Properties

Label 1800.1.cj.b
Level $1800$
Weight $1$
Character orbit 1800.cj
Analytic conductor $0.898$
Analytic rank $0$
Dimension $8$
Projective image $D_{6}$
CM discriminant -8
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,1,Mod(443,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 6, 2, 9]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.443");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1800.cj (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.898317022739\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.157464000.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{24}^{11} q^{2} - \zeta_{24}^{5} q^{3} - \zeta_{24}^{10} q^{4} - \zeta_{24}^{4} q^{6} - \zeta_{24}^{9} q^{8} + \zeta_{24}^{10} q^{9} + (\zeta_{24}^{4} + 1) q^{11} - \zeta_{24}^{3} q^{12} - \zeta_{24}^{8} q^{16} + \cdots + (\zeta_{24}^{10} - \zeta_{24}^{2}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{6} + 12 q^{11} + 4 q^{16} - 4 q^{36} - 12 q^{41} - 4 q^{51} - 4 q^{76} + 4 q^{81} - 12 q^{86} - 8 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(-\zeta_{24}^{6}\) \(-1\) \(\zeta_{24}^{4}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
443.1
−0.965926 0.258819i
0.965926 + 0.258819i
−0.965926 + 0.258819i
0.965926 0.258819i
−0.258819 + 0.965926i
0.258819 0.965926i
−0.258819 0.965926i
0.258819 + 0.965926i
−0.965926 + 0.258819i 0.258819 + 0.965926i 0.866025 0.500000i 0 −0.500000 0.866025i 0 −0.707107 + 0.707107i −0.866025 + 0.500000i 0
443.2 0.965926 0.258819i −0.258819 0.965926i 0.866025 0.500000i 0 −0.500000 0.866025i 0 0.707107 0.707107i −0.866025 + 0.500000i 0
707.1 −0.965926 0.258819i 0.258819 0.965926i 0.866025 + 0.500000i 0 −0.500000 + 0.866025i 0 −0.707107 0.707107i −0.866025 0.500000i 0
707.2 0.965926 + 0.258819i −0.258819 + 0.965926i 0.866025 + 0.500000i 0 −0.500000 + 0.866025i 0 0.707107 + 0.707107i −0.866025 0.500000i 0
1307.1 −0.258819 0.965926i 0.965926 0.258819i −0.866025 + 0.500000i 0 −0.500000 0.866025i 0 0.707107 + 0.707107i 0.866025 0.500000i 0
1307.2 0.258819 + 0.965926i −0.965926 + 0.258819i −0.866025 + 0.500000i 0 −0.500000 0.866025i 0 −0.707107 0.707107i 0.866025 0.500000i 0
1643.1 −0.258819 + 0.965926i 0.965926 + 0.258819i −0.866025 0.500000i 0 −0.500000 + 0.866025i 0 0.707107 0.707107i 0.866025 + 0.500000i 0
1643.2 0.258819 0.965926i −0.965926 0.258819i −0.866025 0.500000i 0 −0.500000 + 0.866025i 0 −0.707107 + 0.707107i 0.866025 + 0.500000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 443.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
5.b even 2 1 inner
5.c odd 4 2 inner
9.d odd 6 1 inner
40.e odd 2 1 inner
40.k even 4 2 inner
45.h odd 6 1 inner
45.l even 12 2 inner
72.l even 6 1 inner
360.bd even 6 1 inner
360.bt odd 12 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1800.1.cj.b 8
5.b even 2 1 inner 1800.1.cj.b 8
5.c odd 4 2 inner 1800.1.cj.b 8
8.d odd 2 1 CM 1800.1.cj.b 8
9.d odd 6 1 inner 1800.1.cj.b 8
40.e odd 2 1 inner 1800.1.cj.b 8
40.k even 4 2 inner 1800.1.cj.b 8
45.h odd 6 1 inner 1800.1.cj.b 8
45.l even 12 2 inner 1800.1.cj.b 8
72.l even 6 1 inner 1800.1.cj.b 8
360.bd even 6 1 inner 1800.1.cj.b 8
360.bt odd 12 2 inner 1800.1.cj.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1800.1.cj.b 8 1.a even 1 1 trivial
1800.1.cj.b 8 5.b even 2 1 inner
1800.1.cj.b 8 5.c odd 4 2 inner
1800.1.cj.b 8 8.d odd 2 1 CM
1800.1.cj.b 8 9.d odd 6 1 inner
1800.1.cj.b 8 40.e odd 2 1 inner
1800.1.cj.b 8 40.k even 4 2 inner
1800.1.cj.b 8 45.h odd 6 1 inner
1800.1.cj.b 8 45.l even 12 2 inner
1800.1.cj.b 8 72.l even 6 1 inner
1800.1.cj.b 8 360.bd even 6 1 inner
1800.1.cj.b 8 360.bt odd 12 2 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{2} - 3T_{11} + 3 \) acting on \(S_{1}^{\mathrm{new}}(1800, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$3$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( (T^{2} - 3 T + 3)^{4} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( (T^{2} + 3 T + 3)^{4} \) Copy content Toggle raw display
$43$ \( T^{8} - 9T^{4} + 81 \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( (T^{4} + 3 T^{2} + 9)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} - 9T^{4} + 81 \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( (T^{4} + 9)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( T^{8} - 16T^{4} + 256 \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} - 9T^{4} + 81 \) Copy content Toggle raw display
show more
show less