L(s) = 1 | + (0.965 + 0.258i)2-s + (−0.258 + 0.965i)3-s + (0.866 + 0.499i)4-s + (−0.499 + 0.866i)6-s + (0.707 + 0.707i)8-s + (−0.866 − 0.499i)9-s + (1.5 − 0.866i)11-s + (−0.707 + 0.707i)12-s + (0.500 + 0.866i)16-s + (−0.707 + 0.707i)17-s + (−0.707 − 0.707i)18-s + i·19-s + (1.67 − 0.448i)22-s + (−0.866 + 0.500i)24-s + (0.707 − 0.707i)27-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + (−0.258 + 0.965i)3-s + (0.866 + 0.499i)4-s + (−0.499 + 0.866i)6-s + (0.707 + 0.707i)8-s + (−0.866 − 0.499i)9-s + (1.5 − 0.866i)11-s + (−0.707 + 0.707i)12-s + (0.500 + 0.866i)16-s + (−0.707 + 0.707i)17-s + (−0.707 − 0.707i)18-s + i·19-s + (1.67 − 0.448i)22-s + (−0.866 + 0.500i)24-s + (0.707 − 0.707i)27-s + ⋯ |
Λ(s)=(=(1800s/2ΓC(s)L(s)(0.116−0.993i)Λ(1−s)
Λ(s)=(=(1800s/2ΓC(s)L(s)(0.116−0.993i)Λ(1−s)
Degree: |
2 |
Conductor: |
1800
= 23⋅32⋅52
|
Sign: |
0.116−0.993i
|
Analytic conductor: |
0.898317 |
Root analytic conductor: |
0.947795 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1800(707,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1800, ( :0), 0.116−0.993i)
|
Particular Values
L(21) |
≈ |
1.968956410 |
L(21) |
≈ |
1.968956410 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.965−0.258i)T |
| 3 | 1+(0.258−0.965i)T |
| 5 | 1 |
good | 7 | 1+(0.866+0.5i)T2 |
| 11 | 1+(−1.5+0.866i)T+(0.5−0.866i)T2 |
| 13 | 1+(0.866−0.5i)T2 |
| 17 | 1+(0.707−0.707i)T−iT2 |
| 19 | 1−iT−T2 |
| 23 | 1+(−0.866+0.5i)T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1−iT2 |
| 41 | 1+(1.5+0.866i)T+(0.5+0.866i)T2 |
| 43 | 1+(1.67+0.448i)T+(0.866+0.5i)T2 |
| 47 | 1+(−0.866−0.5i)T2 |
| 53 | 1−iT2 |
| 59 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(−1.67+0.448i)T+(0.866−0.5i)T2 |
| 71 | 1+T2 |
| 73 | 1+(1.22−1.22i)T−iT2 |
| 79 | 1+(−0.5+0.866i)T2 |
| 83 | 1+(−0.517+1.93i)T+(−0.866−0.5i)T2 |
| 89 | 1+T2 |
| 97 | 1+(0.448−1.67i)T+(−0.866−0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.778480808026806109247240786824, −8.643908240725626686218500653805, −8.316937788372193961742678233962, −6.83164014416569120514138836681, −6.32625651852690267667933217092, −5.55914196292768435859230051155, −4.70841884075712064905390133552, −3.68637544252553756347205513559, −3.49121543569572155018620683639, −1.84310965810612597520566317995,
1.31007127493659229095360362619, 2.24288356610607951842524322984, 3.28331328081662677597770206235, 4.48518277291294117730704224536, 5.09005332031294500503907237940, 6.25027319000922646611968505345, 6.80913056421222819378205074131, 7.22025309703834028010800342997, 8.412345208350741381674378660192, 9.349725960141697994451509073479