Properties

Label 1764.4.a.s
Level 17641764
Weight 44
Character orbit 1764.a
Self dual yes
Analytic conductor 104.079104.079
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,4,Mod(1,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1764=223272 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1764.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 104.079369250104.079369250
Analytic rank: 00
Dimension: 22
Coefficient field: Q(7)\Q(\sqrt{7})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x27 x^{2} - 7 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 23 2\cdot 3
Twist minimal: no (minimal twist has level 252)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=67\beta = 6\sqrt{7}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+βq5βq1126q135βq1768q193βq23+127q25+16βq29212q31+218q37+25βq41+260q43+26βq47+30βq53++1330q97+O(q100) q + \beta q^{5} - \beta q^{11} - 26 q^{13} - 5 \beta q^{17} - 68 q^{19} - 3 \beta q^{23} + 127 q^{25} + 16 \beta q^{29} - 212 q^{31} + 218 q^{37} + 25 \beta q^{41} + 260 q^{43} + 26 \beta q^{47} + 30 \beta q^{53} + \cdots + 1330 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q52q13136q19+254q25424q31+436q37+520q43504q55+644q61+712q67+452q73+880q792520q85+2660q97+O(q100) 2 q - 52 q^{13} - 136 q^{19} + 254 q^{25} - 424 q^{31} + 436 q^{37} + 520 q^{43} - 504 q^{55} + 644 q^{61} + 712 q^{67} + 452 q^{73} + 880 q^{79} - 2520 q^{85} + 2660 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.64575
2.64575
0 0 0 −15.8745 0 0 0 0 0
1.2 0 0 0 15.8745 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
77 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1764.4.a.s 2
3.b odd 2 1 inner 1764.4.a.s 2
7.b odd 2 1 252.4.a.f 2
7.c even 3 2 1764.4.k.u 4
7.d odd 6 2 1764.4.k.v 4
21.c even 2 1 252.4.a.f 2
21.g even 6 2 1764.4.k.v 4
21.h odd 6 2 1764.4.k.u 4
28.d even 2 1 1008.4.a.bc 2
84.h odd 2 1 1008.4.a.bc 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.4.a.f 2 7.b odd 2 1
252.4.a.f 2 21.c even 2 1
1008.4.a.bc 2 28.d even 2 1
1008.4.a.bc 2 84.h odd 2 1
1764.4.a.s 2 1.a even 1 1 trivial
1764.4.a.s 2 3.b odd 2 1 inner
1764.4.k.u 4 7.c even 3 2
1764.4.k.u 4 21.h odd 6 2
1764.4.k.v 4 7.d odd 6 2
1764.4.k.v 4 21.g even 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1764))S_{4}^{\mathrm{new}}(\Gamma_0(1764)):

T52252 T_{5}^{2} - 252 Copy content Toggle raw display
T112252 T_{11}^{2} - 252 Copy content Toggle raw display
T13+26 T_{13} + 26 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2252 T^{2} - 252 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2252 T^{2} - 252 Copy content Toggle raw display
1313 (T+26)2 (T + 26)^{2} Copy content Toggle raw display
1717 T26300 T^{2} - 6300 Copy content Toggle raw display
1919 (T+68)2 (T + 68)^{2} Copy content Toggle raw display
2323 T22268 T^{2} - 2268 Copy content Toggle raw display
2929 T264512 T^{2} - 64512 Copy content Toggle raw display
3131 (T+212)2 (T + 212)^{2} Copy content Toggle raw display
3737 (T218)2 (T - 218)^{2} Copy content Toggle raw display
4141 T2157500 T^{2} - 157500 Copy content Toggle raw display
4343 (T260)2 (T - 260)^{2} Copy content Toggle raw display
4747 T2170352 T^{2} - 170352 Copy content Toggle raw display
5353 T2226800 T^{2} - 226800 Copy content Toggle raw display
5959 T281648 T^{2} - 81648 Copy content Toggle raw display
6161 (T322)2 (T - 322)^{2} Copy content Toggle raw display
6767 (T356)2 (T - 356)^{2} Copy content Toggle raw display
7171 T21270332 T^{2} - 1270332 Copy content Toggle raw display
7373 (T226)2 (T - 226)^{2} Copy content Toggle raw display
7979 (T440)2 (T - 440)^{2} Copy content Toggle raw display
8383 T264512 T^{2} - 64512 Copy content Toggle raw display
8989 T242588 T^{2} - 42588 Copy content Toggle raw display
9797 (T1330)2 (T - 1330)^{2} Copy content Toggle raw display
show more
show less