Properties

Label 1800.1.cj.b
Level 18001800
Weight 11
Character orbit 1800.cj
Analytic conductor 0.8980.898
Analytic rank 00
Dimension 88
Projective image D6D_{6}
CM discriminant -8
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,1,Mod(443,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 6, 2, 9]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.443");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1800=233252 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1800.cj (of order 1212, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.8983170227390.898317022739
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ12)\Q(\zeta_{12})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.0.157464000.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ2411q2ζ245q3ζ2410q4ζ244q6ζ249q8+ζ2410q9+(ζ244+1)q11ζ243q12ζ248q16++(ζ2410ζ242)q99+O(q100) q - \zeta_{24}^{11} q^{2} - \zeta_{24}^{5} q^{3} - \zeta_{24}^{10} q^{4} - \zeta_{24}^{4} q^{6} - \zeta_{24}^{9} q^{8} + \zeta_{24}^{10} q^{9} + (\zeta_{24}^{4} + 1) q^{11} - \zeta_{24}^{3} q^{12} - \zeta_{24}^{8} q^{16} + \cdots + (\zeta_{24}^{10} - \zeta_{24}^{2}) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q6+12q11+4q164q3612q414q514q76+4q8112q868q96+O(q100) 8 q - 4 q^{6} + 12 q^{11} + 4 q^{16} - 4 q^{36} - 12 q^{41} - 4 q^{51} - 4 q^{76} + 4 q^{81} - 12 q^{86} - 8 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1800Z)×\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times.

nn 577577 901901 10011001 13511351
χ(n)\chi(n) ζ246-\zeta_{24}^{6} 1-1 ζ244\zeta_{24}^{4} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
443.1
−0.965926 0.258819i
0.965926 + 0.258819i
−0.965926 + 0.258819i
0.965926 0.258819i
−0.258819 + 0.965926i
0.258819 0.965926i
−0.258819 0.965926i
0.258819 + 0.965926i
−0.965926 + 0.258819i 0.258819 + 0.965926i 0.866025 0.500000i 0 −0.500000 0.866025i 0 −0.707107 + 0.707107i −0.866025 + 0.500000i 0
443.2 0.965926 0.258819i −0.258819 0.965926i 0.866025 0.500000i 0 −0.500000 0.866025i 0 0.707107 0.707107i −0.866025 + 0.500000i 0
707.1 −0.965926 0.258819i 0.258819 0.965926i 0.866025 + 0.500000i 0 −0.500000 + 0.866025i 0 −0.707107 0.707107i −0.866025 0.500000i 0
707.2 0.965926 + 0.258819i −0.258819 + 0.965926i 0.866025 + 0.500000i 0 −0.500000 + 0.866025i 0 0.707107 + 0.707107i −0.866025 0.500000i 0
1307.1 −0.258819 0.965926i 0.965926 0.258819i −0.866025 + 0.500000i 0 −0.500000 0.866025i 0 0.707107 + 0.707107i 0.866025 0.500000i 0
1307.2 0.258819 + 0.965926i −0.965926 + 0.258819i −0.866025 + 0.500000i 0 −0.500000 0.866025i 0 −0.707107 0.707107i 0.866025 0.500000i 0
1643.1 −0.258819 + 0.965926i 0.965926 + 0.258819i −0.866025 0.500000i 0 −0.500000 + 0.866025i 0 0.707107 0.707107i 0.866025 + 0.500000i 0
1643.2 0.258819 0.965926i −0.965926 0.258819i −0.866025 0.500000i 0 −0.500000 + 0.866025i 0 −0.707107 + 0.707107i 0.866025 + 0.500000i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 443.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by Q(2)\Q(\sqrt{-2})
5.b even 2 1 inner
5.c odd 4 2 inner
9.d odd 6 1 inner
40.e odd 2 1 inner
40.k even 4 2 inner
45.h odd 6 1 inner
45.l even 12 2 inner
72.l even 6 1 inner
360.bd even 6 1 inner
360.bt odd 12 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1800.1.cj.b 8
5.b even 2 1 inner 1800.1.cj.b 8
5.c odd 4 2 inner 1800.1.cj.b 8
8.d odd 2 1 CM 1800.1.cj.b 8
9.d odd 6 1 inner 1800.1.cj.b 8
40.e odd 2 1 inner 1800.1.cj.b 8
40.k even 4 2 inner 1800.1.cj.b 8
45.h odd 6 1 inner 1800.1.cj.b 8
45.l even 12 2 inner 1800.1.cj.b 8
72.l even 6 1 inner 1800.1.cj.b 8
360.bd even 6 1 inner 1800.1.cj.b 8
360.bt odd 12 2 inner 1800.1.cj.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1800.1.cj.b 8 1.a even 1 1 trivial
1800.1.cj.b 8 5.b even 2 1 inner
1800.1.cj.b 8 5.c odd 4 2 inner
1800.1.cj.b 8 8.d odd 2 1 CM
1800.1.cj.b 8 9.d odd 6 1 inner
1800.1.cj.b 8 40.e odd 2 1 inner
1800.1.cj.b 8 40.k even 4 2 inner
1800.1.cj.b 8 45.h odd 6 1 inner
1800.1.cj.b 8 45.l even 12 2 inner
1800.1.cj.b 8 72.l even 6 1 inner
1800.1.cj.b 8 360.bd even 6 1 inner
1800.1.cj.b 8 360.bt odd 12 2 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T1123T11+3 T_{11}^{2} - 3T_{11} + 3 acting on S1new(1800,[χ])S_{1}^{\mathrm{new}}(1800, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8T4+1 T^{8} - T^{4} + 1 Copy content Toggle raw display
33 T8T4+1 T^{8} - T^{4} + 1 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8 T^{8} Copy content Toggle raw display
1111 (T23T+3)4 (T^{2} - 3 T + 3)^{4} Copy content Toggle raw display
1313 T8 T^{8} Copy content Toggle raw display
1717 (T4+1)2 (T^{4} + 1)^{2} Copy content Toggle raw display
1919 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
2323 T8 T^{8} Copy content Toggle raw display
2929 T8 T^{8} Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 T8 T^{8} Copy content Toggle raw display
4141 (T2+3T+3)4 (T^{2} + 3 T + 3)^{4} Copy content Toggle raw display
4343 T89T4+81 T^{8} - 9T^{4} + 81 Copy content Toggle raw display
4747 T8 T^{8} Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 (T4+3T2+9)2 (T^{4} + 3 T^{2} + 9)^{2} Copy content Toggle raw display
6161 T8 T^{8} Copy content Toggle raw display
6767 T89T4+81 T^{8} - 9T^{4} + 81 Copy content Toggle raw display
7171 T8 T^{8} Copy content Toggle raw display
7373 (T4+9)2 (T^{4} + 9)^{2} Copy content Toggle raw display
7979 T8 T^{8} Copy content Toggle raw display
8383 T816T4+256 T^{8} - 16T^{4} + 256 Copy content Toggle raw display
8989 T8 T^{8} Copy content Toggle raw display
9797 T89T4+81 T^{8} - 9T^{4} + 81 Copy content Toggle raw display
show more
show less