L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (−0.358 − 2.20i)5-s − 4.46i·7-s + 0.999i·8-s + (0.792 − 2.09i)10-s + 4.90i·11-s + (−2.12 − 3.67i)13-s + (2.23 − 3.86i)14-s + (−0.5 + 0.866i)16-s + (3.15 − 5.46i)17-s + (−3.5 + 2.59i)19-s + (1.73 − 1.41i)20-s + (−2.45 + 4.24i)22-s + (2.29 + 3.96i)23-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (−0.160 − 0.987i)5-s − 1.68i·7-s + 0.353i·8-s + (0.250 − 0.661i)10-s + 1.47i·11-s + (−0.588 − 1.01i)13-s + (0.596 − 1.03i)14-s + (−0.125 + 0.216i)16-s + (0.765 − 1.32i)17-s + (−0.802 + 0.596i)19-s + (0.387 − 0.316i)20-s + (−0.522 + 0.905i)22-s + (0.477 + 0.827i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.239 + 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.239 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.717542576\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.717542576\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.358 + 2.20i)T \) |
| 19 | \( 1 + (3.5 - 2.59i)T \) |
good | 7 | \( 1 + 4.46iT - 7T^{2} \) |
| 11 | \( 1 - 4.90iT - 11T^{2} \) |
| 13 | \( 1 + (2.12 + 3.67i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.15 + 5.46i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-2.29 - 3.96i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.67 + 6.36i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + 7.73T + 37T^{2} \) |
| 41 | \( 1 + (-5.47 + 9.47i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.49 - 2.01i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6.31 + 10.9i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.67 - 0.968i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.22 - 2.12i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.468 - 0.811i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.12 - 3.67i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.67 + 6.36i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (9.85 + 5.68i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6 + 3.46i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 10.3T + 83T^{2} \) |
| 89 | \( 1 + (-3.02 - 5.23i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.12 + 3.67i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.158242239340189258174830417939, −7.84924294540187504842415855036, −7.53891606311831704548987599331, −6.95211413804308443187585333959, −5.59350174467623055334454075165, −4.91694543067001279356239027888, −4.23116228828489532099135500136, −3.45265204625980133318700915664, −1.91580711248395424659105535561, −0.49969077604160881505230895068,
1.83361191679254322888254272162, 2.78579657623476819262387940381, 3.39579367804926990075149723753, 4.57626451741849583860056808917, 5.65536387709258928060330576257, 6.17790656998897392553629273357, 6.85867315007927667600771885071, 8.125784099098772298874918308143, 8.794840562043305212356550810999, 9.537622039837620271251480622392