Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1800,1,Mod(443,1800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([6, 6, 2, 9]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1800.443");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1800.cj (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of 6.0.157464000.2 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
443.1 |
|
−0.965926 | + | 0.258819i | 0.258819 | + | 0.965926i | 0.866025 | − | 0.500000i | 0 | −0.500000 | − | 0.866025i | 0 | −0.707107 | + | 0.707107i | −0.866025 | + | 0.500000i | 0 | ||||||||||||||||||||||||||||||
443.2 | 0.965926 | − | 0.258819i | −0.258819 | − | 0.965926i | 0.866025 | − | 0.500000i | 0 | −0.500000 | − | 0.866025i | 0 | 0.707107 | − | 0.707107i | −0.866025 | + | 0.500000i | 0 | |||||||||||||||||||||||||||||||
707.1 | −0.965926 | − | 0.258819i | 0.258819 | − | 0.965926i | 0.866025 | + | 0.500000i | 0 | −0.500000 | + | 0.866025i | 0 | −0.707107 | − | 0.707107i | −0.866025 | − | 0.500000i | 0 | |||||||||||||||||||||||||||||||
707.2 | 0.965926 | + | 0.258819i | −0.258819 | + | 0.965926i | 0.866025 | + | 0.500000i | 0 | −0.500000 | + | 0.866025i | 0 | 0.707107 | + | 0.707107i | −0.866025 | − | 0.500000i | 0 | |||||||||||||||||||||||||||||||
1307.1 | −0.258819 | − | 0.965926i | 0.965926 | − | 0.258819i | −0.866025 | + | 0.500000i | 0 | −0.500000 | − | 0.866025i | 0 | 0.707107 | + | 0.707107i | 0.866025 | − | 0.500000i | 0 | |||||||||||||||||||||||||||||||
1307.2 | 0.258819 | + | 0.965926i | −0.965926 | + | 0.258819i | −0.866025 | + | 0.500000i | 0 | −0.500000 | − | 0.866025i | 0 | −0.707107 | − | 0.707107i | 0.866025 | − | 0.500000i | 0 | |||||||||||||||||||||||||||||||
1643.1 | −0.258819 | + | 0.965926i | 0.965926 | + | 0.258819i | −0.866025 | − | 0.500000i | 0 | −0.500000 | + | 0.866025i | 0 | 0.707107 | − | 0.707107i | 0.866025 | + | 0.500000i | 0 | |||||||||||||||||||||||||||||||
1643.2 | 0.258819 | − | 0.965926i | −0.965926 | − | 0.258819i | −0.866025 | − | 0.500000i | 0 | −0.500000 | + | 0.866025i | 0 | −0.707107 | + | 0.707107i | 0.866025 | + | 0.500000i | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | CM by |
5.b | even | 2 | 1 | inner |
5.c | odd | 4 | 2 | inner |
9.d | odd | 6 | 1 | inner |
40.e | odd | 2 | 1 | inner |
40.k | even | 4 | 2 | inner |
45.h | odd | 6 | 1 | inner |
45.l | even | 12 | 2 | inner |
72.l | even | 6 | 1 | inner |
360.bd | even | 6 | 1 | inner |
360.bt | odd | 12 | 2 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1800.1.cj.b | ✓ | 8 |
5.b | even | 2 | 1 | inner | 1800.1.cj.b | ✓ | 8 |
5.c | odd | 4 | 2 | inner | 1800.1.cj.b | ✓ | 8 |
8.d | odd | 2 | 1 | CM | 1800.1.cj.b | ✓ | 8 |
9.d | odd | 6 | 1 | inner | 1800.1.cj.b | ✓ | 8 |
40.e | odd | 2 | 1 | inner | 1800.1.cj.b | ✓ | 8 |
40.k | even | 4 | 2 | inner | 1800.1.cj.b | ✓ | 8 |
45.h | odd | 6 | 1 | inner | 1800.1.cj.b | ✓ | 8 |
45.l | even | 12 | 2 | inner | 1800.1.cj.b | ✓ | 8 |
72.l | even | 6 | 1 | inner | 1800.1.cj.b | ✓ | 8 |
360.bd | even | 6 | 1 | inner | 1800.1.cj.b | ✓ | 8 |
360.bt | odd | 12 | 2 | inner | 1800.1.cj.b | ✓ | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1800.1.cj.b | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
1800.1.cj.b | ✓ | 8 | 5.b | even | 2 | 1 | inner |
1800.1.cj.b | ✓ | 8 | 5.c | odd | 4 | 2 | inner |
1800.1.cj.b | ✓ | 8 | 8.d | odd | 2 | 1 | CM |
1800.1.cj.b | ✓ | 8 | 9.d | odd | 6 | 1 | inner |
1800.1.cj.b | ✓ | 8 | 40.e | odd | 2 | 1 | inner |
1800.1.cj.b | ✓ | 8 | 40.k | even | 4 | 2 | inner |
1800.1.cj.b | ✓ | 8 | 45.h | odd | 6 | 1 | inner |
1800.1.cj.b | ✓ | 8 | 45.l | even | 12 | 2 | inner |
1800.1.cj.b | ✓ | 8 | 72.l | even | 6 | 1 | inner |
1800.1.cj.b | ✓ | 8 | 360.bd | even | 6 | 1 | inner |
1800.1.cj.b | ✓ | 8 | 360.bt | odd | 12 | 2 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .