L(s) = 1 | − i·2-s − 0.710i·3-s − 4-s + 3.33·5-s − 0.710·6-s + 4.40·7-s + i·8-s + 2.49·9-s − 3.33i·10-s + 2.39i·11-s + 0.710i·12-s − 5.40·13-s − 4.40i·14-s − 2.36i·15-s + 16-s − 3.10i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.409i·3-s − 0.5·4-s + 1.49·5-s − 0.289·6-s + 1.66·7-s + 0.353i·8-s + 0.831·9-s − 1.05i·10-s + 0.723i·11-s + 0.204i·12-s − 1.49·13-s − 1.17i·14-s − 0.611i·15-s + 0.250·16-s − 0.753i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1682 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.233 + 0.972i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1682 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.233 + 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.647831798\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.647831798\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 29 | \( 1 \) |
good | 3 | \( 1 + 0.710iT - 3T^{2} \) |
| 5 | \( 1 - 3.33T + 5T^{2} \) |
| 7 | \( 1 - 4.40T + 7T^{2} \) |
| 11 | \( 1 - 2.39iT - 11T^{2} \) |
| 13 | \( 1 + 5.40T + 13T^{2} \) |
| 17 | \( 1 + 3.10iT - 17T^{2} \) |
| 19 | \( 1 + 3.55iT - 19T^{2} \) |
| 23 | \( 1 + 0.408T + 23T^{2} \) |
| 31 | \( 1 - 1.23iT - 31T^{2} \) |
| 37 | \( 1 - 6.21iT - 37T^{2} \) |
| 41 | \( 1 + 3.97iT - 41T^{2} \) |
| 43 | \( 1 + 6.00iT - 43T^{2} \) |
| 47 | \( 1 - 8.56iT - 47T^{2} \) |
| 53 | \( 1 - 5.49T + 53T^{2} \) |
| 59 | \( 1 - 8.70T + 59T^{2} \) |
| 61 | \( 1 - 11.6iT - 61T^{2} \) |
| 67 | \( 1 + 8.27T + 67T^{2} \) |
| 71 | \( 1 + 4.70T + 71T^{2} \) |
| 73 | \( 1 + 2.91iT - 73T^{2} \) |
| 79 | \( 1 + 5.81iT - 79T^{2} \) |
| 83 | \( 1 + 7.60T + 83T^{2} \) |
| 89 | \( 1 - 10.6iT - 89T^{2} \) |
| 97 | \( 1 + 16.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.392242853942785505404988898178, −8.573876872574147112108976053249, −7.41441452469863887903655251969, −7.07145298898570914768697585827, −5.68990853561515007527602756686, −4.84318988149459090995843144720, −4.52315268520743071957567093297, −2.56756896218501661480904895545, −2.04417911003482456662543305314, −1.21131686720096201216714704877,
1.42320691757046135135956033633, 2.27627223719113904449528713559, 3.93889840920705536850731612216, 4.86837399489284619635976424497, 5.38181724819280566264068352464, 6.14363949678759785520239893663, 7.18518700405543176701410890370, 7.925132841357985671795056841615, 8.681714745600964449079617941820, 9.560845736556520019438282604609