q^{69} - 11 q^{71} - 13 q^{72} + 13 q^{73} + 4 q^{74} + 15 q^{75} + 13 q^{76} + 23 q^{77} - 9 q^{78} + 8 q^{79} + 5 q^{80} + 12 q^{81} + 8 q^{82} + 10 q^{83} - 34 q^{84} + 15 q^{85} + 12 q^{86} - 7 q^{88} - 6 q^{89} - 30 q^{90} + 12 q^{91} + 12 q^{92} + 15 q^{93} - 13 q^{94} + 15 q^{95} + q^{96} + 11 q^{97} - 27 q^{98} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{7} - 18x^{6} + 17x^{5} + 95x^{4} - 77x^{3} - 128x^{2} + 51x + 31 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 18\nu^{7} - 151\nu^{6} - 168\nu^{5} + 2008\nu^{4} + 386\nu^{3} - 6004\nu^{2} - 1858\nu + 1364 ) / 2073 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -28\nu^{7} - 149\nu^{6} + 31\nu^{5} + 1867\nu^{4} + 2010\nu^{3} - 5325\nu^{2} - 3252\nu + 28 ) / 2073 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 44\nu^{7} - 62\nu^{6} - 641\nu^{5} + 916\nu^{4} + 2172\nu^{3} - 3774\nu^{2} + 372\nu + 4102 ) / 2073 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 45\nu^{7} - 32\nu^{6} - 420\nu^{5} + 1565\nu^{4} + 274\nu^{3} - 11555\nu^{2} + 883\nu + 8938 ) / 2073 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 54\nu^{7} + 238\nu^{6} - 504\nu^{5} - 2959\nu^{4} - 224\nu^{3} + 9628\nu^{2} + 5482\nu - 7655 ) / 2073 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 140\nu^{7} + 54\nu^{6} - 2228\nu^{5} - 352\nu^{4} + 9989\nu^{3} - 1015\nu^{2} - 9307\nu + 1242 ) / 2073 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} - \beta_{4} + \beta_{3} + \beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} - \beta_{6} - 3\beta_{4} - \beta_{3} + \beta_{2} + 7\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 9\beta_{6} + 2\beta_{5} - 10\beta_{4} + 10\beta_{3} + 8\beta_{2} + 39 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 8\beta_{7} - 10\beta_{6} - 27\beta_{4} - 14\beta_{3} + 12\beta_{2} + 56\beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 2\beta_{7} + 78\beta_{6} + 26\beta_{5} - 96\beta_{4} + 88\beta_{3} + 57\beta_{2} - 2\beta _1 + 326 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 70\beta_{7} - 88\beta_{6} - 5\beta_{5} - 211\beta_{4} - 153\beta_{3} + 125\beta_{2} + 459\beta _1 - 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.88972
2.79588
1.70955
0.710020
−0.371284
−1.06263
−2.66631
−3.00493
−1.00000 −2.88972 1.00000 −2.81297 2.88972 3.85101 −1.00000 5.35050 2.81297
1.2 −1.00000 −2.79588 1.00000 0.869361 2.79588 2.55676 −1.00000 4.81692 −0.869361
1.3 −1.00000 −1.70955 1.00000 4.23180 1.70955 1.69226 −1.00000 −0.0774536 −4.23180
1.4 −1.00000 −0.710020 1.00000 −3.33469 0.710020 4.40617 −1.00000 −2.49587 3.33469
1.5 −1.00000 0.371284 1.00000 −3.64078 −0.371284 −3.75542 −1.00000 −2.86215 3.64078
1.6 −1.00000 1.06263 1.00000 4.09274 −1.06263 2.34135 −1.00000 −1.87081 −4.09274
1.7 −1.00000 2.66631 1.00000 1.88957 −2.66631 −4.43319 −1.00000 4.10924 −1.88957
1.8 −1.00000 3.00493 1.00000 3.70497 −3.00493 0.341047 −1.00000 6.02962 −3.70497
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1682.2.a.u 8
29.b even 2 1 1682.2.a.v yes 8
29.c odd 4 2 1682.2.b.k 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1682.2.a.u 8 1.a even 1 1 trivial
1682.2.a.v yes 8 29.b even 2 1
1682.2.b.k 16 29.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1682))\):

\( T_{3}^{8} + T_{3}^{7} - 18T_{3}^{6} - 17T_{3}^{5} + 95T_{3}^{4} + 77T_{3}^{3} - 128T_{3}^{2} - 51T_{3} + 31 \) Copy content Toggle raw display
\( T_{5}^{8} - 5T_{5}^{7} - 30T_{5}^{6} + 160T_{5}^{5} + 265T_{5}^{4} - 1650T_{5}^{3} - 300T_{5}^{2} + 5400T_{5} - 3600 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + T^{7} + \cdots + 31 \) Copy content Toggle raw display
$5$ \( T^{8} - 5 T^{7} + \cdots - 3600 \) Copy content Toggle raw display
$7$ \( T^{8} - 7 T^{7} + \cdots + 976 \) Copy content Toggle raw display
$11$ \( T^{8} - 7 T^{7} + \cdots - 1629 \) Copy content Toggle raw display
$13$ \( T^{8} - 13 T^{7} + \cdots - 464 \) Copy content Toggle raw display
$17$ \( T^{8} + 9 T^{7} + \cdots + 2511 \) Copy content Toggle raw display
$19$ \( T^{8} - 13 T^{7} + \cdots + 1611 \) Copy content Toggle raw display
$23$ \( T^{8} - 12 T^{7} + \cdots - 144 \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( T^{8} + 15 T^{7} + \cdots - 26480 \) Copy content Toggle raw display
$37$ \( T^{8} + 4 T^{7} + \cdots + 50896 \) Copy content Toggle raw display
$41$ \( T^{8} + 8 T^{7} + \cdots - 279 \) Copy content Toggle raw display
$43$ \( T^{8} + 12 T^{7} + \cdots - 3689264 \) Copy content Toggle raw display
$47$ \( T^{8} - 13 T^{7} + \cdots - 2471184 \) Copy content Toggle raw display
$53$ \( T^{8} - 4 T^{7} + \cdots - 924624 \) Copy content Toggle raw display
$59$ \( T^{8} - 8 T^{7} + \cdots + 5024961 \) Copy content Toggle raw display
$61$ \( T^{8} + 9 T^{7} + \cdots + 416656 \) Copy content Toggle raw display
$67$ \( T^{8} - 34 T^{7} + \cdots + 967471 \) Copy content Toggle raw display
$71$ \( T^{8} + 11 T^{7} + \cdots + 6717456 \) Copy content Toggle raw display
$73$ \( T^{8} - 13 T^{7} + \cdots + 1321 \) Copy content Toggle raw display
$79$ \( T^{8} - 8 T^{7} + \cdots - 3550544 \) Copy content Toggle raw display
$83$ \( T^{8} - 10 T^{7} + \cdots + 110386845 \) Copy content Toggle raw display
$89$ \( T^{8} + 6 T^{7} + \cdots - 2505339 \) Copy content Toggle raw display
$97$ \( T^{8} - 11 T^{7} + \cdots + 49865776 \) Copy content Toggle raw display
show more
show less