Properties

Label 1764.4.k.v
Level 17641764
Weight 44
Character orbit 1764.k
Analytic conductor 104.079104.079
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,4,Mod(361,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.361");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1764=223272 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1764.k (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 104.079369250104.079369250
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,7)\Q(\sqrt{-3}, \sqrt{7})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+7x2+49 x^{4} + 7x^{2} + 49 Copy content Toggle raw display
Coefficient ring: Z[a1,,a25]\Z[a_1, \ldots, a_{25}]
Coefficient ring index: 2232 2^{2}\cdot 3^{2}
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q5+(β3β1)q11+26q13+(5β3+5β1)q17+(68β268)q19+3β1q23+127β2q2516β3q29+212β2q31+1330q97+O(q100) q + \beta_1 q^{5} + ( - \beta_{3} - \beta_1) q^{11} + 26 q^{13} + (5 \beta_{3} + 5 \beta_1) q^{17} + ( - 68 \beta_{2} - 68) q^{19} + 3 \beta_1 q^{23} + 127 \beta_{2} q^{25} - 16 \beta_{3} q^{29} + 212 \beta_{2} q^{31}+ \cdots - 1330 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+104q13136q19254q25424q31436q37+1040q43+1008q55+644q61712q67+452q73880q795040q855320q97+O(q100) 4 q + 104 q^{13} - 136 q^{19} - 254 q^{25} - 424 q^{31} - 436 q^{37} + 1040 q^{43} + 1008 q^{55} + 644 q^{61} - 712 q^{67} + 452 q^{73} - 880 q^{79} - 5040 q^{85} - 5320 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+7x2+49 x^{4} + 7x^{2} + 49 : Copy content Toggle raw display

β1\beta_{1}== 6ν 6\nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/7 ( \nu^{2} ) / 7 Copy content Toggle raw display
β3\beta_{3}== (6ν3)/7 ( 6\nu^{3} ) / 7 Copy content Toggle raw display
ν\nu== (β1)/6 ( \beta_1 ) / 6 Copy content Toggle raw display
ν2\nu^{2}== 7β2 7\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== (7β3)/6 ( 7\beta_{3} ) / 6 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1764Z)×\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times.

nn 785785 883883 10811081
χ(n)\chi(n) 11 11 1β2-1 - \beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
−1.32288 2.29129i
1.32288 + 2.29129i
−1.32288 + 2.29129i
1.32288 2.29129i
0 0 0 −7.93725 13.7477i 0 0 0 0 0
361.2 0 0 0 7.93725 + 13.7477i 0 0 0 0 0
1549.1 0 0 0 −7.93725 + 13.7477i 0 0 0 0 0
1549.2 0 0 0 7.93725 13.7477i 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.c even 3 1 inner
21.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1764.4.k.v 4
3.b odd 2 1 inner 1764.4.k.v 4
7.b odd 2 1 1764.4.k.u 4
7.c even 3 1 252.4.a.f 2
7.c even 3 1 inner 1764.4.k.v 4
7.d odd 6 1 1764.4.a.s 2
7.d odd 6 1 1764.4.k.u 4
21.c even 2 1 1764.4.k.u 4
21.g even 6 1 1764.4.a.s 2
21.g even 6 1 1764.4.k.u 4
21.h odd 6 1 252.4.a.f 2
21.h odd 6 1 inner 1764.4.k.v 4
28.g odd 6 1 1008.4.a.bc 2
84.n even 6 1 1008.4.a.bc 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.4.a.f 2 7.c even 3 1
252.4.a.f 2 21.h odd 6 1
1008.4.a.bc 2 28.g odd 6 1
1008.4.a.bc 2 84.n even 6 1
1764.4.a.s 2 7.d odd 6 1
1764.4.a.s 2 21.g even 6 1
1764.4.k.u 4 7.b odd 2 1
1764.4.k.u 4 7.d odd 6 1
1764.4.k.u 4 21.c even 2 1
1764.4.k.u 4 21.g even 6 1
1764.4.k.v 4 1.a even 1 1 trivial
1764.4.k.v 4 3.b odd 2 1 inner
1764.4.k.v 4 7.c even 3 1 inner
1764.4.k.v 4 21.h odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(1764,[χ])S_{4}^{\mathrm{new}}(1764, [\chi]):

T54+252T52+63504 T_{5}^{4} + 252T_{5}^{2} + 63504 Copy content Toggle raw display
T114+252T112+63504 T_{11}^{4} + 252T_{11}^{2} + 63504 Copy content Toggle raw display
T1326 T_{13} - 26 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4+252T2+63504 T^{4} + 252 T^{2} + 63504 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4+252T2+63504 T^{4} + 252 T^{2} + 63504 Copy content Toggle raw display
1313 (T26)4 (T - 26)^{4} Copy content Toggle raw display
1717 T4+6300T2+39690000 T^{4} + 6300 T^{2} + 39690000 Copy content Toggle raw display
1919 (T2+68T+4624)2 (T^{2} + 68 T + 4624)^{2} Copy content Toggle raw display
2323 T4+2268T2+5143824 T^{4} + 2268 T^{2} + 5143824 Copy content Toggle raw display
2929 (T264512)2 (T^{2} - 64512)^{2} Copy content Toggle raw display
3131 (T2+212T+44944)2 (T^{2} + 212 T + 44944)^{2} Copy content Toggle raw display
3737 (T2+218T+47524)2 (T^{2} + 218 T + 47524)^{2} Copy content Toggle raw display
4141 (T2157500)2 (T^{2} - 157500)^{2} Copy content Toggle raw display
4343 (T260)4 (T - 260)^{4} Copy content Toggle raw display
4747 T4++29019803904 T^{4} + \cdots + 29019803904 Copy content Toggle raw display
5353 T4++51438240000 T^{4} + \cdots + 51438240000 Copy content Toggle raw display
5959 T4++6666395904 T^{4} + \cdots + 6666395904 Copy content Toggle raw display
6161 (T2322T+103684)2 (T^{2} - 322 T + 103684)^{2} Copy content Toggle raw display
6767 (T2+356T+126736)2 (T^{2} + 356 T + 126736)^{2} Copy content Toggle raw display
7171 (T21270332)2 (T^{2} - 1270332)^{2} Copy content Toggle raw display
7373 (T2226T+51076)2 (T^{2} - 226 T + 51076)^{2} Copy content Toggle raw display
7979 (T2+440T+193600)2 (T^{2} + 440 T + 193600)^{2} Copy content Toggle raw display
8383 (T264512)2 (T^{2} - 64512)^{2} Copy content Toggle raw display
8989 T4++1813737744 T^{4} + \cdots + 1813737744 Copy content Toggle raw display
9797 (T+1330)4 (T + 1330)^{4} Copy content Toggle raw display
show more
show less