L(s) = 1 | + (−7.93 + 13.7i)5-s + (−7.93 − 13.7i)11-s + 26·13-s + (39.6 + 68.7i)17-s + (−34 + 58.8i)19-s + (−23.8 + 41.2i)23-s + (−63.5 − 109. i)25-s − 253.·29-s + (−106 − 183. i)31-s + (−109 + 188. i)37-s + 396.·41-s + 260·43-s + (−206. + 357. i)47-s + (238. + 412. i)53-s + 252·55-s + ⋯ |
L(s) = 1 | + (−0.709 + 1.22i)5-s + (−0.217 − 0.376i)11-s + 0.554·13-s + (0.566 + 0.980i)17-s + (−0.410 + 0.711i)19-s + (−0.215 + 0.373i)23-s + (−0.508 − 0.879i)25-s − 1.62·29-s + (−0.614 − 1.06i)31-s + (−0.484 + 0.838i)37-s + 1.51·41-s + 0.922·43-s + (−0.640 + 1.10i)47-s + (0.617 + 1.06i)53-s + 0.617·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1764 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.2187477276\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2187477276\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (7.93 - 13.7i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (7.93 + 13.7i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 - 26T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-39.6 - 68.7i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (34 - 58.8i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (23.8 - 41.2i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + 253.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (106 + 183. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (109 - 188. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 396.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 260T + 7.95e4T^{2} \) |
| 47 | \( 1 + (206. - 357. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-238. - 412. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-142. - 247. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-161 + 278. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (178 + 308. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 1.12e3T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-113 - 195. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (220 - 381. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + 253.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (103. - 178. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + 1.33e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.510435576614936291782344521212, −8.501562217958942000813103749307, −7.71730073675868204537974338563, −7.28807492185824103439571408293, −6.07127805331913061246402506489, −5.78833047167547811424385117159, −4.15514592501247466465426756013, −3.64785516421569821366821487357, −2.74358864414720114985497165604, −1.52030078597777683165342806973,
0.05471439942842974204613360136, 0.945436152918830334699302371880, 2.16536164109119294067795391576, 3.49146064558070301311141666565, 4.30900669077086508541689099467, 5.09382990306391556786280602826, 5.78641377561631990616022013055, 7.10830177178368523224722329755, 7.58768074611974818855962747304, 8.630243708809585956291887983248