L(s) = 1 | − i·2-s − 0.710i·3-s − 4-s + 3.33·5-s − 0.710·6-s + 4.40·7-s + i·8-s + 2.49·9-s − 3.33i·10-s + 2.39i·11-s + 0.710i·12-s − 5.40·13-s − 4.40i·14-s − 2.36i·15-s + 16-s − 3.10i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.409i·3-s − 0.5·4-s + 1.49·5-s − 0.289·6-s + 1.66·7-s + 0.353i·8-s + 0.831·9-s − 1.05i·10-s + 0.723i·11-s + 0.204i·12-s − 1.49·13-s − 1.17i·14-s − 0.611i·15-s + 0.250·16-s − 0.753i·17-s + ⋯ |
Λ(s)=(=(1682s/2ΓC(s)L(s)(0.233+0.972i)Λ(2−s)
Λ(s)=(=(1682s/2ΓC(s+1/2)L(s)(0.233+0.972i)Λ(1−s)
Degree: |
2 |
Conductor: |
1682
= 2⋅292
|
Sign: |
0.233+0.972i
|
Analytic conductor: |
13.4308 |
Root analytic conductor: |
3.66481 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1682(1681,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1682, ( :1/2), 0.233+0.972i)
|
Particular Values
L(1) |
≈ |
2.647831798 |
L(21) |
≈ |
2.647831798 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 29 | 1 |
good | 3 | 1+0.710iT−3T2 |
| 5 | 1−3.33T+5T2 |
| 7 | 1−4.40T+7T2 |
| 11 | 1−2.39iT−11T2 |
| 13 | 1+5.40T+13T2 |
| 17 | 1+3.10iT−17T2 |
| 19 | 1+3.55iT−19T2 |
| 23 | 1+0.408T+23T2 |
| 31 | 1−1.23iT−31T2 |
| 37 | 1−6.21iT−37T2 |
| 41 | 1+3.97iT−41T2 |
| 43 | 1+6.00iT−43T2 |
| 47 | 1−8.56iT−47T2 |
| 53 | 1−5.49T+53T2 |
| 59 | 1−8.70T+59T2 |
| 61 | 1−11.6iT−61T2 |
| 67 | 1+8.27T+67T2 |
| 71 | 1+4.70T+71T2 |
| 73 | 1+2.91iT−73T2 |
| 79 | 1+5.81iT−79T2 |
| 83 | 1+7.60T+83T2 |
| 89 | 1−10.6iT−89T2 |
| 97 | 1+16.9iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.392242853942785505404988898178, −8.573876872574147112108976053249, −7.41441452469863887903655251969, −7.07145298898570914768697585827, −5.68990853561515007527602756686, −4.84318988149459090995843144720, −4.52315268520743071957567093297, −2.56756896218501661480904895545, −2.04417911003482456662543305314, −1.21131686720096201216714704877,
1.42320691757046135135956033633, 2.27627223719113904449528713559, 3.93889840920705536850731612216, 4.86837399489284619635976424497, 5.38181724819280566264068352464, 6.14363949678759785520239893663, 7.18518700405543176701410890370, 7.925132841357985671795056841615, 8.681714745600964449079617941820, 9.560845736556520019438282604609