Properties

Label 1764.4.a.s
Level $1764$
Weight $4$
Character orbit 1764.a
Self dual yes
Analytic conductor $104.079$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,4,Mod(1,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1764.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.079369250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 252)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 6\sqrt{7}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{5} - \beta q^{11} - 26 q^{13} - 5 \beta q^{17} - 68 q^{19} - 3 \beta q^{23} + 127 q^{25} + 16 \beta q^{29} - 212 q^{31} + 218 q^{37} + 25 \beta q^{41} + 260 q^{43} + 26 \beta q^{47} + 30 \beta q^{53} + \cdots + 1330 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 52 q^{13} - 136 q^{19} + 254 q^{25} - 424 q^{31} + 436 q^{37} + 520 q^{43} - 504 q^{55} + 644 q^{61} + 712 q^{67} + 452 q^{73} + 880 q^{79} - 2520 q^{85} + 2660 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.64575
2.64575
0 0 0 −15.8745 0 0 0 0 0
1.2 0 0 0 15.8745 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1764.4.a.s 2
3.b odd 2 1 inner 1764.4.a.s 2
7.b odd 2 1 252.4.a.f 2
7.c even 3 2 1764.4.k.u 4
7.d odd 6 2 1764.4.k.v 4
21.c even 2 1 252.4.a.f 2
21.g even 6 2 1764.4.k.v 4
21.h odd 6 2 1764.4.k.u 4
28.d even 2 1 1008.4.a.bc 2
84.h odd 2 1 1008.4.a.bc 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.4.a.f 2 7.b odd 2 1
252.4.a.f 2 21.c even 2 1
1008.4.a.bc 2 28.d even 2 1
1008.4.a.bc 2 84.h odd 2 1
1764.4.a.s 2 1.a even 1 1 trivial
1764.4.a.s 2 3.b odd 2 1 inner
1764.4.k.u 4 7.c even 3 2
1764.4.k.u 4 21.h odd 6 2
1764.4.k.v 4 7.d odd 6 2
1764.4.k.v 4 21.g even 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1764))\):

\( T_{5}^{2} - 252 \) Copy content Toggle raw display
\( T_{11}^{2} - 252 \) Copy content Toggle raw display
\( T_{13} + 26 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 252 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 252 \) Copy content Toggle raw display
$13$ \( (T + 26)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 6300 \) Copy content Toggle raw display
$19$ \( (T + 68)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 2268 \) Copy content Toggle raw display
$29$ \( T^{2} - 64512 \) Copy content Toggle raw display
$31$ \( (T + 212)^{2} \) Copy content Toggle raw display
$37$ \( (T - 218)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 157500 \) Copy content Toggle raw display
$43$ \( (T - 260)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 170352 \) Copy content Toggle raw display
$53$ \( T^{2} - 226800 \) Copy content Toggle raw display
$59$ \( T^{2} - 81648 \) Copy content Toggle raw display
$61$ \( (T - 322)^{2} \) Copy content Toggle raw display
$67$ \( (T - 356)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 1270332 \) Copy content Toggle raw display
$73$ \( (T - 226)^{2} \) Copy content Toggle raw display
$79$ \( (T - 440)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 64512 \) Copy content Toggle raw display
$89$ \( T^{2} - 42588 \) Copy content Toggle raw display
$97$ \( (T - 1330)^{2} \) Copy content Toggle raw display
show more
show less