Properties

Label 1710.2.q.a
Level 17101710
Weight 22
Character orbit 1710.q
Analytic conductor 13.65413.654
Analytic rank 00
Dimension 1616
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(179,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.179");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1710=232519 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1710.q (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 13.654418745613.6544187456
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: 16.0.162447943996702457856.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16x1215x816x4+256 x^{16} - x^{12} - 15x^{8} - 16x^{4} + 256 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2834 2^{8}\cdot 3^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β3q2+(β1+1)q4+(β7+β32β2)q5+(β13+β10β9)q7+β2q8+(β10+β1+1)q10+(2β12+β8β7)q11++(β52β45β3)q98+O(q100) q + \beta_{3} q^{2} + ( - \beta_1 + 1) q^{4} + (\beta_{7} + \beta_{3} - 2 \beta_{2}) q^{5} + ( - \beta_{13} + \beta_{10} - \beta_{9}) q^{7} + \beta_{2} q^{8} + (\beta_{10} + \beta_1 + 1) q^{10} + ( - 2 \beta_{12} + \beta_{8} - \beta_{7}) q^{11}+ \cdots + (\beta_{5} - 2 \beta_{4} - 5 \beta_{3}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+8q4+24q108q1656q198q25+24q34+24q4080q498q5556q6116q6424q7064q7696q7924q8572q91+O(q100) 16 q + 8 q^{4} + 24 q^{10} - 8 q^{16} - 56 q^{19} - 8 q^{25} + 24 q^{34} + 24 q^{40} - 80 q^{49} - 8 q^{55} - 56 q^{61} - 16 q^{64} - 24 q^{70} - 64 q^{76} - 96 q^{79} - 24 q^{85} - 72 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16x1215x816x4+256 x^{16} - x^{12} - 15x^{8} - 16x^{4} + 256 : Copy content Toggle raw display

β1\beta_{1}== (ν12+15ν815ν416)/240 ( \nu^{12} + 15\nu^{8} - 15\nu^{4} - 16 ) / 240 Copy content Toggle raw display
β2\beta_{2}== (ν1415ν1033ν6+256ν2)/576 ( -\nu^{14} - 15\nu^{10} - 33\nu^{6} + 256\nu^{2} ) / 576 Copy content Toggle raw display
β3\beta_{3}== (ν14+91ν2)/180 ( -\nu^{14} + 91\nu^{2} ) / 180 Copy content Toggle raw display
β4\beta_{4}== (ν12+ν8+31ν4+8)/24 ( -\nu^{12} + \nu^{8} + 31\nu^{4} + 8 ) / 24 Copy content Toggle raw display
β5\beta_{5}== (11ν12+5ν8+155ν4336)/240 ( 11\nu^{12} + 5\nu^{8} + 155\nu^{4} - 336 ) / 240 Copy content Toggle raw display
β6\beta_{6}== (7ν1564ν13+105ν11345ν71792ν3+64ν)/5760 ( 7\nu^{15} - 64\nu^{13} + 105\nu^{11} - 345\nu^{7} - 1792\nu^{3} + 64\nu ) / 5760 Copy content Toggle raw display
β7\beta_{7}== (23ν154ν13105ν1160ν9+345ν7+1020ν5+368ν3+1024ν)/5760 ( -23\nu^{15} - 4\nu^{13} - 105\nu^{11} - 60\nu^{9} + 345\nu^{7} + 1020\nu^{5} + 368\nu^{3} + 1024\nu ) / 5760 Copy content Toggle raw display
β8\beta_{8}== (19ν15+20ν13195ν11+300ν91005ν7+660ν5+416ν310880ν)/5760 ( 19\nu^{15} + 20\nu^{13} - 195\nu^{11} + 300\nu^{9} - 1005\nu^{7} + 660\nu^{5} + 416\nu^{3} - 10880\nu ) / 5760 Copy content Toggle raw display
β9\beta_{9}== (4ν1517ν1315ν9+255ν5+356ν3+272ν)/1440 ( 4\nu^{15} - 17\nu^{13} - 15\nu^{9} + 255\nu^{5} + 356\nu^{3} + 272\nu ) / 1440 Copy content Toggle raw display
β10\beta_{10}== (7ν1564ν13105ν11+345ν7+1792ν3+64ν)/5760 ( -7\nu^{15} - 64\nu^{13} - 105\nu^{11} + 345\nu^{7} + 1792\nu^{3} + 64\nu ) / 5760 Copy content Toggle raw display
β11\beta_{11}== (13ν1445ν10+285ν6+1232ν2)/960 ( 13\nu^{14} - 45\nu^{10} + 285\nu^{6} + 1232\nu^{2} ) / 960 Copy content Toggle raw display
β12\beta_{12}== (35ν15+44ν1345ν11300ν9675ν7660ν5+3680ν36464ν)/5760 ( -35\nu^{15} + 44\nu^{13} - 45\nu^{11} - 300\nu^{9} - 675\nu^{7} - 660\nu^{5} + 3680\nu^{3} - 6464\nu ) / 5760 Copy content Toggle raw display
β13\beta_{13}== (35ν15+88ν13+195ν11+360ν9+1005ν7360ν51840ν311968ν)/5760 ( -35\nu^{15} + 88\nu^{13} + 195\nu^{11} + 360\nu^{9} + 1005\nu^{7} - 360\nu^{5} - 1840\nu^{3} - 11968\nu ) / 5760 Copy content Toggle raw display
β14\beta_{14}== (11ν14+45ν10285ν6536ν2)/480 ( 11\nu^{14} + 45\nu^{10} - 285\nu^{6} - 536\nu^{2} ) / 480 Copy content Toggle raw display
β15\beta_{15}== (35ν15+44ν13+45ν11300ν9+675ν7660ν53680ν36464ν)/5760 ( 35\nu^{15} + 44\nu^{13} + 45\nu^{11} - 300\nu^{9} + 675\nu^{7} - 660\nu^{5} - 3680\nu^{3} - 6464\nu ) / 5760 Copy content Toggle raw display
ν\nu== (β15β13β12β10β9β8β6)/6 ( -\beta_{15} - \beta_{13} - \beta_{12} - \beta_{10} - \beta_{9} - \beta_{8} - \beta_{6} ) / 6 Copy content Toggle raw display
ν2\nu^{2}== (β14+2β11+9β3)/6 ( \beta_{14} + 2\beta_{11} + 9\beta_{3} ) / 6 Copy content Toggle raw display
ν3\nu^{3}== (2β15+β13+2β12+β10+7β9β86β77β6)/6 ( -2\beta_{15} + \beta_{13} + 2\beta_{12} + \beta_{10} + 7\beta_{9} - \beta_{8} - 6\beta_{7} - 7\beta_{6} ) / 6 Copy content Toggle raw display
ν4\nu^{4}== (β5+β4β1+1)/2 ( \beta_{5} + \beta_{4} - \beta _1 + 1 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (β15+2β13β1216β10+17β9+2β8+15β7β6)/6 ( -\beta_{15} + 2\beta_{13} - \beta_{12} - 16\beta_{10} + 17\beta_{9} + 2\beta_{8} + 15\beta_{7} - \beta_{6} ) / 6 Copy content Toggle raw display
ν6\nu^{6}== (5β14+5β1127β2)/6 ( -5\beta_{14} + 5\beta_{11} - 27\beta_{2} ) / 6 Copy content Toggle raw display
ν7\nu^{7}== (7β15+7β137β12+16β10+7β97β816β6)/6 ( 7\beta_{15} + 7\beta_{13} - 7\beta_{12} + 16\beta_{10} + 7\beta_{9} - 7\beta_{8} - 16\beta_{6} ) / 6 Copy content Toggle raw display
ν8\nu^{8}== (β5+2β4+31β1)/2 ( -\beta_{5} + 2\beta_{4} + 31\beta_1 ) / 2 Copy content Toggle raw display
ν9\nu^{9}== (34β15+17β1334β12+17β1016β9+17β8+16β6)/6 ( - 34 \beta_{15} + 17 \beta_{13} - 34 \beta_{12} + 17 \beta_{10} - 16 \beta_{9} + 17 \beta_{8} + \cdots - 16 \beta_{6} ) / 6 Copy content Toggle raw display
ν10\nu^{10}== (22β14+11β11+171β3171β2)/6 ( 22\beta_{14} + 11\beta_{11} + 171\beta_{3} - 171\beta_{2} ) / 6 Copy content Toggle raw display
ν11\nu^{11}== (23β15+46β13+23β1289β10+112β946β8++23β6)/6 ( - 23 \beta_{15} + 46 \beta_{13} + 23 \beta_{12} - 89 \beta_{10} + 112 \beta_{9} - 46 \beta_{8} + \cdots + 23 \beta_{6} ) / 6 Copy content Toggle raw display
ν12\nu^{12}== (30β515β4+47)/2 ( 30\beta_{5} - 15\beta_{4} + 47 ) / 2 Copy content Toggle raw display
ν13\nu^{13}== (β15β13β12271β10β9β8271β6)/6 ( -\beta_{15} - \beta_{13} - \beta_{12} - 271\beta_{10} - \beta_{9} - \beta_{8} - 271\beta_{6} ) / 6 Copy content Toggle raw display
ν14\nu^{14}== (91β14+182β11261β3)/6 ( 91\beta_{14} + 182\beta_{11} - 261\beta_{3} ) / 6 Copy content Toggle raw display
ν15\nu^{15}== (178β1589β13178β1289β10+457β9+89β8+457β6)/6 ( 178 \beta_{15} - 89 \beta_{13} - 178 \beta_{12} - 89 \beta_{10} + 457 \beta_{9} + 89 \beta_{8} + \cdots - 457 \beta_{6} ) / 6 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1710Z)×\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times.

nn 191191 10271027 13511351
χ(n)\chi(n) 1-1 1-1 1β11 - \beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
179.1
−0.140577 1.40721i
−0.825348 + 1.14839i
0.825348 1.14839i
0.140577 + 1.40721i
−1.40721 + 0.140577i
1.14839 + 0.825348i
−1.14839 0.825348i
1.40721 0.140577i
−0.825348 1.14839i
−0.140577 + 1.40721i
0.140577 1.40721i
0.825348 + 1.14839i
1.14839 0.825348i
−1.40721 0.140577i
1.40721 + 0.140577i
−1.14839 + 0.825348i
−0.866025 0.500000i 0 0.500000 + 0.866025i −2.09077 + 0.792893i 0 2.01563i 1.00000i 0 2.20711 + 0.358719i
179.2 −0.866025 0.500000i 0 0.500000 + 0.866025i −2.09077 + 0.792893i 0 4.46512i 1.00000i 0 2.20711 + 0.358719i
179.3 −0.866025 0.500000i 0 0.500000 + 0.866025i 0.358719 + 2.20711i 0 4.46512i 1.00000i 0 0.792893 2.09077i
179.4 −0.866025 0.500000i 0 0.500000 + 0.866025i 0.358719 + 2.20711i 0 2.01563i 1.00000i 0 0.792893 2.09077i
179.5 0.866025 + 0.500000i 0 0.500000 + 0.866025i −0.358719 2.20711i 0 4.46512i 1.00000i 0 0.792893 2.09077i
179.6 0.866025 + 0.500000i 0 0.500000 + 0.866025i −0.358719 2.20711i 0 2.01563i 1.00000i 0 0.792893 2.09077i
179.7 0.866025 + 0.500000i 0 0.500000 + 0.866025i 2.09077 0.792893i 0 2.01563i 1.00000i 0 2.20711 + 0.358719i
179.8 0.866025 + 0.500000i 0 0.500000 + 0.866025i 2.09077 0.792893i 0 4.46512i 1.00000i 0 2.20711 + 0.358719i
449.1 −0.866025 + 0.500000i 0 0.500000 0.866025i −2.09077 0.792893i 0 4.46512i 1.00000i 0 2.20711 0.358719i
449.2 −0.866025 + 0.500000i 0 0.500000 0.866025i −2.09077 0.792893i 0 2.01563i 1.00000i 0 2.20711 0.358719i
449.3 −0.866025 + 0.500000i 0 0.500000 0.866025i 0.358719 2.20711i 0 2.01563i 1.00000i 0 0.792893 + 2.09077i
449.4 −0.866025 + 0.500000i 0 0.500000 0.866025i 0.358719 2.20711i 0 4.46512i 1.00000i 0 0.792893 + 2.09077i
449.5 0.866025 0.500000i 0 0.500000 0.866025i −0.358719 + 2.20711i 0 2.01563i 1.00000i 0 0.792893 + 2.09077i
449.6 0.866025 0.500000i 0 0.500000 0.866025i −0.358719 + 2.20711i 0 4.46512i 1.00000i 0 0.792893 + 2.09077i
449.7 0.866025 0.500000i 0 0.500000 0.866025i 2.09077 + 0.792893i 0 4.46512i 1.00000i 0 2.20711 0.358719i
449.8 0.866025 0.500000i 0 0.500000 0.866025i 2.09077 + 0.792893i 0 2.01563i 1.00000i 0 2.20711 0.358719i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 179.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner
19.d odd 6 1 inner
57.f even 6 1 inner
95.h odd 6 1 inner
285.q even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1710.2.q.a 16
3.b odd 2 1 inner 1710.2.q.a 16
5.b even 2 1 inner 1710.2.q.a 16
15.d odd 2 1 inner 1710.2.q.a 16
19.d odd 6 1 inner 1710.2.q.a 16
57.f even 6 1 inner 1710.2.q.a 16
95.h odd 6 1 inner 1710.2.q.a 16
285.q even 6 1 inner 1710.2.q.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1710.2.q.a 16 1.a even 1 1 trivial
1710.2.q.a 16 3.b odd 2 1 inner
1710.2.q.a 16 5.b even 2 1 inner
1710.2.q.a 16 15.d odd 2 1 inner
1710.2.q.a 16 19.d odd 6 1 inner
1710.2.q.a 16 57.f even 6 1 inner
1710.2.q.a 16 95.h odd 6 1 inner
1710.2.q.a 16 285.q even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T74+24T72+81 T_{7}^{4} + 24T_{7}^{2} + 81 acting on S2new(1710,[χ])S_{2}^{\mathrm{new}}(1710, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4T2+1)4 (T^{4} - T^{2} + 1)^{4} Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 (T8+2T6++625)2 (T^{8} + 2 T^{6} + \cdots + 625)^{2} Copy content Toggle raw display
77 (T4+24T2+81)4 (T^{4} + 24 T^{2} + 81)^{4} Copy content Toggle raw display
1111 (T4+64T2+961)4 (T^{4} + 64 T^{2} + 961)^{4} Copy content Toggle raw display
1313 (T4+18T2+324)4 (T^{4} + 18 T^{2} + 324)^{4} Copy content Toggle raw display
1717 (T8+48T6++104976)2 (T^{8} + 48 T^{6} + \cdots + 104976)^{2} Copy content Toggle raw display
1919 (T2+7T+19)8 (T^{2} + 7 T + 19)^{8} Copy content Toggle raw display
2323 (T4+21T2+441)4 (T^{4} + 21 T^{2} + 441)^{4} Copy content Toggle raw display
2929 (T4+54T2+2916)4 (T^{4} + 54 T^{2} + 2916)^{4} Copy content Toggle raw display
3131 T16 T^{16} Copy content Toggle raw display
3737 (T472T2+729)4 (T^{4} - 72 T^{2} + 729)^{4} Copy content Toggle raw display
4141 (T8+192T6++74805201)2 (T^{8} + 192 T^{6} + \cdots + 74805201)^{2} Copy content Toggle raw display
4343 (T896T6++1679616)2 (T^{8} - 96 T^{6} + \cdots + 1679616)^{2} Copy content Toggle raw display
4747 (T8+192T6++26873856)2 (T^{8} + 192 T^{6} + \cdots + 26873856)^{2} Copy content Toggle raw display
5353 (T8198T6++531441)2 (T^{8} - 198 T^{6} + \cdots + 531441)^{2} Copy content Toggle raw display
5959 (T4+6T2+36)4 (T^{4} + 6 T^{2} + 36)^{4} Copy content Toggle raw display
6161 (T4+14T3++196)4 (T^{4} + 14 T^{3} + \cdots + 196)^{4} Copy content Toggle raw display
6767 (T4+18T2+324)4 (T^{4} + 18 T^{2} + 324)^{4} Copy content Toggle raw display
7171 (T4+54T2+2916)4 (T^{4} + 54 T^{2} + 2916)^{4} Copy content Toggle raw display
7373 (T8132T6++104976)2 (T^{8} - 132 T^{6} + \cdots + 104976)^{2} Copy content Toggle raw display
7979 (T2+12T+48)8 (T^{2} + 12 T + 48)^{8} Copy content Toggle raw display
8383 (T2108)8 (T^{2} - 108)^{8} Copy content Toggle raw display
8989 (T8+216T6++43046721)2 (T^{8} + 216 T^{6} + \cdots + 43046721)^{2} Copy content Toggle raw display
9797 (T4+18T2+324)4 (T^{4} + 18 T^{2} + 324)^{4} Copy content Toggle raw display
show more
show less