Properties

Label 1710.2.q.a
Level $1710$
Weight $2$
Character orbit 1710.q
Analytic conductor $13.654$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(179,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.179");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.q (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.162447943996702457856.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} - 15x^{8} - 16x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} + ( - \beta_1 + 1) q^{4} + (\beta_{7} + \beta_{3} - 2 \beta_{2}) q^{5} + ( - \beta_{13} + \beta_{10} - \beta_{9}) q^{7} + \beta_{2} q^{8} + (\beta_{10} + \beta_1 + 1) q^{10} + ( - 2 \beta_{12} + \beta_{8} - \beta_{7}) q^{11}+ \cdots + (\beta_{5} - 2 \beta_{4} - 5 \beta_{3}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 24 q^{10} - 8 q^{16} - 56 q^{19} - 8 q^{25} + 24 q^{34} + 24 q^{40} - 80 q^{49} - 8 q^{55} - 56 q^{61} - 16 q^{64} - 24 q^{70} - 64 q^{76} - 96 q^{79} - 24 q^{85} - 72 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - x^{12} - 15x^{8} - 16x^{4} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{12} + 15\nu^{8} - 15\nu^{4} - 16 ) / 240 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{14} - 15\nu^{10} - 33\nu^{6} + 256\nu^{2} ) / 576 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{14} + 91\nu^{2} ) / 180 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{12} + \nu^{8} + 31\nu^{4} + 8 ) / 24 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 11\nu^{12} + 5\nu^{8} + 155\nu^{4} - 336 ) / 240 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 7\nu^{15} - 64\nu^{13} + 105\nu^{11} - 345\nu^{7} - 1792\nu^{3} + 64\nu ) / 5760 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -23\nu^{15} - 4\nu^{13} - 105\nu^{11} - 60\nu^{9} + 345\nu^{7} + 1020\nu^{5} + 368\nu^{3} + 1024\nu ) / 5760 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 19\nu^{15} + 20\nu^{13} - 195\nu^{11} + 300\nu^{9} - 1005\nu^{7} + 660\nu^{5} + 416\nu^{3} - 10880\nu ) / 5760 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 4\nu^{15} - 17\nu^{13} - 15\nu^{9} + 255\nu^{5} + 356\nu^{3} + 272\nu ) / 1440 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -7\nu^{15} - 64\nu^{13} - 105\nu^{11} + 345\nu^{7} + 1792\nu^{3} + 64\nu ) / 5760 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 13\nu^{14} - 45\nu^{10} + 285\nu^{6} + 1232\nu^{2} ) / 960 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( -35\nu^{15} + 44\nu^{13} - 45\nu^{11} - 300\nu^{9} - 675\nu^{7} - 660\nu^{5} + 3680\nu^{3} - 6464\nu ) / 5760 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( -35\nu^{15} + 88\nu^{13} + 195\nu^{11} + 360\nu^{9} + 1005\nu^{7} - 360\nu^{5} - 1840\nu^{3} - 11968\nu ) / 5760 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 11\nu^{14} + 45\nu^{10} - 285\nu^{6} - 536\nu^{2} ) / 480 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 35\nu^{15} + 44\nu^{13} + 45\nu^{11} - 300\nu^{9} + 675\nu^{7} - 660\nu^{5} - 3680\nu^{3} - 6464\nu ) / 5760 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{15} - \beta_{13} - \beta_{12} - \beta_{10} - \beta_{9} - \beta_{8} - \beta_{6} ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{14} + 2\beta_{11} + 9\beta_{3} ) / 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -2\beta_{15} + \beta_{13} + 2\beta_{12} + \beta_{10} + 7\beta_{9} - \beta_{8} - 6\beta_{7} - 7\beta_{6} ) / 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{5} + \beta_{4} - \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -\beta_{15} + 2\beta_{13} - \beta_{12} - 16\beta_{10} + 17\beta_{9} + 2\beta_{8} + 15\beta_{7} - \beta_{6} ) / 6 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -5\beta_{14} + 5\beta_{11} - 27\beta_{2} ) / 6 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 7\beta_{15} + 7\beta_{13} - 7\beta_{12} + 16\beta_{10} + 7\beta_{9} - 7\beta_{8} - 16\beta_{6} ) / 6 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( -\beta_{5} + 2\beta_{4} + 31\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 34 \beta_{15} + 17 \beta_{13} - 34 \beta_{12} + 17 \beta_{10} - 16 \beta_{9} + 17 \beta_{8} + \cdots - 16 \beta_{6} ) / 6 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 22\beta_{14} + 11\beta_{11} + 171\beta_{3} - 171\beta_{2} ) / 6 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 23 \beta_{15} + 46 \beta_{13} + 23 \beta_{12} - 89 \beta_{10} + 112 \beta_{9} - 46 \beta_{8} + \cdots + 23 \beta_{6} ) / 6 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( 30\beta_{5} - 15\beta_{4} + 47 ) / 2 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( -\beta_{15} - \beta_{13} - \beta_{12} - 271\beta_{10} - \beta_{9} - \beta_{8} - 271\beta_{6} ) / 6 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 91\beta_{14} + 182\beta_{11} - 261\beta_{3} ) / 6 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 178 \beta_{15} - 89 \beta_{13} - 178 \beta_{12} - 89 \beta_{10} + 457 \beta_{9} + 89 \beta_{8} + \cdots - 457 \beta_{6} ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(-1\) \(1 - \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
179.1
−0.140577 1.40721i
−0.825348 + 1.14839i
0.825348 1.14839i
0.140577 + 1.40721i
−1.40721 + 0.140577i
1.14839 + 0.825348i
−1.14839 0.825348i
1.40721 0.140577i
−0.825348 1.14839i
−0.140577 + 1.40721i
0.140577 1.40721i
0.825348 + 1.14839i
1.14839 0.825348i
−1.40721 0.140577i
1.40721 + 0.140577i
−1.14839 + 0.825348i
−0.866025 0.500000i 0 0.500000 + 0.866025i −2.09077 + 0.792893i 0 2.01563i 1.00000i 0 2.20711 + 0.358719i
179.2 −0.866025 0.500000i 0 0.500000 + 0.866025i −2.09077 + 0.792893i 0 4.46512i 1.00000i 0 2.20711 + 0.358719i
179.3 −0.866025 0.500000i 0 0.500000 + 0.866025i 0.358719 + 2.20711i 0 4.46512i 1.00000i 0 0.792893 2.09077i
179.4 −0.866025 0.500000i 0 0.500000 + 0.866025i 0.358719 + 2.20711i 0 2.01563i 1.00000i 0 0.792893 2.09077i
179.5 0.866025 + 0.500000i 0 0.500000 + 0.866025i −0.358719 2.20711i 0 4.46512i 1.00000i 0 0.792893 2.09077i
179.6 0.866025 + 0.500000i 0 0.500000 + 0.866025i −0.358719 2.20711i 0 2.01563i 1.00000i 0 0.792893 2.09077i
179.7 0.866025 + 0.500000i 0 0.500000 + 0.866025i 2.09077 0.792893i 0 2.01563i 1.00000i 0 2.20711 + 0.358719i
179.8 0.866025 + 0.500000i 0 0.500000 + 0.866025i 2.09077 0.792893i 0 4.46512i 1.00000i 0 2.20711 + 0.358719i
449.1 −0.866025 + 0.500000i 0 0.500000 0.866025i −2.09077 0.792893i 0 4.46512i 1.00000i 0 2.20711 0.358719i
449.2 −0.866025 + 0.500000i 0 0.500000 0.866025i −2.09077 0.792893i 0 2.01563i 1.00000i 0 2.20711 0.358719i
449.3 −0.866025 + 0.500000i 0 0.500000 0.866025i 0.358719 2.20711i 0 2.01563i 1.00000i 0 0.792893 + 2.09077i
449.4 −0.866025 + 0.500000i 0 0.500000 0.866025i 0.358719 2.20711i 0 4.46512i 1.00000i 0 0.792893 + 2.09077i
449.5 0.866025 0.500000i 0 0.500000 0.866025i −0.358719 + 2.20711i 0 2.01563i 1.00000i 0 0.792893 + 2.09077i
449.6 0.866025 0.500000i 0 0.500000 0.866025i −0.358719 + 2.20711i 0 4.46512i 1.00000i 0 0.792893 + 2.09077i
449.7 0.866025 0.500000i 0 0.500000 0.866025i 2.09077 + 0.792893i 0 4.46512i 1.00000i 0 2.20711 0.358719i
449.8 0.866025 0.500000i 0 0.500000 0.866025i 2.09077 + 0.792893i 0 2.01563i 1.00000i 0 2.20711 0.358719i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 179.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner
19.d odd 6 1 inner
57.f even 6 1 inner
95.h odd 6 1 inner
285.q even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1710.2.q.a 16
3.b odd 2 1 inner 1710.2.q.a 16
5.b even 2 1 inner 1710.2.q.a 16
15.d odd 2 1 inner 1710.2.q.a 16
19.d odd 6 1 inner 1710.2.q.a 16
57.f even 6 1 inner 1710.2.q.a 16
95.h odd 6 1 inner 1710.2.q.a 16
285.q even 6 1 inner 1710.2.q.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1710.2.q.a 16 1.a even 1 1 trivial
1710.2.q.a 16 3.b odd 2 1 inner
1710.2.q.a 16 5.b even 2 1 inner
1710.2.q.a 16 15.d odd 2 1 inner
1710.2.q.a 16 19.d odd 6 1 inner
1710.2.q.a 16 57.f even 6 1 inner
1710.2.q.a 16 95.h odd 6 1 inner
1710.2.q.a 16 285.q even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} + 24T_{7}^{2} + 81 \) acting on \(S_{2}^{\mathrm{new}}(1710, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - T^{2} + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( (T^{8} + 2 T^{6} + \cdots + 625)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 24 T^{2} + 81)^{4} \) Copy content Toggle raw display
$11$ \( (T^{4} + 64 T^{2} + 961)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} + 18 T^{2} + 324)^{4} \) Copy content Toggle raw display
$17$ \( (T^{8} + 48 T^{6} + \cdots + 104976)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 7 T + 19)^{8} \) Copy content Toggle raw display
$23$ \( (T^{4} + 21 T^{2} + 441)^{4} \) Copy content Toggle raw display
$29$ \( (T^{4} + 54 T^{2} + 2916)^{4} \) Copy content Toggle raw display
$31$ \( T^{16} \) Copy content Toggle raw display
$37$ \( (T^{4} - 72 T^{2} + 729)^{4} \) Copy content Toggle raw display
$41$ \( (T^{8} + 192 T^{6} + \cdots + 74805201)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} - 96 T^{6} + \cdots + 1679616)^{2} \) Copy content Toggle raw display
$47$ \( (T^{8} + 192 T^{6} + \cdots + 26873856)^{2} \) Copy content Toggle raw display
$53$ \( (T^{8} - 198 T^{6} + \cdots + 531441)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 6 T^{2} + 36)^{4} \) Copy content Toggle raw display
$61$ \( (T^{4} + 14 T^{3} + \cdots + 196)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 18 T^{2} + 324)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + 54 T^{2} + 2916)^{4} \) Copy content Toggle raw display
$73$ \( (T^{8} - 132 T^{6} + \cdots + 104976)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 12 T + 48)^{8} \) Copy content Toggle raw display
$83$ \( (T^{2} - 108)^{8} \) Copy content Toggle raw display
$89$ \( (T^{8} + 216 T^{6} + \cdots + 43046721)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 18 T^{2} + 324)^{4} \) Copy content Toggle raw display
show more
show less