Properties

Label 1764.4.k.v.1549.1
Level $1764$
Weight $4$
Character 1764.1549
Analytic conductor $104.079$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,4,Mod(361,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.361");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1764.k (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(104.079369250\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1549.1
Root \(-1.32288 + 2.29129i\) of defining polynomial
Character \(\chi\) \(=\) 1764.1549
Dual form 1764.4.k.v.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-7.93725 + 13.7477i) q^{5} +(-7.93725 - 13.7477i) q^{11} +26.0000 q^{13} +(39.6863 + 68.7386i) q^{17} +(-34.0000 + 58.8897i) q^{19} +(-23.8118 + 41.2432i) q^{23} +(-63.5000 - 109.985i) q^{25} -253.992 q^{29} +(-106.000 - 183.597i) q^{31} +(-109.000 + 188.794i) q^{37} +396.863 q^{41} +260.000 q^{43} +(-206.369 + 357.441i) q^{47} +(238.118 + 412.432i) q^{53} +252.000 q^{55} +(142.871 + 247.459i) q^{59} +(161.000 - 278.860i) q^{61} +(-206.369 + 357.441i) q^{65} +(-178.000 - 308.305i) q^{67} -1127.09 q^{71} +(113.000 + 195.722i) q^{73} +(-220.000 + 381.051i) q^{79} -253.992 q^{83} -1260.00 q^{85} +(-103.184 + 178.720i) q^{89} +(-539.733 - 934.845i) q^{95} -1330.00 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 104 q^{13} - 136 q^{19} - 254 q^{25} - 424 q^{31} - 436 q^{37} + 1040 q^{43} + 1008 q^{55} + 644 q^{61} - 712 q^{67} + 452 q^{73} - 880 q^{79} - 5040 q^{85} - 5320 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −7.93725 + 13.7477i −0.709930 + 1.22963i 0.254953 + 0.966953i \(0.417940\pi\)
−0.964883 + 0.262681i \(0.915393\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −7.93725 13.7477i −0.217561 0.376827i 0.736501 0.676437i \(-0.236477\pi\)
−0.954062 + 0.299610i \(0.903143\pi\)
\(12\) 0 0
\(13\) 26.0000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 39.6863 + 68.7386i 0.566196 + 0.980680i 0.996937 + 0.0782050i \(0.0249189\pi\)
−0.430741 + 0.902476i \(0.641748\pi\)
\(18\) 0 0
\(19\) −34.0000 + 58.8897i −0.410533 + 0.711065i −0.994948 0.100390i \(-0.967991\pi\)
0.584415 + 0.811455i \(0.301324\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −23.8118 + 41.2432i −0.215874 + 0.373904i −0.953543 0.301259i \(-0.902593\pi\)
0.737669 + 0.675163i \(0.235927\pi\)
\(24\) 0 0
\(25\) −63.5000 109.985i −0.508000 0.879882i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −253.992 −1.62638 −0.813192 0.581995i \(-0.802272\pi\)
−0.813192 + 0.581995i \(0.802272\pi\)
\(30\) 0 0
\(31\) −106.000 183.597i −0.614134 1.06371i −0.990536 0.137255i \(-0.956172\pi\)
0.376401 0.926457i \(-0.377161\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −109.000 + 188.794i −0.484311 + 0.838850i −0.999838 0.0180229i \(-0.994263\pi\)
0.515527 + 0.856873i \(0.327596\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 396.863 1.51170 0.755848 0.654747i \(-0.227225\pi\)
0.755848 + 0.654747i \(0.227225\pi\)
\(42\) 0 0
\(43\) 260.000 0.922084 0.461042 0.887378i \(-0.347476\pi\)
0.461042 + 0.887378i \(0.347476\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −206.369 + 357.441i −0.640467 + 1.10932i 0.344861 + 0.938654i \(0.387926\pi\)
−0.985329 + 0.170668i \(0.945407\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 238.118 + 412.432i 0.617132 + 1.06890i 0.990007 + 0.141022i \(0.0450387\pi\)
−0.372875 + 0.927882i \(0.621628\pi\)
\(54\) 0 0
\(55\) 252.000 0.617812
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 142.871 + 247.459i 0.315257 + 0.546041i 0.979492 0.201483i \(-0.0645759\pi\)
−0.664235 + 0.747524i \(0.731243\pi\)
\(60\) 0 0
\(61\) 161.000 278.860i 0.337933 0.585318i −0.646110 0.763244i \(-0.723605\pi\)
0.984044 + 0.177926i \(0.0569388\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −206.369 + 357.441i −0.393798 + 0.682078i
\(66\) 0 0
\(67\) −178.000 308.305i −0.324570 0.562171i 0.656856 0.754016i \(-0.271886\pi\)
−0.981425 + 0.191845i \(0.938553\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1127.09 −1.88396 −0.941979 0.335673i \(-0.891036\pi\)
−0.941979 + 0.335673i \(0.891036\pi\)
\(72\) 0 0
\(73\) 113.000 + 195.722i 0.181173 + 0.313801i 0.942280 0.334825i \(-0.108677\pi\)
−0.761107 + 0.648626i \(0.775344\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −220.000 + 381.051i −0.313316 + 0.542679i −0.979078 0.203485i \(-0.934773\pi\)
0.665762 + 0.746164i \(0.268106\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −253.992 −0.335895 −0.167947 0.985796i \(-0.553714\pi\)
−0.167947 + 0.985796i \(0.553714\pi\)
\(84\) 0 0
\(85\) −1260.00 −1.60784
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −103.184 + 178.720i −0.122893 + 0.212858i −0.920908 0.389781i \(-0.872551\pi\)
0.798014 + 0.602639i \(0.205884\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −539.733 934.845i −0.582900 1.00961i
\(96\) 0 0
\(97\) −1330.00 −1.39218 −0.696088 0.717957i \(-0.745078\pi\)
−0.696088 + 0.717957i \(0.745078\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −119.059 206.216i −0.117295 0.203161i 0.801400 0.598129i \(-0.204089\pi\)
−0.918695 + 0.394968i \(0.870756\pi\)
\(102\) 0 0
\(103\) 902.000 1562.31i 0.862881 1.49455i −0.00625573 0.999980i \(-0.501991\pi\)
0.869136 0.494573i \(-0.164675\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 87.3098 151.225i 0.0788837 0.136631i −0.823885 0.566757i \(-0.808198\pi\)
0.902769 + 0.430127i \(0.141531\pi\)
\(108\) 0 0
\(109\) 227.000 + 393.176i 0.199474 + 0.345499i 0.948358 0.317202i \(-0.102743\pi\)
−0.748884 + 0.662701i \(0.769410\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1777.94 1.48013 0.740066 0.672534i \(-0.234794\pi\)
0.740066 + 0.672534i \(0.234794\pi\)
\(114\) 0 0
\(115\) −378.000 654.715i −0.306510 0.530891i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 539.500 934.441i 0.405334 0.702060i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 31.7490 0.0227177
\(126\) 0 0
\(127\) −904.000 −0.631630 −0.315815 0.948821i \(-0.602278\pi\)
−0.315815 + 0.948821i \(0.602278\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 666.729 1154.81i 0.444675 0.770200i −0.553355 0.832946i \(-0.686653\pi\)
0.998030 + 0.0627463i \(0.0199859\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 809.600 + 1402.27i 0.504882 + 0.874481i 0.999984 + 0.00564606i \(0.00179721\pi\)
−0.495102 + 0.868835i \(0.664869\pi\)
\(138\) 0 0
\(139\) −880.000 −0.536983 −0.268491 0.963282i \(-0.586525\pi\)
−0.268491 + 0.963282i \(0.586525\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −206.369 357.441i −0.120681 0.209026i
\(144\) 0 0
\(145\) 2016.00 3491.81i 1.15462 1.99986i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1285.84 2227.13i 0.706978 1.22452i −0.258995 0.965879i \(-0.583391\pi\)
0.965973 0.258643i \(-0.0832754\pi\)
\(150\) 0 0
\(151\) −1756.00 3041.48i −0.946366 1.63915i −0.752993 0.658029i \(-0.771391\pi\)
−0.193373 0.981125i \(-0.561943\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3365.40 1.74397
\(156\) 0 0
\(157\) 161.000 + 278.860i 0.0818420 + 0.141755i 0.904041 0.427445i \(-0.140586\pi\)
−0.822199 + 0.569200i \(0.807253\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1702.00 + 2947.95i −0.817858 + 1.41657i 0.0893986 + 0.995996i \(0.471505\pi\)
−0.907257 + 0.420576i \(0.861828\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2762.16 −1.27990 −0.639948 0.768418i \(-0.721044\pi\)
−0.639948 + 0.768418i \(0.721044\pi\)
\(168\) 0 0
\(169\) −1521.00 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1754.13 3038.25i 0.770892 1.33522i −0.166183 0.986095i \(-0.553144\pi\)
0.937075 0.349129i \(-0.113522\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1801.76 3120.73i −0.752344 1.30310i −0.946684 0.322164i \(-0.895590\pi\)
0.194340 0.980934i \(-0.437744\pi\)
\(180\) 0 0
\(181\) −502.000 −0.206151 −0.103076 0.994674i \(-0.532868\pi\)
−0.103076 + 0.994674i \(0.532868\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1730.32 2997.00i −0.687653 1.19105i
\(186\) 0 0
\(187\) 630.000 1091.19i 0.246365 0.426716i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1246.15 + 2158.39i −0.472085 + 0.817675i −0.999490 0.0319393i \(-0.989832\pi\)
0.527405 + 0.849614i \(0.323165\pi\)
\(192\) 0 0
\(193\) −655.000 1134.49i −0.244290 0.423122i 0.717642 0.696412i \(-0.245221\pi\)
−0.961932 + 0.273290i \(0.911888\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1174.71 0.424847 0.212424 0.977178i \(-0.431864\pi\)
0.212424 + 0.977178i \(0.431864\pi\)
\(198\) 0 0
\(199\) −2296.00 3976.79i −0.817885 1.41662i −0.907238 0.420618i \(-0.861813\pi\)
0.0893526 0.996000i \(-0.471520\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3150.00 + 5455.96i −1.07320 + 1.85883i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1079.47 0.357264
\(210\) 0 0
\(211\) −1780.00 −0.580759 −0.290380 0.956911i \(-0.593782\pi\)
−0.290380 + 0.956911i \(0.593782\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2063.69 + 3574.41i −0.654615 + 1.13383i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1031.84 + 1787.20i 0.314069 + 0.543984i
\(222\) 0 0
\(223\) 4088.00 1.22759 0.613795 0.789465i \(-0.289642\pi\)
0.613795 + 0.789465i \(0.289642\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2428.80 + 4206.80i 0.710155 + 1.23002i 0.964799 + 0.262989i \(0.0847083\pi\)
−0.254644 + 0.967035i \(0.581958\pi\)
\(228\) 0 0
\(229\) 3191.00 5526.97i 0.920818 1.59490i 0.122664 0.992448i \(-0.460856\pi\)
0.798153 0.602455i \(-0.205811\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1095.34 1897.19i 0.307975 0.533428i −0.669944 0.742411i \(-0.733682\pi\)
0.977919 + 0.208983i \(0.0670153\pi\)
\(234\) 0 0
\(235\) −3276.00 5674.20i −0.909373 1.57508i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5349.71 −1.44788 −0.723941 0.689862i \(-0.757671\pi\)
−0.723941 + 0.689862i \(0.757671\pi\)
\(240\) 0 0
\(241\) −2107.00 3649.43i −0.563169 0.975438i −0.997217 0.0745482i \(-0.976249\pi\)
0.434048 0.900890i \(-0.357085\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −884.000 + 1531.13i −0.227723 + 0.394428i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1428.71 −0.359279 −0.179640 0.983732i \(-0.557493\pi\)
−0.179640 + 0.983732i \(0.557493\pi\)
\(252\) 0 0
\(253\) 756.000 0.187863
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −420.674 + 728.630i −0.102105 + 0.176851i −0.912552 0.408961i \(-0.865891\pi\)
0.810447 + 0.585812i \(0.199224\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 134.933 + 233.711i 0.0316363 + 0.0547957i 0.881410 0.472352i \(-0.156595\pi\)
−0.849774 + 0.527148i \(0.823262\pi\)
\(264\) 0 0
\(265\) −7560.00 −1.75248
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1373.14 2378.36i −0.311235 0.539074i 0.667395 0.744704i \(-0.267409\pi\)
−0.978630 + 0.205629i \(0.934076\pi\)
\(270\) 0 0
\(271\) 3122.00 5407.46i 0.699808 1.21210i −0.268725 0.963217i \(-0.586602\pi\)
0.968533 0.248886i \(-0.0800645\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1008.03 + 1745.96i −0.221042 + 0.382856i
\(276\) 0 0
\(277\) −4063.00 7037.32i −0.881307 1.52647i −0.849889 0.526962i \(-0.823331\pi\)
−0.0314180 0.999506i \(-0.510002\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3079.65 −0.653796 −0.326898 0.945060i \(-0.606003\pi\)
−0.326898 + 0.945060i \(0.606003\pi\)
\(282\) 0 0
\(283\) 302.000 + 523.079i 0.0634348 + 0.109872i 0.895999 0.444057i \(-0.146461\pi\)
−0.832564 + 0.553929i \(0.813128\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −693.500 + 1201.18i −0.141156 + 0.244490i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7667.39 1.52878 0.764392 0.644752i \(-0.223039\pi\)
0.764392 + 0.644752i \(0.223039\pi\)
\(294\) 0 0
\(295\) −4536.00 −0.895241
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −619.106 + 1072.32i −0.119745 + 0.207405i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2555.80 + 4426.77i 0.479818 + 0.831069i
\(306\) 0 0
\(307\) −1636.00 −0.304142 −0.152071 0.988370i \(-0.548594\pi\)
−0.152071 + 0.988370i \(0.548594\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1635.07 + 2832.03i 0.298124 + 0.516366i 0.975707 0.219081i \(-0.0703058\pi\)
−0.677583 + 0.735447i \(0.736972\pi\)
\(312\) 0 0
\(313\) 2519.00 4363.04i 0.454896 0.787902i −0.543787 0.839223i \(-0.683010\pi\)
0.998682 + 0.0513213i \(0.0163433\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4936.97 + 8551.09i −0.874725 + 1.51507i −0.0176705 + 0.999844i \(0.505625\pi\)
−0.857055 + 0.515225i \(0.827708\pi\)
\(318\) 0 0
\(319\) 2016.00 + 3491.81i 0.353838 + 0.612865i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5397.33 −0.929770
\(324\) 0 0
\(325\) −1651.00 2859.62i −0.281788 0.488071i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −214.000 + 370.659i −0.0355363 + 0.0615506i −0.883247 0.468909i \(-0.844647\pi\)
0.847710 + 0.530460i \(0.177981\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5651.32 0.921686
\(336\) 0 0
\(337\) −9106.00 −1.47192 −0.735958 0.677028i \(-0.763268\pi\)
−0.735958 + 0.677028i \(0.763268\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1682.70 + 2914.52i −0.267223 + 0.462845i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −976.282 1690.97i −0.151036 0.261602i 0.780572 0.625065i \(-0.214928\pi\)
−0.931609 + 0.363463i \(0.881594\pi\)
\(348\) 0 0
\(349\) −1834.00 −0.281294 −0.140647 0.990060i \(-0.544918\pi\)
−0.140647 + 0.990060i \(0.544918\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5246.52 + 9087.25i 0.791060 + 1.37016i 0.925311 + 0.379209i \(0.123804\pi\)
−0.134250 + 0.990947i \(0.542863\pi\)
\(354\) 0 0
\(355\) 8946.00 15494.9i 1.33748 2.31658i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6691.11 11589.3i 0.983685 1.70379i 0.336046 0.941845i \(-0.390910\pi\)
0.647639 0.761948i \(-0.275757\pi\)
\(360\) 0 0
\(361\) 1117.50 + 1935.57i 0.162925 + 0.282194i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3587.64 −0.514481
\(366\) 0 0
\(367\) 104.000 + 180.133i 0.0147923 + 0.0256209i 0.873327 0.487135i \(-0.161958\pi\)
−0.858535 + 0.512756i \(0.828625\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −2887.00 + 5000.43i −0.400759 + 0.694135i −0.993818 0.111024i \(-0.964587\pi\)
0.593058 + 0.805159i \(0.297920\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6603.80 −0.902156
\(378\) 0 0
\(379\) −12004.0 −1.62692 −0.813462 0.581618i \(-0.802420\pi\)
−0.813462 + 0.581618i \(0.802420\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3524.14 + 6103.99i −0.470170 + 0.814359i −0.999418 0.0341086i \(-0.989141\pi\)
0.529248 + 0.848467i \(0.322474\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −603.231 1044.83i −0.0786248 0.136182i 0.824032 0.566543i \(-0.191720\pi\)
−0.902657 + 0.430361i \(0.858386\pi\)
\(390\) 0 0
\(391\) −3780.00 −0.488907
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3492.39 6049.00i −0.444864 0.770527i
\(396\) 0 0
\(397\) −1735.00 + 3005.11i −0.219338 + 0.379904i −0.954606 0.297872i \(-0.903723\pi\)
0.735268 + 0.677777i \(0.237056\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −682.604 + 1182.30i −0.0850065 + 0.147236i −0.905394 0.424572i \(-0.860424\pi\)
0.820387 + 0.571808i \(0.193758\pi\)
\(402\) 0 0
\(403\) −2756.00 4773.53i −0.340660 0.590041i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3460.64 0.421469
\(408\) 0 0
\(409\) 5921.00 + 10255.5i 0.715830 + 1.23985i 0.962638 + 0.270790i \(0.0872849\pi\)
−0.246808 + 0.969064i \(0.579382\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2016.00 3491.81i 0.238462 0.413028i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3460.64 −0.403493 −0.201746 0.979438i \(-0.564662\pi\)
−0.201746 + 0.979438i \(0.564662\pi\)
\(420\) 0 0
\(421\) 15518.0 1.79644 0.898220 0.439547i \(-0.144861\pi\)
0.898220 + 0.439547i \(0.144861\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5040.16 8729.81i 0.575255 0.996371i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3468.58 6007.76i −0.387646 0.671423i 0.604486 0.796616i \(-0.293379\pi\)
−0.992132 + 0.125192i \(0.960045\pi\)
\(432\) 0 0
\(433\) −4006.00 −0.444610 −0.222305 0.974977i \(-0.571358\pi\)
−0.222305 + 0.974977i \(0.571358\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1619.20 2804.54i −0.177247 0.307000i
\(438\) 0 0
\(439\) 3752.00 6498.65i 0.407912 0.706524i −0.586744 0.809773i \(-0.699590\pi\)
0.994656 + 0.103249i \(0.0329238\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9135.78 + 15823.6i −0.979806 + 1.69707i −0.316740 + 0.948512i \(0.602588\pi\)
−0.663066 + 0.748561i \(0.730745\pi\)
\(444\) 0 0
\(445\) −1638.00 2837.10i −0.174491 0.302228i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8445.24 0.887651 0.443826 0.896113i \(-0.353621\pi\)
0.443826 + 0.896113i \(0.353621\pi\)
\(450\) 0 0
\(451\) −3150.00 5455.96i −0.328886 0.569648i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5107.00 + 8845.58i −0.522747 + 0.905424i 0.476903 + 0.878956i \(0.341759\pi\)
−0.999650 + 0.0264683i \(0.991574\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1285.84 −0.129907 −0.0649537 0.997888i \(-0.520690\pi\)
−0.0649537 + 0.997888i \(0.520690\pi\)
\(462\) 0 0
\(463\) −1408.00 −0.141329 −0.0706645 0.997500i \(-0.522512\pi\)
−0.0706645 + 0.997500i \(0.522512\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5698.95 9870.87i 0.564702 0.978093i −0.432375 0.901694i \(-0.642324\pi\)
0.997077 0.0763989i \(-0.0243423\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2063.69 3574.41i −0.200610 0.347466i
\(474\) 0 0
\(475\) 8636.00 0.834204
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5381.46 9320.96i −0.513330 0.889114i −0.999880 0.0154612i \(-0.995078\pi\)
0.486550 0.873653i \(-0.338255\pi\)
\(480\) 0 0
\(481\) −2834.00 + 4908.63i −0.268647 + 0.465311i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10556.5 18284.5i 0.988347 1.71187i
\(486\) 0 0
\(487\) −2356.00 4080.71i −0.219221 0.379702i 0.735349 0.677688i \(-0.237018\pi\)
−0.954570 + 0.297987i \(0.903685\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 15795.1 1.45178 0.725891 0.687810i \(-0.241428\pi\)
0.725891 + 0.687810i \(0.241428\pi\)
\(492\) 0 0
\(493\) −10080.0 17459.1i −0.920853 1.59496i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 8270.00 14324.1i 0.741916 1.28504i −0.209706 0.977764i \(-0.567251\pi\)
0.951622 0.307272i \(-0.0994160\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −10921.7 −0.968137 −0.484068 0.875030i \(-0.660841\pi\)
−0.484068 + 0.875030i \(0.660841\pi\)
\(504\) 0 0
\(505\) 3780.00 0.333085
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1087.40 + 1883.44i −0.0946922 + 0.164012i −0.909480 0.415747i \(-0.863520\pi\)
0.814788 + 0.579759i \(0.196853\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 14318.8 + 24800.9i 1.22517 + 2.12205i
\(516\) 0 0
\(517\) 6552.00 0.557363
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −5865.63 10159.6i −0.493240 0.854316i 0.506730 0.862105i \(-0.330854\pi\)
−0.999970 + 0.00778848i \(0.997521\pi\)
\(522\) 0 0
\(523\) −7720.00 + 13371.4i −0.645453 + 1.11796i 0.338743 + 0.940879i \(0.389998\pi\)
−0.984197 + 0.177079i \(0.943335\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8413.49 14572.6i 0.695441 1.20454i
\(528\) 0 0
\(529\) 4949.50 + 8572.79i 0.406797 + 0.704593i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10318.4 0.838538
\(534\) 0 0
\(535\) 1386.00 + 2400.62i 0.112004 + 0.193996i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −9523.00 + 16494.3i −0.756794 + 1.31081i 0.187683 + 0.982230i \(0.439902\pi\)
−0.944477 + 0.328577i \(0.893431\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7207.03 −0.566450
\(546\) 0 0
\(547\) 1892.00 0.147890 0.0739452 0.997262i \(-0.476441\pi\)
0.0739452 + 0.997262i \(0.476441\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8635.73 14957.5i 0.667685 1.15646i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11826.5 20484.1i −0.899650 1.55824i −0.827941 0.560814i \(-0.810488\pi\)
−0.0717089 0.997426i \(-0.522845\pi\)
\(558\) 0 0
\(559\) 6760.00 0.511480
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3476.52 + 6021.50i 0.260245 + 0.450757i 0.966307 0.257393i \(-0.0828635\pi\)
−0.706062 + 0.708150i \(0.749530\pi\)
\(564\) 0 0
\(565\) −14112.0 + 24442.7i −1.05079 + 1.82002i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5508.45 + 9540.92i −0.405846 + 0.702946i −0.994420 0.105498i \(-0.966356\pi\)
0.588573 + 0.808444i \(0.299690\pi\)
\(570\) 0 0
\(571\) −3790.00 6564.47i −0.277770 0.481111i 0.693060 0.720880i \(-0.256262\pi\)
−0.970830 + 0.239768i \(0.922929\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6048.19 0.438655
\(576\) 0 0
\(577\) 3359.00 + 5817.96i 0.242352 + 0.419766i 0.961384 0.275211i \(-0.0887478\pi\)
−0.719032 + 0.694977i \(0.755415\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 3780.00 6547.15i 0.268528 0.465103i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24288.0 1.70779 0.853895 0.520445i \(-0.174234\pi\)
0.853895 + 0.520445i \(0.174234\pi\)
\(588\) 0 0
\(589\) 14416.0 1.00849
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −10056.5 + 17418.4i −0.696410 + 1.20622i 0.273293 + 0.961931i \(0.411887\pi\)
−0.969703 + 0.244286i \(0.921446\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2992.34 5182.89i −0.204113 0.353535i 0.745737 0.666241i \(-0.232098\pi\)
−0.949850 + 0.312706i \(0.898764\pi\)
\(600\) 0 0
\(601\) −8230.00 −0.558584 −0.279292 0.960206i \(-0.590100\pi\)
−0.279292 + 0.960206i \(0.590100\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 8564.30 + 14833.8i 0.575518 + 0.996826i
\(606\) 0 0
\(607\) −4348.00 + 7530.96i −0.290741 + 0.503578i −0.973985 0.226612i \(-0.927235\pi\)
0.683244 + 0.730190i \(0.260569\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5365.58 + 9293.46i −0.355267 + 0.615341i
\(612\) 0 0
\(613\) 2897.00 + 5017.75i 0.190879 + 0.330612i 0.945542 0.325501i \(-0.105533\pi\)
−0.754663 + 0.656113i \(0.772200\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13493.3 −0.880423 −0.440212 0.897894i \(-0.645097\pi\)
−0.440212 + 0.897894i \(0.645097\pi\)
\(618\) 0 0
\(619\) 9668.00 + 16745.5i 0.627770 + 1.08733i 0.987998 + 0.154466i \(0.0493656\pi\)
−0.360228 + 0.932864i \(0.617301\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 7685.50 13311.7i 0.491872 0.851947i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −17303.2 −1.09686
\(630\) 0 0
\(631\) 632.000 0.0398725 0.0199362 0.999801i \(-0.493654\pi\)
0.0199362 + 0.999801i \(0.493654\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7175.28 12427.9i 0.448413 0.776674i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −9445.33 16359.8i −0.582010 1.00807i −0.995241 0.0974442i \(-0.968933\pi\)
0.413231 0.910626i \(-0.364400\pi\)
\(642\) 0 0
\(643\) 28460.0 1.74549 0.872747 0.488173i \(-0.162336\pi\)
0.872747 + 0.488173i \(0.162336\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5127.47 8881.03i −0.311563 0.539644i 0.667138 0.744934i \(-0.267519\pi\)
−0.978701 + 0.205291i \(0.934186\pi\)
\(648\) 0 0
\(649\) 2268.00 3928.29i 0.137175 0.237595i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2984.41 + 5169.15i −0.178850 + 0.309777i −0.941487 0.337050i \(-0.890571\pi\)
0.762637 + 0.646827i \(0.223904\pi\)
\(654\) 0 0
\(655\) 10584.0 + 18332.0i 0.631376 + 1.09357i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −8048.38 −0.475751 −0.237876 0.971296i \(-0.576451\pi\)
−0.237876 + 0.971296i \(0.576451\pi\)
\(660\) 0 0
\(661\) 6089.00 + 10546.5i 0.358298 + 0.620589i 0.987677 0.156509i \(-0.0500240\pi\)
−0.629379 + 0.777098i \(0.716691\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6048.00 10475.4i 0.351094 0.608112i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5111.59 −0.294085
\(672\) 0 0
\(673\) 12902.0 0.738983 0.369491 0.929234i \(-0.379532\pi\)
0.369491 + 0.929234i \(0.379532\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −7040.34 + 12194.2i −0.399679 + 0.692264i −0.993686 0.112196i \(-0.964212\pi\)
0.594008 + 0.804459i \(0.297545\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9977.13 + 17280.9i 0.558952 + 0.968133i 0.997584 + 0.0694666i \(0.0221297\pi\)
−0.438632 + 0.898667i \(0.644537\pi\)
\(684\) 0 0
\(685\) −25704.0 −1.43372
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6191.06 + 10723.2i 0.342323 + 0.592921i
\(690\) 0 0
\(691\) −1084.00 + 1877.54i −0.0596777 + 0.103365i −0.894321 0.447426i \(-0.852341\pi\)
0.834643 + 0.550791i \(0.185674\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6984.78 12098.0i 0.381220 0.660293i
\(696\) 0 0
\(697\) 15750.0 + 27279.8i 0.855916 + 1.48249i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −30987.0 −1.66956 −0.834782 0.550581i \(-0.814406\pi\)
−0.834782 + 0.550581i \(0.814406\pi\)
\(702\) 0 0
\(703\) −7412.00 12838.0i −0.397651 0.688752i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 9647.00 16709.1i 0.511002 0.885082i −0.488916 0.872331i \(-0.662608\pi\)
0.999919 0.0127514i \(-0.00405901\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10096.2 0.530302
\(714\) 0 0
\(715\) 6552.00 0.342701
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −14160.1 + 24525.9i −0.734466 + 1.27213i 0.220491 + 0.975389i \(0.429234\pi\)
−0.954957 + 0.296744i \(0.904099\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 16128.5 + 27935.4i 0.826203 + 1.43103i
\(726\) 0 0
\(727\) 15860.0 0.809099 0.404549 0.914516i \(-0.367428\pi\)
0.404549 + 0.914516i \(0.367428\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 10318.4 + 17872.0i 0.522081 + 0.904270i
\(732\) 0 0
\(733\) −19249.0 + 33340.2i −0.969956 + 1.68001i −0.274293 + 0.961646i \(0.588444\pi\)
−0.695664 + 0.718367i \(0.744890\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2825.66 + 4894.19i −0.141227 + 0.244613i
\(738\) 0 0
\(739\) 13178.0 + 22825.0i 0.655968 + 1.13617i 0.981650 + 0.190691i \(0.0610728\pi\)
−0.325682 + 0.945479i \(0.605594\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −9000.85 −0.444427 −0.222213 0.974998i \(-0.571328\pi\)
−0.222213 + 0.974998i \(0.571328\pi\)
\(744\) 0 0
\(745\) 20412.0 + 35354.6i 1.00381 + 1.73865i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 8900.00 15415.3i 0.432444 0.749015i −0.564639 0.825338i \(-0.690985\pi\)
0.997083 + 0.0763227i \(0.0243179\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 55751.3 2.68741
\(756\) 0 0
\(757\) 2882.00 0.138373 0.0691863 0.997604i \(-0.477960\pi\)
0.0691863 + 0.997604i \(0.477960\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4198.81 + 7272.55i −0.200009 + 0.346425i −0.948531 0.316684i \(-0.897430\pi\)
0.748522 + 0.663110i \(0.230764\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3714.63 + 6433.94i 0.174873 + 0.302889i
\(768\) 0 0
\(769\) −40630.0 −1.90527 −0.952637 0.304111i \(-0.901641\pi\)
−0.952637 + 0.304111i \(0.901641\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2262.12 + 3918.10i 0.105256 + 0.182308i 0.913843 0.406068i \(-0.133101\pi\)
−0.808587 + 0.588377i \(0.799767\pi\)
\(774\) 0 0
\(775\) −13462.0 + 23316.9i −0.623960 + 1.08073i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −13493.3 + 23371.1i −0.620602 + 1.07491i
\(780\) 0 0
\(781\) 8946.00 + 15494.9i 0.409876 + 0.709926i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −5111.59 −0.232408
\(786\) 0 0
\(787\) 3248.00 + 5625.70i 0.147114 + 0.254809i 0.930160 0.367155i \(-0.119668\pi\)
−0.783046 + 0.621964i \(0.786335\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4186.00 7250.36i 0.187452 0.324676i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2301.80 −0.102301 −0.0511506 0.998691i \(-0.516289\pi\)
−0.0511506 + 0.998691i \(0.516289\pi\)
\(798\) 0 0
\(799\) −32760.0 −1.45052
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1793.82 3106.99i 0.0788325 0.136542i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −3746.38 6488.93i −0.162813 0.282001i 0.773063 0.634329i \(-0.218723\pi\)
−0.935877 + 0.352328i \(0.885390\pi\)
\(810\) 0 0
\(811\) 38864.0 1.68274 0.841368 0.540462i \(-0.181751\pi\)
0.841368 + 0.540462i \(0.181751\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −27018.4 46797.3i −1.16124 2.01133i
\(816\) 0 0
\(817\) −8840.00 + 15311.3i −0.378546 + 0.655662i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7857.88 + 13610.2i −0.334034 + 0.578564i −0.983299 0.181999i \(-0.941743\pi\)
0.649265 + 0.760562i \(0.275077\pi\)
\(822\) 0 0
\(823\) −18208.0 31537.2i −0.771192 1.33574i −0.936910 0.349570i \(-0.886328\pi\)
0.165718 0.986173i \(-0.447006\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24684.9 −1.03794 −0.518970 0.854792i \(-0.673684\pi\)
−0.518970 + 0.854792i \(0.673684\pi\)
\(828\) 0 0
\(829\) 8651.00 + 14984.0i 0.362439 + 0.627762i 0.988362 0.152123i \(-0.0486109\pi\)
−0.625923 + 0.779885i \(0.715278\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 21924.0 37973.5i 0.908636 1.57380i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −29240.8 −1.20323 −0.601613 0.798788i \(-0.705475\pi\)
−0.601613 + 0.798788i \(0.705475\pi\)
\(840\) 0 0
\(841\) 40123.0 1.64513
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12072.6 20910.3i 0.491490 0.851285i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −5190.96 8991.01i −0.209100 0.362172i
\(852\) 0 0
\(853\) −82.0000 −0.00329147 −0.00164574 0.999999i \(-0.500524\pi\)
−0.00164574 + 0.999999i \(0.500524\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 5325.90 + 9224.72i 0.212286 + 0.367690i 0.952430 0.304759i \(-0.0985758\pi\)
−0.740144 + 0.672449i \(0.765242\pi\)
\(858\) 0 0
\(859\) −12754.0 + 22090.6i −0.506590 + 0.877440i 0.493381 + 0.869813i \(0.335761\pi\)
−0.999971 + 0.00762634i \(0.997572\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 17088.9 29598.9i 0.674059 1.16750i −0.302684 0.953091i \(-0.597883\pi\)
0.976743 0.214414i \(-0.0687841\pi\)
\(864\) 0 0
\(865\) 27846.0 + 48230.7i 1.09456 + 1.89583i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6984.78 0.272661
\(870\) 0 0
\(871\) −4628.00 8015.93i −0.180039 0.311836i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −5419.00 + 9385.98i −0.208651 + 0.361394i −0.951290 0.308298i \(-0.900240\pi\)
0.742639 + 0.669692i \(0.233574\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −6175.18 −0.236149 −0.118074 0.993005i \(-0.537672\pi\)
−0.118074 + 0.993005i \(0.537672\pi\)
\(882\) 0 0
\(883\) 22100.0 0.842270 0.421135 0.906998i \(-0.361632\pi\)
0.421135 + 0.906998i \(0.361632\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10366.1 + 17954.5i −0.392399 + 0.679655i −0.992765 0.120070i \(-0.961688\pi\)
0.600366 + 0.799725i \(0.295021\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −14033.1 24306.0i −0.525866 0.910827i
\(894\) 0 0
\(895\) 57204.0 2.13645
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 26923.2 + 46632.3i 0.998819 + 1.73000i
\(900\) 0 0
\(901\) −18900.0 + 32735.8i −0.698835 + 1.21042i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3984.50 6901.36i 0.146353 0.253491i
\(906\) 0 0
\(907\) −3406.00 5899.37i −0.124691 0.215970i 0.796921 0.604083i \(-0.206460\pi\)
−0.921612 + 0.388113i \(0.873127\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 11636.0 0.423182 0.211591 0.977358i \(-0.432136\pi\)
0.211591 + 0.977358i \(0.432136\pi\)
\(912\) 0 0
\(913\) 2016.00 + 3491.81i 0.0730776 + 0.126574i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 584.000 1011.52i 0.0209623 0.0363078i −0.855354 0.518044i \(-0.826660\pi\)
0.876316 + 0.481736i \(0.159994\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −29304.3 −1.04503
\(924\) 0 0
\(925\) 27686.0 0.984119
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4817.91 8344.87i 0.170151 0.294711i −0.768321 0.640064i \(-0.778908\pi\)
0.938473 + 0.345354i \(0.112241\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 10000.9 + 17322.1i 0.349803 + 0.605876i
\(936\) 0 0
\(937\) −32254.0 −1.12454 −0.562269 0.826954i \(-0.690071\pi\)
−0.562269 + 0.826954i \(0.690071\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 2055.75 + 3560.66i 0.0712173 + 0.123352i 0.899435 0.437054i \(-0.143978\pi\)
−0.828218 + 0.560406i \(0.810645\pi\)
\(942\) 0 0
\(943\) −9450.00 + 16367.9i −0.326335 + 0.565230i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3436.83 + 5952.77i −0.117932 + 0.204265i −0.918948 0.394378i \(-0.870960\pi\)
0.801016 + 0.598643i \(0.204293\pi\)
\(948\) 0 0
\(949\) 2938.00 + 5088.77i 0.100497 + 0.174066i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 33971.4 1.15471 0.577357 0.816492i \(-0.304084\pi\)
0.577357 + 0.816492i \(0.304084\pi\)
\(954\) 0 0
\(955\) −19782.0 34263.4i −0.670294 1.16098i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −7576.50 + 13122.9i −0.254322 + 0.440498i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 20795.6 0.693714
\(966\) 0 0
\(967\) 43952.0 1.46163 0.730817 0.682573i \(-0.239139\pi\)
0.730817 + 0.682573i \(0.239139\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1968.44 3409.44i 0.0650569 0.112682i −0.831662 0.555282i \(-0.812610\pi\)
0.896719 + 0.442600i \(0.145944\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −6079.94 10530.8i −0.199094 0.344840i 0.749141 0.662410i \(-0.230466\pi\)
−0.948235 + 0.317570i \(0.897133\pi\)
\(978\) 0 0
\(979\) 3276.00 0.106947
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −19716.1 34149.4i −0.639722 1.10803i −0.985494 0.169713i \(-0.945716\pi\)
0.345771 0.938319i \(-0.387617\pi\)
\(984\) 0 0
\(985\) −9324.00 + 16149.6i −0.301612 + 0.522406i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6191.06 + 10723.2i −0.199054 + 0.344771i
\(990\) 0 0
\(991\) −5380.00 9318.43i −0.172453 0.298698i 0.766824 0.641858i \(-0.221836\pi\)
−0.939277 + 0.343160i \(0.888503\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 72895.7 2.32256
\(996\) 0 0
\(997\) 4985.00 + 8634.27i 0.158352 + 0.274273i 0.934274 0.356555i \(-0.116049\pi\)
−0.775923 + 0.630828i \(0.782715\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.4.k.v.1549.1 4
3.2 odd 2 inner 1764.4.k.v.1549.2 4
7.2 even 3 252.4.a.f.1.2 yes 2
7.3 odd 6 1764.4.k.u.361.2 4
7.4 even 3 inner 1764.4.k.v.361.1 4
7.5 odd 6 1764.4.a.s.1.1 2
7.6 odd 2 1764.4.k.u.1549.2 4
21.2 odd 6 252.4.a.f.1.1 2
21.5 even 6 1764.4.a.s.1.2 2
21.11 odd 6 inner 1764.4.k.v.361.2 4
21.17 even 6 1764.4.k.u.361.1 4
21.20 even 2 1764.4.k.u.1549.1 4
28.23 odd 6 1008.4.a.bc.1.2 2
84.23 even 6 1008.4.a.bc.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.4.a.f.1.1 2 21.2 odd 6
252.4.a.f.1.2 yes 2 7.2 even 3
1008.4.a.bc.1.1 2 84.23 even 6
1008.4.a.bc.1.2 2 28.23 odd 6
1764.4.a.s.1.1 2 7.5 odd 6
1764.4.a.s.1.2 2 21.5 even 6
1764.4.k.u.361.1 4 21.17 even 6
1764.4.k.u.361.2 4 7.3 odd 6
1764.4.k.u.1549.1 4 21.20 even 2
1764.4.k.u.1549.2 4 7.6 odd 2
1764.4.k.v.361.1 4 7.4 even 3 inner
1764.4.k.v.361.2 4 21.11 odd 6 inner
1764.4.k.v.1549.1 4 1.1 even 1 trivial
1764.4.k.v.1549.2 4 3.2 odd 2 inner