Properties

Label 2-1710-285.179-c1-0-37
Degree 22
Conductor 17101710
Sign 0.239+0.970i-0.239 + 0.970i
Analytic cond. 13.654413.6544
Root an. cond. 3.695183.69518
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (−0.358 − 2.20i)5-s − 4.46i·7-s + 0.999i·8-s + (0.792 − 2.09i)10-s + 4.90i·11-s + (−2.12 − 3.67i)13-s + (2.23 − 3.86i)14-s + (−0.5 + 0.866i)16-s + (3.15 − 5.46i)17-s + (−3.5 + 2.59i)19-s + (1.73 − 1.41i)20-s + (−2.45 + 4.24i)22-s + (2.29 + 3.96i)23-s + ⋯
L(s)  = 1  + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s + (−0.160 − 0.987i)5-s − 1.68i·7-s + 0.353i·8-s + (0.250 − 0.661i)10-s + 1.47i·11-s + (−0.588 − 1.01i)13-s + (0.596 − 1.03i)14-s + (−0.125 + 0.216i)16-s + (0.765 − 1.32i)17-s + (−0.802 + 0.596i)19-s + (0.387 − 0.316i)20-s + (−0.522 + 0.905i)22-s + (0.477 + 0.827i)23-s + ⋯

Functional equation

Λ(s)=(1710s/2ΓC(s)L(s)=((0.239+0.970i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.239 + 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1710s/2ΓC(s+1/2)L(s)=((0.239+0.970i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.239 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 17101710    =    2325192 \cdot 3^{2} \cdot 5 \cdot 19
Sign: 0.239+0.970i-0.239 + 0.970i
Analytic conductor: 13.654413.6544
Root analytic conductor: 3.695183.69518
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1710(179,)\chi_{1710} (179, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1710, ( :1/2), 0.239+0.970i)(2,\ 1710,\ (\ :1/2),\ -0.239 + 0.970i)

Particular Values

L(1)L(1) \approx 1.7175425761.717542576
L(12)L(\frac12) \approx 1.7175425761.717542576
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
3 1 1
5 1+(0.358+2.20i)T 1 + (0.358 + 2.20i)T
19 1+(3.52.59i)T 1 + (3.5 - 2.59i)T
good7 1+4.46iT7T2 1 + 4.46iT - 7T^{2}
11 14.90iT11T2 1 - 4.90iT - 11T^{2}
13 1+(2.12+3.67i)T+(6.5+11.2i)T2 1 + (2.12 + 3.67i)T + (-6.5 + 11.2i)T^{2}
17 1+(3.15+5.46i)T+(8.514.7i)T2 1 + (-3.15 + 5.46i)T + (-8.5 - 14.7i)T^{2}
23 1+(2.293.96i)T+(11.5+19.9i)T2 1 + (-2.29 - 3.96i)T + (-11.5 + 19.9i)T^{2}
29 1+(3.67+6.36i)T+(14.5+25.1i)T2 1 + (3.67 + 6.36i)T + (-14.5 + 25.1i)T^{2}
31 131T2 1 - 31T^{2}
37 1+7.73T+37T2 1 + 7.73T + 37T^{2}
41 1+(5.47+9.47i)T+(20.535.5i)T2 1 + (-5.47 + 9.47i)T + (-20.5 - 35.5i)T^{2}
43 1+(3.492.01i)T+(21.5+37.2i)T2 1 + (-3.49 - 2.01i)T + (21.5 + 37.2i)T^{2}
47 1+(6.31+10.9i)T+(23.5+40.7i)T2 1 + (6.31 + 10.9i)T + (-23.5 + 40.7i)T^{2}
53 1+(1.670.968i)T+(26.545.8i)T2 1 + (1.67 - 0.968i)T + (26.5 - 45.8i)T^{2}
59 1+(1.222.12i)T+(29.551.0i)T2 1 + (1.22 - 2.12i)T + (-29.5 - 51.0i)T^{2}
61 1+(0.4680.811i)T+(30.5+52.8i)T2 1 + (-0.468 - 0.811i)T + (-30.5 + 52.8i)T^{2}
67 1+(2.123.67i)T+(33.5+58.0i)T2 1 + (-2.12 - 3.67i)T + (-33.5 + 58.0i)T^{2}
71 1+(3.67+6.36i)T+(35.561.4i)T2 1 + (-3.67 + 6.36i)T + (-35.5 - 61.4i)T^{2}
73 1+(9.85+5.68i)T+(36.5+63.2i)T2 1 + (9.85 + 5.68i)T + (36.5 + 63.2i)T^{2}
79 1+(6+3.46i)T+(39.5+68.4i)T2 1 + (6 + 3.46i)T + (39.5 + 68.4i)T^{2}
83 110.3T+83T2 1 - 10.3T + 83T^{2}
89 1+(3.025.23i)T+(44.5+77.0i)T2 1 + (-3.02 - 5.23i)T + (-44.5 + 77.0i)T^{2}
97 1+(2.12+3.67i)T+(48.584.0i)T2 1 + (-2.12 + 3.67i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.158242239340189258174830417939, −7.84924294540187504842415855036, −7.53891606311831704548987599331, −6.95211413804308443187585333959, −5.59350174467623055334454075165, −4.91694543067001279356239027888, −4.23116228828489532099135500136, −3.45265204625980133318700915664, −1.91580711248395424659105535561, −0.49969077604160881505230895068, 1.83361191679254322888254272162, 2.78579657623476819262387940381, 3.39579367804926990075149723753, 4.57626451741849583860056808917, 5.65536387709258928060330576257, 6.17790656998897392553629273357, 6.85867315007927667600771885071, 8.125784099098772298874918308143, 8.794840562043305212356550810999, 9.537622039837620271251480622392

Graph of the ZZ-function along the critical line