L(s) = 1 | − 2·2-s + 4·3-s + 2·4-s − 8·6-s − 4·8-s + 4·9-s + 8·12-s + 8·16-s − 8·18-s − 16·24-s − 4·27-s − 8·31-s − 8·32-s + 8·36-s + 8·37-s − 8·41-s − 28·43-s + 32·48-s + 20·49-s + 32·53-s + 8·54-s + 16·62-s + 8·64-s − 36·67-s + 8·71-s − 16·72-s − 16·74-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 2.30·3-s + 4-s − 3.26·6-s − 1.41·8-s + 4/3·9-s + 2.30·12-s + 2·16-s − 1.88·18-s − 3.26·24-s − 0.769·27-s − 1.43·31-s − 1.41·32-s + 4/3·36-s + 1.31·37-s − 1.24·41-s − 4.26·43-s + 4.61·48-s + 20/7·49-s + 4.39·53-s + 1.08·54-s + 2.03·62-s + 64-s − 4.39·67-s + 0.949·71-s − 1.88·72-s − 1.85·74-s + ⋯ |
Λ(s)=(=((212⋅58)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((212⋅58)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
212⋅58
|
Sign: |
1
|
Analytic conductor: |
6.50471 |
Root analytic conductor: |
1.26372 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 212⋅58, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.164025938 |
L(21) |
≈ |
1.164025938 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C22 | 1+pT+pT2+p2T3+p2T4 |
| 5 | | 1 |
good | 3 | D4 | (1−2T+4T2−2pT3+p2T4)2 |
| 7 | D4×C2 | 1−20T2+186T4−20p2T6+p4T8 |
| 11 | C22 | (1−18T2+p2T4)2 |
| 13 | C22 | (1+14T2+p2T4)2 |
| 17 | C22 | (1−22T2+p2T4)2 |
| 19 | D4×C2 | 1−20T2+54T4−20p2T6+p4T8 |
| 23 | D4×C2 | 1−36T2+1274T4−36p2T6+p4T8 |
| 29 | C22 | (1−10T2+p2T4)2 |
| 31 | D4 | (1+4T+54T2+4pT3+p2T4)2 |
| 37 | C2 | (1−2T+pT2)4 |
| 41 | D4 | (1+4T+74T2+4pT3+p2T4)2 |
| 43 | D4 | (1+14T+132T2+14pT3+p2T4)2 |
| 47 | D4×C2 | 1−132T2+8474T4−132p2T6+p4T8 |
| 53 | D4 | (1−16T+158T2−16pT3+p2T4)2 |
| 59 | D4×C2 | 1−180T2+14294T4−180p2T6+p4T8 |
| 61 | D4×C2 | 1−140T2+11574T4−140p2T6+p4T8 |
| 67 | D4 | (1+18T+212T2+18pT3+p2T4)2 |
| 71 | D4 | (1−4T+134T2−4pT3+p2T4)2 |
| 73 | D4×C2 | 1−236T2+23814T4−236p2T6+p4T8 |
| 79 | D4 | (1−16T+174T2−16pT3+p2T4)2 |
| 83 | D4 | (1−6T+172T2−6pT3+p2T4)2 |
| 89 | D4 | (1+4T+134T2+4pT3+p2T4)2 |
| 97 | D4×C2 | 1−140T2+16806T4−140p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.121893544177709379473274233582, −8.611198104545520429956874499974, −8.574460175233462015115753246520, −8.545406457889532750429173903124, −8.396693322336625231350986220045, −7.989946772885703948650253364531, −7.56978981097575224447493628148, −7.50281848193954513407267736321, −7.10968471180960990171383998362, −6.93615623970837667152620247320, −6.37533703346812715166520916945, −6.32053956450899452943993228132, −5.69285397887016362610639577947, −5.65793535687404674032941093397, −5.08516966199271487860207398171, −5.00899091981260562276640246658, −4.15046156057961027481250194208, −3.95361207165823130152554861631, −3.54362985360426655564845850290, −3.11540259944749621306411411312, −3.02714902970405647398462517339, −2.62640780843944343045930744331, −2.00285850582407157288296123012, −1.91673788953325424389475291069, −0.72645289390318715026944689259,
0.72645289390318715026944689259, 1.91673788953325424389475291069, 2.00285850582407157288296123012, 2.62640780843944343045930744331, 3.02714902970405647398462517339, 3.11540259944749621306411411312, 3.54362985360426655564845850290, 3.95361207165823130152554861631, 4.15046156057961027481250194208, 5.00899091981260562276640246658, 5.08516966199271487860207398171, 5.65793535687404674032941093397, 5.69285397887016362610639577947, 6.32053956450899452943993228132, 6.37533703346812715166520916945, 6.93615623970837667152620247320, 7.10968471180960990171383998362, 7.50281848193954513407267736321, 7.56978981097575224447493628148, 7.989946772885703948650253364531, 8.396693322336625231350986220045, 8.545406457889532750429173903124, 8.574460175233462015115753246520, 8.611198104545520429956874499974, 9.121893544177709379473274233582