L(s) = 1 | + (0.965 + 0.258i)2-s + (−0.258 + 0.965i)3-s + (0.866 + 0.499i)4-s + (−0.499 + 0.866i)6-s + (0.707 + 0.707i)8-s + (−0.866 − 0.499i)9-s + (1.5 − 0.866i)11-s + (−0.707 + 0.707i)12-s + (0.500 + 0.866i)16-s + (−0.707 + 0.707i)17-s + (−0.707 − 0.707i)18-s + i·19-s + (1.67 − 0.448i)22-s + (−0.866 + 0.500i)24-s + (0.707 − 0.707i)27-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + (−0.258 + 0.965i)3-s + (0.866 + 0.499i)4-s + (−0.499 + 0.866i)6-s + (0.707 + 0.707i)8-s + (−0.866 − 0.499i)9-s + (1.5 − 0.866i)11-s + (−0.707 + 0.707i)12-s + (0.500 + 0.866i)16-s + (−0.707 + 0.707i)17-s + (−0.707 − 0.707i)18-s + i·19-s + (1.67 − 0.448i)22-s + (−0.866 + 0.500i)24-s + (0.707 − 0.707i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.116 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.116 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.968956410\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.968956410\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 - 0.258i)T \) |
| 3 | \( 1 + (0.258 - 0.965i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 19 | \( 1 - iT - T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (1.67 + 0.448i)T + (0.866 + 0.5i)T^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-1.67 + 0.448i)T + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (1.22 - 1.22i)T - iT^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.517 + 1.93i)T + (-0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.448 - 1.67i)T + (-0.866 - 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.778480808026806109247240786824, −8.643908240725626686218500653805, −8.316937788372193961742678233962, −6.83164014416569120514138836681, −6.32625651852690267667933217092, −5.55914196292768435859230051155, −4.70841884075712064905390133552, −3.68637544252553756347205513559, −3.49121543569572155018620683639, −1.84310965810612597520566317995,
1.31007127493659229095360362619, 2.24288356610607951842524322984, 3.28331328081662677597770206235, 4.48518277291294117730704224536, 5.09005332031294500503907237940, 6.25027319000922646611968505345, 6.80913056421222819378205074131, 7.22025309703834028010800342997, 8.412345208350741381674378660192, 9.349725960141697994451509073479