Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1710,2,Mod(179,1710)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1710, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1710.179");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1710.q (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 16.0.162447943996702457856.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
179.1 |
|
−0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | −2.09077 | + | 0.792893i | 0 | − | 2.01563i | − | 1.00000i | 0 | 2.20711 | + | 0.358719i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
179.2 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | −2.09077 | + | 0.792893i | 0 | 4.46512i | − | 1.00000i | 0 | 2.20711 | + | 0.358719i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
179.3 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0.358719 | + | 2.20711i | 0 | − | 4.46512i | − | 1.00000i | 0 | 0.792893 | − | 2.09077i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
179.4 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0.358719 | + | 2.20711i | 0 | 2.01563i | − | 1.00000i | 0 | 0.792893 | − | 2.09077i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
179.5 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | −0.358719 | − | 2.20711i | 0 | − | 4.46512i | 1.00000i | 0 | 0.792893 | − | 2.09077i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
179.6 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | −0.358719 | − | 2.20711i | 0 | 2.01563i | 1.00000i | 0 | 0.792893 | − | 2.09077i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
179.7 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | 2.09077 | − | 0.792893i | 0 | − | 2.01563i | 1.00000i | 0 | 2.20711 | + | 0.358719i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
179.8 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | 2.09077 | − | 0.792893i | 0 | 4.46512i | 1.00000i | 0 | 2.20711 | + | 0.358719i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.1 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | −2.09077 | − | 0.792893i | 0 | − | 4.46512i | 1.00000i | 0 | 2.20711 | − | 0.358719i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.2 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | −2.09077 | − | 0.792893i | 0 | 2.01563i | 1.00000i | 0 | 2.20711 | − | 0.358719i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.3 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0.358719 | − | 2.20711i | 0 | − | 2.01563i | 1.00000i | 0 | 0.792893 | + | 2.09077i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.4 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0.358719 | − | 2.20711i | 0 | 4.46512i | 1.00000i | 0 | 0.792893 | + | 2.09077i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.5 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | −0.358719 | + | 2.20711i | 0 | − | 2.01563i | − | 1.00000i | 0 | 0.792893 | + | 2.09077i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.6 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | −0.358719 | + | 2.20711i | 0 | 4.46512i | − | 1.00000i | 0 | 0.792893 | + | 2.09077i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.7 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | 2.09077 | + | 0.792893i | 0 | − | 4.46512i | − | 1.00000i | 0 | 2.20711 | − | 0.358719i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
449.8 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | 2.09077 | + | 0.792893i | 0 | 2.01563i | − | 1.00000i | 0 | 2.20711 | − | 0.358719i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
19.d | odd | 6 | 1 | inner |
57.f | even | 6 | 1 | inner |
95.h | odd | 6 | 1 | inner |
285.q | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1710.2.q.a | ✓ | 16 |
3.b | odd | 2 | 1 | inner | 1710.2.q.a | ✓ | 16 |
5.b | even | 2 | 1 | inner | 1710.2.q.a | ✓ | 16 |
15.d | odd | 2 | 1 | inner | 1710.2.q.a | ✓ | 16 |
19.d | odd | 6 | 1 | inner | 1710.2.q.a | ✓ | 16 |
57.f | even | 6 | 1 | inner | 1710.2.q.a | ✓ | 16 |
95.h | odd | 6 | 1 | inner | 1710.2.q.a | ✓ | 16 |
285.q | even | 6 | 1 | inner | 1710.2.q.a | ✓ | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1710.2.q.a | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
1710.2.q.a | ✓ | 16 | 3.b | odd | 2 | 1 | inner |
1710.2.q.a | ✓ | 16 | 5.b | even | 2 | 1 | inner |
1710.2.q.a | ✓ | 16 | 15.d | odd | 2 | 1 | inner |
1710.2.q.a | ✓ | 16 | 19.d | odd | 6 | 1 | inner |
1710.2.q.a | ✓ | 16 | 57.f | even | 6 | 1 | inner |
1710.2.q.a | ✓ | 16 | 95.h | odd | 6 | 1 | inner |
1710.2.q.a | ✓ | 16 | 285.q | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .