Properties

Label 200.2.f.c.149.3
Level $200$
Weight $2$
Character 200.149
Analytic conductor $1.597$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,2,Mod(149,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 200.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59700804043\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.3
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 200.149
Dual form 200.2.f.c.149.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.366025 - 1.36603i) q^{2} +2.73205 q^{3} +(-1.73205 - 1.00000i) q^{4} +(1.00000 - 3.73205i) q^{6} +0.732051i q^{7} +(-2.00000 + 2.00000i) q^{8} +4.46410 q^{9} -2.00000i q^{11} +(-4.73205 - 2.73205i) q^{12} -3.46410 q^{13} +(1.00000 + 0.267949i) q^{14} +(2.00000 + 3.46410i) q^{16} +3.46410i q^{17} +(1.63397 - 6.09808i) q^{18} -0.535898i q^{19} +2.00000i q^{21} +(-2.73205 - 0.732051i) q^{22} +6.19615i q^{23} +(-5.46410 + 5.46410i) q^{24} +(-1.26795 + 4.73205i) q^{26} +4.00000 q^{27} +(0.732051 - 1.26795i) q^{28} -6.92820i q^{29} -5.46410 q^{31} +(5.46410 - 1.46410i) q^{32} -5.46410i q^{33} +(4.73205 + 1.26795i) q^{34} +(-7.73205 - 4.46410i) q^{36} +2.00000 q^{37} +(-0.732051 - 0.196152i) q^{38} -9.46410 q^{39} +1.46410 q^{41} +(2.73205 + 0.732051i) q^{42} -5.26795 q^{43} +(-2.00000 + 3.46410i) q^{44} +(8.46410 + 2.26795i) q^{46} +3.26795i q^{47} +(5.46410 + 9.46410i) q^{48} +6.46410 q^{49} +9.46410i q^{51} +(6.00000 + 3.46410i) q^{52} +11.4641 q^{53} +(1.46410 - 5.46410i) q^{54} +(-1.46410 - 1.46410i) q^{56} -1.46410i q^{57} +(-9.46410 - 2.53590i) q^{58} +7.46410i q^{59} -8.92820i q^{61} +(-2.00000 + 7.46410i) q^{62} +3.26795i q^{63} -8.00000i q^{64} +(-7.46410 - 2.00000i) q^{66} -10.7321 q^{67} +(3.46410 - 6.00000i) q^{68} +16.9282i q^{69} +5.46410 q^{71} +(-8.92820 + 8.92820i) q^{72} -7.46410i q^{73} +(0.732051 - 2.73205i) q^{74} +(-0.535898 + 0.928203i) q^{76} +1.46410 q^{77} +(-3.46410 + 12.9282i) q^{78} +1.07180 q^{79} -2.46410 q^{81} +(0.535898 - 2.00000i) q^{82} +1.26795 q^{83} +(2.00000 - 3.46410i) q^{84} +(-1.92820 + 7.19615i) q^{86} -18.9282i q^{87} +(4.00000 + 4.00000i) q^{88} -8.92820 q^{89} -2.53590i q^{91} +(6.19615 - 10.7321i) q^{92} -14.9282 q^{93} +(4.46410 + 1.19615i) q^{94} +(14.9282 - 4.00000i) q^{96} -14.3923i q^{97} +(2.36603 - 8.83013i) q^{98} -8.92820i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 4 q^{3} + 4 q^{6} - 8 q^{8} + 4 q^{9} - 12 q^{12} + 4 q^{14} + 8 q^{16} + 10 q^{18} - 4 q^{22} - 8 q^{24} - 12 q^{26} + 16 q^{27} - 4 q^{28} - 8 q^{31} + 8 q^{32} + 12 q^{34} - 24 q^{36}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 1.36603i 0.258819 0.965926i
\(3\) 2.73205 1.57735 0.788675 0.614810i \(-0.210767\pi\)
0.788675 + 0.614810i \(0.210767\pi\)
\(4\) −1.73205 1.00000i −0.866025 0.500000i
\(5\) 0 0
\(6\) 1.00000 3.73205i 0.408248 1.52360i
\(7\) 0.732051i 0.276689i 0.990384 + 0.138345i \(0.0441781\pi\)
−0.990384 + 0.138345i \(0.955822\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) 4.46410 1.48803
\(10\) 0 0
\(11\) 2.00000i 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) −4.73205 2.73205i −1.36603 0.788675i
\(13\) −3.46410 −0.960769 −0.480384 0.877058i \(-0.659503\pi\)
−0.480384 + 0.877058i \(0.659503\pi\)
\(14\) 1.00000 + 0.267949i 0.267261 + 0.0716124i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 3.46410i 0.840168i 0.907485 + 0.420084i \(0.137999\pi\)
−0.907485 + 0.420084i \(0.862001\pi\)
\(18\) 1.63397 6.09808i 0.385132 1.43733i
\(19\) 0.535898i 0.122944i −0.998109 0.0614718i \(-0.980421\pi\)
0.998109 0.0614718i \(-0.0195794\pi\)
\(20\) 0 0
\(21\) 2.00000i 0.436436i
\(22\) −2.73205 0.732051i −0.582475 0.156074i
\(23\) 6.19615i 1.29199i 0.763343 + 0.645994i \(0.223557\pi\)
−0.763343 + 0.645994i \(0.776443\pi\)
\(24\) −5.46410 + 5.46410i −1.11536 + 1.11536i
\(25\) 0 0
\(26\) −1.26795 + 4.73205i −0.248665 + 0.928032i
\(27\) 4.00000 0.769800
\(28\) 0.732051 1.26795i 0.138345 0.239620i
\(29\) 6.92820i 1.28654i −0.765641 0.643268i \(-0.777578\pi\)
0.765641 0.643268i \(-0.222422\pi\)
\(30\) 0 0
\(31\) −5.46410 −0.981382 −0.490691 0.871334i \(-0.663256\pi\)
−0.490691 + 0.871334i \(0.663256\pi\)
\(32\) 5.46410 1.46410i 0.965926 0.258819i
\(33\) 5.46410i 0.951178i
\(34\) 4.73205 + 1.26795i 0.811540 + 0.217451i
\(35\) 0 0
\(36\) −7.73205 4.46410i −1.28868 0.744017i
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −0.732051 0.196152i −0.118754 0.0318201i
\(39\) −9.46410 −1.51547
\(40\) 0 0
\(41\) 1.46410 0.228654 0.114327 0.993443i \(-0.463529\pi\)
0.114327 + 0.993443i \(0.463529\pi\)
\(42\) 2.73205 + 0.732051i 0.421565 + 0.112958i
\(43\) −5.26795 −0.803355 −0.401677 0.915781i \(-0.631573\pi\)
−0.401677 + 0.915781i \(0.631573\pi\)
\(44\) −2.00000 + 3.46410i −0.301511 + 0.522233i
\(45\) 0 0
\(46\) 8.46410 + 2.26795i 1.24796 + 0.334391i
\(47\) 3.26795i 0.476679i 0.971182 + 0.238340i \(0.0766032\pi\)
−0.971182 + 0.238340i \(0.923397\pi\)
\(48\) 5.46410 + 9.46410i 0.788675 + 1.36603i
\(49\) 6.46410 0.923443
\(50\) 0 0
\(51\) 9.46410i 1.32524i
\(52\) 6.00000 + 3.46410i 0.832050 + 0.480384i
\(53\) 11.4641 1.57472 0.787358 0.616496i \(-0.211449\pi\)
0.787358 + 0.616496i \(0.211449\pi\)
\(54\) 1.46410 5.46410i 0.199239 0.743570i
\(55\) 0 0
\(56\) −1.46410 1.46410i −0.195649 0.195649i
\(57\) 1.46410i 0.193925i
\(58\) −9.46410 2.53590i −1.24270 0.332980i
\(59\) 7.46410i 0.971743i 0.874030 + 0.485872i \(0.161498\pi\)
−0.874030 + 0.485872i \(0.838502\pi\)
\(60\) 0 0
\(61\) 8.92820i 1.14314i −0.820554 0.571570i \(-0.806335\pi\)
0.820554 0.571570i \(-0.193665\pi\)
\(62\) −2.00000 + 7.46410i −0.254000 + 0.947942i
\(63\) 3.26795i 0.411723i
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) −7.46410 2.00000i −0.918767 0.246183i
\(67\) −10.7321 −1.31113 −0.655564 0.755139i \(-0.727569\pi\)
−0.655564 + 0.755139i \(0.727569\pi\)
\(68\) 3.46410 6.00000i 0.420084 0.727607i
\(69\) 16.9282i 2.03792i
\(70\) 0 0
\(71\) 5.46410 0.648470 0.324235 0.945977i \(-0.394893\pi\)
0.324235 + 0.945977i \(0.394893\pi\)
\(72\) −8.92820 + 8.92820i −1.05220 + 1.05220i
\(73\) 7.46410i 0.873607i −0.899557 0.436804i \(-0.856111\pi\)
0.899557 0.436804i \(-0.143889\pi\)
\(74\) 0.732051 2.73205i 0.0850992 0.317594i
\(75\) 0 0
\(76\) −0.535898 + 0.928203i −0.0614718 + 0.106472i
\(77\) 1.46410 0.166850
\(78\) −3.46410 + 12.9282i −0.392232 + 1.46383i
\(79\) 1.07180 0.120587 0.0602933 0.998181i \(-0.480796\pi\)
0.0602933 + 0.998181i \(0.480796\pi\)
\(80\) 0 0
\(81\) −2.46410 −0.273789
\(82\) 0.535898 2.00000i 0.0591801 0.220863i
\(83\) 1.26795 0.139176 0.0695878 0.997576i \(-0.477832\pi\)
0.0695878 + 0.997576i \(0.477832\pi\)
\(84\) 2.00000 3.46410i 0.218218 0.377964i
\(85\) 0 0
\(86\) −1.92820 + 7.19615i −0.207924 + 0.775981i
\(87\) 18.9282i 2.02932i
\(88\) 4.00000 + 4.00000i 0.426401 + 0.426401i
\(89\) −8.92820 −0.946388 −0.473194 0.880958i \(-0.656899\pi\)
−0.473194 + 0.880958i \(0.656899\pi\)
\(90\) 0 0
\(91\) 2.53590i 0.265834i
\(92\) 6.19615 10.7321i 0.645994 1.11889i
\(93\) −14.9282 −1.54798
\(94\) 4.46410 + 1.19615i 0.460437 + 0.123374i
\(95\) 0 0
\(96\) 14.9282 4.00000i 1.52360 0.408248i
\(97\) 14.3923i 1.46132i −0.682743 0.730659i \(-0.739213\pi\)
0.682743 0.730659i \(-0.260787\pi\)
\(98\) 2.36603 8.83013i 0.239005 0.891978i
\(99\) 8.92820i 0.897318i
\(100\) 0 0
\(101\) 2.92820i 0.291367i 0.989331 + 0.145684i \(0.0465381\pi\)
−0.989331 + 0.145684i \(0.953462\pi\)
\(102\) 12.9282 + 3.46410i 1.28008 + 0.342997i
\(103\) 15.6603i 1.54305i −0.636199 0.771525i \(-0.719494\pi\)
0.636199 0.771525i \(-0.280506\pi\)
\(104\) 6.92820 6.92820i 0.679366 0.679366i
\(105\) 0 0
\(106\) 4.19615 15.6603i 0.407566 1.52106i
\(107\) −2.73205 −0.264117 −0.132059 0.991242i \(-0.542159\pi\)
−0.132059 + 0.991242i \(0.542159\pi\)
\(108\) −6.92820 4.00000i −0.666667 0.384900i
\(109\) 16.9282i 1.62143i −0.585443 0.810714i \(-0.699079\pi\)
0.585443 0.810714i \(-0.300921\pi\)
\(110\) 0 0
\(111\) 5.46410 0.518630
\(112\) −2.53590 + 1.46410i −0.239620 + 0.138345i
\(113\) 12.9282i 1.21618i 0.793867 + 0.608092i \(0.208065\pi\)
−0.793867 + 0.608092i \(0.791935\pi\)
\(114\) −2.00000 0.535898i −0.187317 0.0501915i
\(115\) 0 0
\(116\) −6.92820 + 12.0000i −0.643268 + 1.11417i
\(117\) −15.4641 −1.42966
\(118\) 10.1962 + 2.73205i 0.938632 + 0.251506i
\(119\) −2.53590 −0.232465
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) −12.1962 3.26795i −1.10419 0.295866i
\(123\) 4.00000 0.360668
\(124\) 9.46410 + 5.46410i 0.849901 + 0.490691i
\(125\) 0 0
\(126\) 4.46410 + 1.19615i 0.397694 + 0.106562i
\(127\) 16.7321i 1.48473i 0.669996 + 0.742365i \(0.266296\pi\)
−0.669996 + 0.742365i \(0.733704\pi\)
\(128\) −10.9282 2.92820i −0.965926 0.258819i
\(129\) −14.3923 −1.26717
\(130\) 0 0
\(131\) 19.8564i 1.73486i −0.497557 0.867431i \(-0.665770\pi\)
0.497557 0.867431i \(-0.334230\pi\)
\(132\) −5.46410 + 9.46410i −0.475589 + 0.823744i
\(133\) 0.392305 0.0340171
\(134\) −3.92820 + 14.6603i −0.339345 + 1.26645i
\(135\) 0 0
\(136\) −6.92820 6.92820i −0.594089 0.594089i
\(137\) 4.92820i 0.421045i 0.977589 + 0.210522i \(0.0675165\pi\)
−0.977589 + 0.210522i \(0.932484\pi\)
\(138\) 23.1244 + 6.19615i 1.96848 + 0.527452i
\(139\) 0.535898i 0.0454543i 0.999742 + 0.0227272i \(0.00723490\pi\)
−0.999742 + 0.0227272i \(0.992765\pi\)
\(140\) 0 0
\(141\) 8.92820i 0.751890i
\(142\) 2.00000 7.46410i 0.167836 0.626373i
\(143\) 6.92820i 0.579365i
\(144\) 8.92820 + 15.4641i 0.744017 + 1.28868i
\(145\) 0 0
\(146\) −10.1962 2.73205i −0.843840 0.226106i
\(147\) 17.6603 1.45659
\(148\) −3.46410 2.00000i −0.284747 0.164399i
\(149\) 7.85641i 0.643622i 0.946804 + 0.321811i \(0.104292\pi\)
−0.946804 + 0.321811i \(0.895708\pi\)
\(150\) 0 0
\(151\) −12.3923 −1.00847 −0.504236 0.863566i \(-0.668226\pi\)
−0.504236 + 0.863566i \(0.668226\pi\)
\(152\) 1.07180 + 1.07180i 0.0869342 + 0.0869342i
\(153\) 15.4641i 1.25020i
\(154\) 0.535898 2.00000i 0.0431839 0.161165i
\(155\) 0 0
\(156\) 16.3923 + 9.46410i 1.31243 + 0.757735i
\(157\) 3.07180 0.245156 0.122578 0.992459i \(-0.460884\pi\)
0.122578 + 0.992459i \(0.460884\pi\)
\(158\) 0.392305 1.46410i 0.0312101 0.116478i
\(159\) 31.3205 2.48388
\(160\) 0 0
\(161\) −4.53590 −0.357479
\(162\) −0.901924 + 3.36603i −0.0708618 + 0.264460i
\(163\) −0.196152 −0.0153638 −0.00768192 0.999970i \(-0.502445\pi\)
−0.00768192 + 0.999970i \(0.502445\pi\)
\(164\) −2.53590 1.46410i −0.198020 0.114327i
\(165\) 0 0
\(166\) 0.464102 1.73205i 0.0360213 0.134433i
\(167\) 9.80385i 0.758645i −0.925265 0.379322i \(-0.876157\pi\)
0.925265 0.379322i \(-0.123843\pi\)
\(168\) −4.00000 4.00000i −0.308607 0.308607i
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 2.39230i 0.182944i
\(172\) 9.12436 + 5.26795i 0.695726 + 0.401677i
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) −25.8564 6.92820i −1.96017 0.525226i
\(175\) 0 0
\(176\) 6.92820 4.00000i 0.522233 0.301511i
\(177\) 20.3923i 1.53278i
\(178\) −3.26795 + 12.1962i −0.244943 + 0.914140i
\(179\) 8.53590i 0.638003i 0.947754 + 0.319002i \(0.103348\pi\)
−0.947754 + 0.319002i \(0.896652\pi\)
\(180\) 0 0
\(181\) 16.0000i 1.18927i 0.803996 + 0.594635i \(0.202704\pi\)
−0.803996 + 0.594635i \(0.797296\pi\)
\(182\) −3.46410 0.928203i −0.256776 0.0688030i
\(183\) 24.3923i 1.80313i
\(184\) −12.3923 12.3923i −0.913573 0.913573i
\(185\) 0 0
\(186\) −5.46410 + 20.3923i −0.400647 + 1.49524i
\(187\) 6.92820 0.506640
\(188\) 3.26795 5.66025i 0.238340 0.412816i
\(189\) 2.92820i 0.212995i
\(190\) 0 0
\(191\) 15.3205 1.10855 0.554277 0.832333i \(-0.312995\pi\)
0.554277 + 0.832333i \(0.312995\pi\)
\(192\) 21.8564i 1.57735i
\(193\) 0.535898i 0.0385748i −0.999814 0.0192874i \(-0.993860\pi\)
0.999814 0.0192874i \(-0.00613975\pi\)
\(194\) −19.6603 5.26795i −1.41152 0.378217i
\(195\) 0 0
\(196\) −11.1962 6.46410i −0.799725 0.461722i
\(197\) 19.4641 1.38676 0.693380 0.720572i \(-0.256121\pi\)
0.693380 + 0.720572i \(0.256121\pi\)
\(198\) −12.1962 3.26795i −0.866743 0.232243i
\(199\) 1.85641 0.131597 0.0657986 0.997833i \(-0.479041\pi\)
0.0657986 + 0.997833i \(0.479041\pi\)
\(200\) 0 0
\(201\) −29.3205 −2.06811
\(202\) 4.00000 + 1.07180i 0.281439 + 0.0754114i
\(203\) 5.07180 0.355970
\(204\) 9.46410 16.3923i 0.662620 1.14769i
\(205\) 0 0
\(206\) −21.3923 5.73205i −1.49047 0.399371i
\(207\) 27.6603i 1.92252i
\(208\) −6.92820 12.0000i −0.480384 0.832050i
\(209\) −1.07180 −0.0741377
\(210\) 0 0
\(211\) 26.7846i 1.84393i 0.387275 + 0.921964i \(0.373416\pi\)
−0.387275 + 0.921964i \(0.626584\pi\)
\(212\) −19.8564 11.4641i −1.36374 0.787358i
\(213\) 14.9282 1.02286
\(214\) −1.00000 + 3.73205i −0.0683586 + 0.255118i
\(215\) 0 0
\(216\) −8.00000 + 8.00000i −0.544331 + 0.544331i
\(217\) 4.00000i 0.271538i
\(218\) −23.1244 6.19615i −1.56618 0.419656i
\(219\) 20.3923i 1.37798i
\(220\) 0 0
\(221\) 12.0000i 0.807207i
\(222\) 2.00000 7.46410i 0.134231 0.500958i
\(223\) 5.80385i 0.388654i 0.980937 + 0.194327i \(0.0622523\pi\)
−0.980937 + 0.194327i \(0.937748\pi\)
\(224\) 1.07180 + 4.00000i 0.0716124 + 0.267261i
\(225\) 0 0
\(226\) 17.6603 + 4.73205i 1.17474 + 0.314771i
\(227\) −10.0526 −0.667212 −0.333606 0.942713i \(-0.608265\pi\)
−0.333606 + 0.942713i \(0.608265\pi\)
\(228\) −1.46410 + 2.53590i −0.0969625 + 0.167944i
\(229\) 4.00000i 0.264327i 0.991228 + 0.132164i \(0.0421925\pi\)
−0.991228 + 0.132164i \(0.957808\pi\)
\(230\) 0 0
\(231\) 4.00000 0.263181
\(232\) 13.8564 + 13.8564i 0.909718 + 0.909718i
\(233\) 5.32051i 0.348558i 0.984696 + 0.174279i \(0.0557595\pi\)
−0.984696 + 0.174279i \(0.944241\pi\)
\(234\) −5.66025 + 21.1244i −0.370022 + 1.38094i
\(235\) 0 0
\(236\) 7.46410 12.9282i 0.485872 0.841554i
\(237\) 2.92820 0.190207
\(238\) −0.928203 + 3.46410i −0.0601665 + 0.224544i
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) 16.3923 1.05592 0.527961 0.849269i \(-0.322957\pi\)
0.527961 + 0.849269i \(0.322957\pi\)
\(242\) 2.56218 9.56218i 0.164703 0.614680i
\(243\) −18.7321 −1.20166
\(244\) −8.92820 + 15.4641i −0.571570 + 0.989988i
\(245\) 0 0
\(246\) 1.46410 5.46410i 0.0933477 0.348378i
\(247\) 1.85641i 0.118120i
\(248\) 10.9282 10.9282i 0.693942 0.693942i
\(249\) 3.46410 0.219529
\(250\) 0 0
\(251\) 24.9282i 1.57345i 0.617301 + 0.786727i \(0.288226\pi\)
−0.617301 + 0.786727i \(0.711774\pi\)
\(252\) 3.26795 5.66025i 0.205861 0.356562i
\(253\) 12.3923 0.779098
\(254\) 22.8564 + 6.12436i 1.43414 + 0.384276i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 2.00000i 0.124757i −0.998053 0.0623783i \(-0.980131\pi\)
0.998053 0.0623783i \(-0.0198685\pi\)
\(258\) −5.26795 + 19.6603i −0.327968 + 1.22399i
\(259\) 1.46410i 0.0909748i
\(260\) 0 0
\(261\) 30.9282i 1.91441i
\(262\) −27.1244 7.26795i −1.67575 0.449015i
\(263\) 11.6603i 0.719002i 0.933145 + 0.359501i \(0.117053\pi\)
−0.933145 + 0.359501i \(0.882947\pi\)
\(264\) 10.9282 + 10.9282i 0.672584 + 0.672584i
\(265\) 0 0
\(266\) 0.143594 0.535898i 0.00880428 0.0328580i
\(267\) −24.3923 −1.49278
\(268\) 18.5885 + 10.7321i 1.13547 + 0.655564i
\(269\) 8.92820i 0.544362i 0.962246 + 0.272181i \(0.0877450\pi\)
−0.962246 + 0.272181i \(0.912255\pi\)
\(270\) 0 0
\(271\) −19.3205 −1.17364 −0.586819 0.809718i \(-0.699620\pi\)
−0.586819 + 0.809718i \(0.699620\pi\)
\(272\) −12.0000 + 6.92820i −0.727607 + 0.420084i
\(273\) 6.92820i 0.419314i
\(274\) 6.73205 + 1.80385i 0.406698 + 0.108974i
\(275\) 0 0
\(276\) 16.9282 29.3205i 1.01896 1.76489i
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0.732051 + 0.196152i 0.0439055 + 0.0117644i
\(279\) −24.3923 −1.46033
\(280\) 0 0
\(281\) 10.5359 0.628519 0.314260 0.949337i \(-0.398244\pi\)
0.314260 + 0.949337i \(0.398244\pi\)
\(282\) 12.1962 + 3.26795i 0.726270 + 0.194604i
\(283\) −9.66025 −0.574242 −0.287121 0.957894i \(-0.592698\pi\)
−0.287121 + 0.957894i \(0.592698\pi\)
\(284\) −9.46410 5.46410i −0.561591 0.324235i
\(285\) 0 0
\(286\) 9.46410 + 2.53590i 0.559624 + 0.149951i
\(287\) 1.07180i 0.0632662i
\(288\) 24.3923 6.53590i 1.43733 0.385132i
\(289\) 5.00000 0.294118
\(290\) 0 0
\(291\) 39.3205i 2.30501i
\(292\) −7.46410 + 12.9282i −0.436804 + 0.756566i
\(293\) −15.8564 −0.926341 −0.463171 0.886269i \(-0.653288\pi\)
−0.463171 + 0.886269i \(0.653288\pi\)
\(294\) 6.46410 24.1244i 0.376994 1.40696i
\(295\) 0 0
\(296\) −4.00000 + 4.00000i −0.232495 + 0.232495i
\(297\) 8.00000i 0.464207i
\(298\) 10.7321 + 2.87564i 0.621691 + 0.166582i
\(299\) 21.4641i 1.24130i
\(300\) 0 0
\(301\) 3.85641i 0.222280i
\(302\) −4.53590 + 16.9282i −0.261012 + 0.974109i
\(303\) 8.00000i 0.459588i
\(304\) 1.85641 1.07180i 0.106472 0.0614718i
\(305\) 0 0
\(306\) 21.1244 + 5.66025i 1.20760 + 0.323575i
\(307\) 24.9808 1.42573 0.712864 0.701303i \(-0.247398\pi\)
0.712864 + 0.701303i \(0.247398\pi\)
\(308\) −2.53590 1.46410i −0.144496 0.0834249i
\(309\) 42.7846i 2.43393i
\(310\) 0 0
\(311\) 31.3205 1.77602 0.888012 0.459821i \(-0.152086\pi\)
0.888012 + 0.459821i \(0.152086\pi\)
\(312\) 18.9282 18.9282i 1.07160 1.07160i
\(313\) 4.14359i 0.234210i 0.993120 + 0.117105i \(0.0373614\pi\)
−0.993120 + 0.117105i \(0.962639\pi\)
\(314\) 1.12436 4.19615i 0.0634511 0.236803i
\(315\) 0 0
\(316\) −1.85641 1.07180i −0.104431 0.0602933i
\(317\) −8.53590 −0.479424 −0.239712 0.970844i \(-0.577053\pi\)
−0.239712 + 0.970844i \(0.577053\pi\)
\(318\) 11.4641 42.7846i 0.642875 2.39924i
\(319\) −13.8564 −0.775810
\(320\) 0 0
\(321\) −7.46410 −0.416606
\(322\) −1.66025 + 6.19615i −0.0925223 + 0.345298i
\(323\) 1.85641 0.103293
\(324\) 4.26795 + 2.46410i 0.237108 + 0.136895i
\(325\) 0 0
\(326\) −0.0717968 + 0.267949i −0.00397646 + 0.0148403i
\(327\) 46.2487i 2.55756i
\(328\) −2.92820 + 2.92820i −0.161683 + 0.161683i
\(329\) −2.39230 −0.131892
\(330\) 0 0
\(331\) 14.0000i 0.769510i −0.923019 0.384755i \(-0.874286\pi\)
0.923019 0.384755i \(-0.125714\pi\)
\(332\) −2.19615 1.26795i −0.120530 0.0695878i
\(333\) 8.92820 0.489263
\(334\) −13.3923 3.58846i −0.732794 0.196352i
\(335\) 0 0
\(336\) −6.92820 + 4.00000i −0.377964 + 0.218218i
\(337\) 19.8564i 1.08165i −0.841136 0.540824i \(-0.818113\pi\)
0.841136 0.540824i \(-0.181887\pi\)
\(338\) −0.366025 + 1.36603i −0.0199092 + 0.0743020i
\(339\) 35.3205i 1.91835i
\(340\) 0 0
\(341\) 10.9282i 0.591795i
\(342\) −3.26795 0.875644i −0.176710 0.0473494i
\(343\) 9.85641i 0.532196i
\(344\) 10.5359 10.5359i 0.568058 0.568058i
\(345\) 0 0
\(346\) 0.732051 2.73205i 0.0393553 0.146876i
\(347\) 1.66025 0.0891271 0.0445636 0.999007i \(-0.485810\pi\)
0.0445636 + 0.999007i \(0.485810\pi\)
\(348\) −18.9282 + 32.7846i −1.01466 + 1.75744i
\(349\) 28.0000i 1.49881i 0.662114 + 0.749403i \(0.269659\pi\)
−0.662114 + 0.749403i \(0.730341\pi\)
\(350\) 0 0
\(351\) −13.8564 −0.739600
\(352\) −2.92820 10.9282i −0.156074 0.582475i
\(353\) 12.9282i 0.688099i −0.938952 0.344049i \(-0.888201\pi\)
0.938952 0.344049i \(-0.111799\pi\)
\(354\) 27.8564 + 7.46410i 1.48055 + 0.396713i
\(355\) 0 0
\(356\) 15.4641 + 8.92820i 0.819596 + 0.473194i
\(357\) −6.92820 −0.366679
\(358\) 11.6603 + 3.12436i 0.616264 + 0.165127i
\(359\) −18.9282 −0.998992 −0.499496 0.866316i \(-0.666482\pi\)
−0.499496 + 0.866316i \(0.666482\pi\)
\(360\) 0 0
\(361\) 18.7128 0.984885
\(362\) 21.8564 + 5.85641i 1.14875 + 0.307806i
\(363\) 19.1244 1.00377
\(364\) −2.53590 + 4.39230i −0.132917 + 0.230219i
\(365\) 0 0
\(366\) −33.3205 8.92820i −1.74169 0.466685i
\(367\) 2.87564i 0.150107i 0.997179 + 0.0750537i \(0.0239128\pi\)
−0.997179 + 0.0750537i \(0.976087\pi\)
\(368\) −21.4641 + 12.3923i −1.11889 + 0.645994i
\(369\) 6.53590 0.340245
\(370\) 0 0
\(371\) 8.39230i 0.435707i
\(372\) 25.8564 + 14.9282i 1.34059 + 0.773991i
\(373\) −25.7128 −1.33136 −0.665679 0.746238i \(-0.731858\pi\)
−0.665679 + 0.746238i \(0.731858\pi\)
\(374\) 2.53590 9.46410i 0.131128 0.489377i
\(375\) 0 0
\(376\) −6.53590 6.53590i −0.337063 0.337063i
\(377\) 24.0000i 1.23606i
\(378\) 4.00000 + 1.07180i 0.205738 + 0.0551273i
\(379\) 36.2487i 1.86197i 0.365056 + 0.930986i \(0.381050\pi\)
−0.365056 + 0.930986i \(0.618950\pi\)
\(380\) 0 0
\(381\) 45.7128i 2.34194i
\(382\) 5.60770 20.9282i 0.286915 1.07078i
\(383\) 21.1244i 1.07940i −0.841856 0.539702i \(-0.818537\pi\)
0.841856 0.539702i \(-0.181463\pi\)
\(384\) −29.8564 8.00000i −1.52360 0.408248i
\(385\) 0 0
\(386\) −0.732051 0.196152i −0.0372604 0.00998390i
\(387\) −23.5167 −1.19542
\(388\) −14.3923 + 24.9282i −0.730659 + 1.26554i
\(389\) 6.78461i 0.343993i −0.985098 0.171997i \(-0.944978\pi\)
0.985098 0.171997i \(-0.0550218\pi\)
\(390\) 0 0
\(391\) −21.4641 −1.08549
\(392\) −12.9282 + 12.9282i −0.652973 + 0.652973i
\(393\) 54.2487i 2.73649i
\(394\) 7.12436 26.5885i 0.358920 1.33951i
\(395\) 0 0
\(396\) −8.92820 + 15.4641i −0.448659 + 0.777100i
\(397\) −32.2487 −1.61852 −0.809258 0.587453i \(-0.800131\pi\)
−0.809258 + 0.587453i \(0.800131\pi\)
\(398\) 0.679492 2.53590i 0.0340599 0.127113i
\(399\) 1.07180 0.0536570
\(400\) 0 0
\(401\) −7.85641 −0.392330 −0.196165 0.980571i \(-0.562849\pi\)
−0.196165 + 0.980571i \(0.562849\pi\)
\(402\) −10.7321 + 40.0526i −0.535266 + 1.99764i
\(403\) 18.9282 0.942881
\(404\) 2.92820 5.07180i 0.145684 0.252331i
\(405\) 0 0
\(406\) 1.85641 6.92820i 0.0921319 0.343841i
\(407\) 4.00000i 0.198273i
\(408\) −18.9282 18.9282i −0.937086 0.937086i
\(409\) 11.3205 0.559763 0.279882 0.960035i \(-0.409705\pi\)
0.279882 + 0.960035i \(0.409705\pi\)
\(410\) 0 0
\(411\) 13.4641i 0.664135i
\(412\) −15.6603 + 27.1244i −0.771525 + 1.33632i
\(413\) −5.46410 −0.268871
\(414\) 37.7846 + 10.1244i 1.85701 + 0.497585i
\(415\) 0 0
\(416\) −18.9282 + 5.07180i −0.928032 + 0.248665i
\(417\) 1.46410i 0.0716974i
\(418\) −0.392305 + 1.46410i −0.0191883 + 0.0716116i
\(419\) 18.3923i 0.898523i −0.893400 0.449261i \(-0.851687\pi\)
0.893400 0.449261i \(-0.148313\pi\)
\(420\) 0 0
\(421\) 0.143594i 0.00699832i 0.999994 + 0.00349916i \(0.00111382\pi\)
−0.999994 + 0.00349916i \(0.998886\pi\)
\(422\) 36.5885 + 9.80385i 1.78110 + 0.477244i
\(423\) 14.5885i 0.709315i
\(424\) −22.9282 + 22.9282i −1.11349 + 1.11349i
\(425\) 0 0
\(426\) 5.46410 20.3923i 0.264737 0.988010i
\(427\) 6.53590 0.316294
\(428\) 4.73205 + 2.73205i 0.228732 + 0.132059i
\(429\) 18.9282i 0.913862i
\(430\) 0 0
\(431\) −21.4641 −1.03389 −0.516945 0.856019i \(-0.672931\pi\)
−0.516945 + 0.856019i \(0.672931\pi\)
\(432\) 8.00000 + 13.8564i 0.384900 + 0.666667i
\(433\) 19.4641i 0.935385i 0.883891 + 0.467693i \(0.154915\pi\)
−0.883891 + 0.467693i \(0.845085\pi\)
\(434\) −5.46410 1.46410i −0.262285 0.0702791i
\(435\) 0 0
\(436\) −16.9282 + 29.3205i −0.810714 + 1.40420i
\(437\) 3.32051 0.158841
\(438\) −27.8564 7.46410i −1.33103 0.356649i
\(439\) −40.7846 −1.94654 −0.973272 0.229657i \(-0.926240\pi\)
−0.973272 + 0.229657i \(0.926240\pi\)
\(440\) 0 0
\(441\) 28.8564 1.37411
\(442\) −16.3923 4.39230i −0.779702 0.208921i
\(443\) 20.9808 0.996826 0.498413 0.866940i \(-0.333916\pi\)
0.498413 + 0.866940i \(0.333916\pi\)
\(444\) −9.46410 5.46410i −0.449146 0.259315i
\(445\) 0 0
\(446\) 7.92820 + 2.12436i 0.375411 + 0.100591i
\(447\) 21.4641i 1.01522i
\(448\) 5.85641 0.276689
\(449\) 23.3205 1.10056 0.550281 0.834979i \(-0.314520\pi\)
0.550281 + 0.834979i \(0.314520\pi\)
\(450\) 0 0
\(451\) 2.92820i 0.137884i
\(452\) 12.9282 22.3923i 0.608092 1.05325i
\(453\) −33.8564 −1.59071
\(454\) −3.67949 + 13.7321i −0.172687 + 0.644477i
\(455\) 0 0
\(456\) 2.92820 + 2.92820i 0.137126 + 0.137126i
\(457\) 26.7846i 1.25293i −0.779449 0.626466i \(-0.784501\pi\)
0.779449 0.626466i \(-0.215499\pi\)
\(458\) 5.46410 + 1.46410i 0.255321 + 0.0684130i
\(459\) 13.8564i 0.646762i
\(460\) 0 0
\(461\) 10.9282i 0.508977i −0.967076 0.254489i \(-0.918093\pi\)
0.967076 0.254489i \(-0.0819071\pi\)
\(462\) 1.46410 5.46410i 0.0681162 0.254213i
\(463\) 11.2679i 0.523666i 0.965113 + 0.261833i \(0.0843270\pi\)
−0.965113 + 0.261833i \(0.915673\pi\)
\(464\) 24.0000 13.8564i 1.11417 0.643268i
\(465\) 0 0
\(466\) 7.26795 + 1.94744i 0.336681 + 0.0902135i
\(467\) 25.6603 1.18741 0.593707 0.804681i \(-0.297664\pi\)
0.593707 + 0.804681i \(0.297664\pi\)
\(468\) 26.7846 + 15.4641i 1.23812 + 0.714828i
\(469\) 7.85641i 0.362775i
\(470\) 0 0
\(471\) 8.39230 0.386697
\(472\) −14.9282 14.9282i −0.687126 0.687126i
\(473\) 10.5359i 0.484441i
\(474\) 1.07180 4.00000i 0.0492293 0.183726i
\(475\) 0 0
\(476\) 4.39230 + 2.53590i 0.201321 + 0.116233i
\(477\) 51.1769 2.34323
\(478\) 7.32051 27.3205i 0.334832 1.24961i
\(479\) −5.85641 −0.267586 −0.133793 0.991009i \(-0.542716\pi\)
−0.133793 + 0.991009i \(0.542716\pi\)
\(480\) 0 0
\(481\) −6.92820 −0.315899
\(482\) 6.00000 22.3923i 0.273293 1.01994i
\(483\) −12.3923 −0.563869
\(484\) −12.1244 7.00000i −0.551107 0.318182i
\(485\) 0 0
\(486\) −6.85641 + 25.5885i −0.311013 + 1.16072i
\(487\) 6.58846i 0.298551i 0.988796 + 0.149276i \(0.0476942\pi\)
−0.988796 + 0.149276i \(0.952306\pi\)
\(488\) 17.8564 + 17.8564i 0.808322 + 0.808322i
\(489\) −0.535898 −0.0242342
\(490\) 0 0
\(491\) 16.9282i 0.763959i −0.924171 0.381980i \(-0.875242\pi\)
0.924171 0.381980i \(-0.124758\pi\)
\(492\) −6.92820 4.00000i −0.312348 0.180334i
\(493\) 24.0000 1.08091
\(494\) 2.53590 + 0.679492i 0.114095 + 0.0305718i
\(495\) 0 0
\(496\) −10.9282 18.9282i −0.490691 0.849901i
\(497\) 4.00000i 0.179425i
\(498\) 1.26795 4.73205i 0.0568182 0.212048i
\(499\) 31.4641i 1.40853i −0.709939 0.704263i \(-0.751277\pi\)
0.709939 0.704263i \(-0.248723\pi\)
\(500\) 0 0
\(501\) 26.7846i 1.19665i
\(502\) 34.0526 + 9.12436i 1.51984 + 0.407240i
\(503\) 0.339746i 0.0151485i 0.999971 + 0.00757426i \(0.00241099\pi\)
−0.999971 + 0.00757426i \(0.997589\pi\)
\(504\) −6.53590 6.53590i −0.291132 0.291132i
\(505\) 0 0
\(506\) 4.53590 16.9282i 0.201645 0.752550i
\(507\) −2.73205 −0.121335
\(508\) 16.7321 28.9808i 0.742365 1.28581i
\(509\) 1.85641i 0.0822838i 0.999153 + 0.0411419i \(0.0130996\pi\)
−0.999153 + 0.0411419i \(0.986900\pi\)
\(510\) 0 0
\(511\) 5.46410 0.241718
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 2.14359i 0.0946420i
\(514\) −2.73205 0.732051i −0.120506 0.0322894i
\(515\) 0 0
\(516\) 24.9282 + 14.3923i 1.09740 + 0.633586i
\(517\) 6.53590 0.287448
\(518\) 2.00000 + 0.535898i 0.0878750 + 0.0235460i
\(519\) 5.46410 0.239847
\(520\) 0 0
\(521\) −43.8564 −1.92138 −0.960692 0.277616i \(-0.910456\pi\)
−0.960692 + 0.277616i \(0.910456\pi\)
\(522\) −42.2487 11.3205i −1.84918 0.495485i
\(523\) −11.8038 −0.516146 −0.258073 0.966125i \(-0.583088\pi\)
−0.258073 + 0.966125i \(0.583088\pi\)
\(524\) −19.8564 + 34.3923i −0.867431 + 1.50243i
\(525\) 0 0
\(526\) 15.9282 + 4.26795i 0.694503 + 0.186091i
\(527\) 18.9282i 0.824525i
\(528\) 18.9282 10.9282i 0.823744 0.475589i
\(529\) −15.3923 −0.669231
\(530\) 0 0
\(531\) 33.3205i 1.44599i
\(532\) −0.679492 0.392305i −0.0294597 0.0170086i
\(533\) −5.07180 −0.219684
\(534\) −8.92820 + 33.3205i −0.386361 + 1.44192i
\(535\) 0 0
\(536\) 21.4641 21.4641i 0.927108 0.927108i
\(537\) 23.3205i 1.00635i
\(538\) 12.1962 + 3.26795i 0.525813 + 0.140891i
\(539\) 12.9282i 0.556857i
\(540\) 0 0
\(541\) 26.9282i 1.15773i −0.815422 0.578867i \(-0.803495\pi\)
0.815422 0.578867i \(-0.196505\pi\)
\(542\) −7.07180 + 26.3923i −0.303760 + 1.13365i
\(543\) 43.7128i 1.87590i
\(544\) 5.07180 + 18.9282i 0.217451 + 0.811540i
\(545\) 0 0
\(546\) −9.46410 2.53590i −0.405026 0.108526i
\(547\) −33.2679 −1.42243 −0.711217 0.702972i \(-0.751856\pi\)
−0.711217 + 0.702972i \(0.751856\pi\)
\(548\) 4.92820 8.53590i 0.210522 0.364636i
\(549\) 39.8564i 1.70103i
\(550\) 0 0
\(551\) −3.71281 −0.158171
\(552\) −33.8564 33.8564i −1.44102 1.44102i
\(553\) 0.784610i 0.0333650i
\(554\) −0.732051 + 2.73205i −0.0311019 + 0.116074i
\(555\) 0 0
\(556\) 0.535898 0.928203i 0.0227272 0.0393646i
\(557\) −14.7846 −0.626444 −0.313222 0.949680i \(-0.601408\pi\)
−0.313222 + 0.949680i \(0.601408\pi\)
\(558\) −8.92820 + 33.3205i −0.377961 + 1.41057i
\(559\) 18.2487 0.771838
\(560\) 0 0
\(561\) 18.9282 0.799149
\(562\) 3.85641 14.3923i 0.162673 0.607103i
\(563\) −22.0526 −0.929405 −0.464702 0.885467i \(-0.653839\pi\)
−0.464702 + 0.885467i \(0.653839\pi\)
\(564\) 8.92820 15.4641i 0.375945 0.651156i
\(565\) 0 0
\(566\) −3.53590 + 13.1962i −0.148625 + 0.554676i
\(567\) 1.80385i 0.0757545i
\(568\) −10.9282 + 10.9282i −0.458537 + 0.458537i
\(569\) 13.4641 0.564445 0.282222 0.959349i \(-0.408928\pi\)
0.282222 + 0.959349i \(0.408928\pi\)
\(570\) 0 0
\(571\) 6.78461i 0.283927i 0.989872 + 0.141964i \(0.0453416\pi\)
−0.989872 + 0.141964i \(0.954658\pi\)
\(572\) 6.92820 12.0000i 0.289683 0.501745i
\(573\) 41.8564 1.74858
\(574\) 1.46410 + 0.392305i 0.0611104 + 0.0163745i
\(575\) 0 0
\(576\) 35.7128i 1.48803i
\(577\) 39.5692i 1.64729i 0.567107 + 0.823644i \(0.308063\pi\)
−0.567107 + 0.823644i \(0.691937\pi\)
\(578\) 1.83013 6.83013i 0.0761232 0.284096i
\(579\) 1.46410i 0.0608460i
\(580\) 0 0
\(581\) 0.928203i 0.0385084i
\(582\) −53.7128 14.3923i −2.22647 0.596580i
\(583\) 22.9282i 0.949589i
\(584\) 14.9282 + 14.9282i 0.617733 + 0.617733i
\(585\) 0 0
\(586\) −5.80385 + 21.6603i −0.239755 + 0.894777i
\(587\) 3.80385 0.157002 0.0785008 0.996914i \(-0.474987\pi\)
0.0785008 + 0.996914i \(0.474987\pi\)
\(588\) −30.5885 17.6603i −1.26145 0.728297i
\(589\) 2.92820i 0.120655i
\(590\) 0 0
\(591\) 53.1769 2.18741
\(592\) 4.00000 + 6.92820i 0.164399 + 0.284747i
\(593\) 32.6410i 1.34041i −0.742178 0.670203i \(-0.766207\pi\)
0.742178 0.670203i \(-0.233793\pi\)
\(594\) −10.9282 2.92820i −0.448390 0.120146i
\(595\) 0 0
\(596\) 7.85641 13.6077i 0.321811 0.557393i
\(597\) 5.07180 0.207575
\(598\) −29.3205 7.85641i −1.19900 0.321272i
\(599\) 34.6410 1.41539 0.707697 0.706516i \(-0.249734\pi\)
0.707697 + 0.706516i \(0.249734\pi\)
\(600\) 0 0
\(601\) 18.5359 0.756095 0.378048 0.925786i \(-0.376596\pi\)
0.378048 + 0.925786i \(0.376596\pi\)
\(602\) −5.26795 1.41154i −0.214706 0.0575302i
\(603\) −47.9090 −1.95100
\(604\) 21.4641 + 12.3923i 0.873362 + 0.504236i
\(605\) 0 0
\(606\) 10.9282 + 2.92820i 0.443928 + 0.118950i
\(607\) 30.9808i 1.25747i 0.777619 + 0.628735i \(0.216427\pi\)
−0.777619 + 0.628735i \(0.783573\pi\)
\(608\) −0.784610 2.92820i −0.0318201 0.118754i
\(609\) 13.8564 0.561490
\(610\) 0 0
\(611\) 11.3205i 0.457979i
\(612\) 15.4641 26.7846i 0.625099 1.08270i
\(613\) 26.3923 1.06598 0.532988 0.846123i \(-0.321069\pi\)
0.532988 + 0.846123i \(0.321069\pi\)
\(614\) 9.14359 34.1244i 0.369005 1.37715i
\(615\) 0 0
\(616\) −2.92820 + 2.92820i −0.117981 + 0.117981i
\(617\) 20.5359i 0.826744i −0.910562 0.413372i \(-0.864351\pi\)
0.910562 0.413372i \(-0.135649\pi\)
\(618\) −58.4449 15.6603i −2.35100 0.629948i
\(619\) 1.32051i 0.0530757i −0.999648 0.0265379i \(-0.991552\pi\)
0.999648 0.0265379i \(-0.00844825\pi\)
\(620\) 0 0
\(621\) 24.7846i 0.994572i
\(622\) 11.4641 42.7846i 0.459669 1.71551i
\(623\) 6.53590i 0.261855i
\(624\) −18.9282 32.7846i −0.757735 1.31243i
\(625\) 0 0
\(626\) 5.66025 + 1.51666i 0.226229 + 0.0606179i
\(627\) −2.92820 −0.116941
\(628\) −5.32051 3.07180i −0.212311 0.122578i
\(629\) 6.92820i 0.276246i
\(630\) 0 0
\(631\) −23.3205 −0.928375 −0.464187 0.885737i \(-0.653654\pi\)
−0.464187 + 0.885737i \(0.653654\pi\)
\(632\) −2.14359 + 2.14359i −0.0852676 + 0.0852676i
\(633\) 73.1769i 2.90852i
\(634\) −3.12436 + 11.6603i −0.124084 + 0.463088i
\(635\) 0 0
\(636\) −54.2487 31.3205i −2.15110 1.24194i
\(637\) −22.3923 −0.887215
\(638\) −5.07180 + 18.9282i −0.200794 + 0.749375i
\(639\) 24.3923 0.964945
\(640\) 0 0
\(641\) 0.392305 0.0154951 0.00774755 0.999970i \(-0.497534\pi\)
0.00774755 + 0.999970i \(0.497534\pi\)
\(642\) −2.73205 + 10.1962i −0.107825 + 0.402410i
\(643\) 39.1244 1.54291 0.771457 0.636281i \(-0.219528\pi\)
0.771457 + 0.636281i \(0.219528\pi\)
\(644\) 7.85641 + 4.53590i 0.309586 + 0.178739i
\(645\) 0 0
\(646\) 0.679492 2.53590i 0.0267343 0.0997736i
\(647\) 16.7321i 0.657805i 0.944364 + 0.328902i \(0.106679\pi\)
−0.944364 + 0.328902i \(0.893321\pi\)
\(648\) 4.92820 4.92820i 0.193598 0.193598i
\(649\) 14.9282 0.585983
\(650\) 0 0
\(651\) 10.9282i 0.428310i
\(652\) 0.339746 + 0.196152i 0.0133055 + 0.00768192i
\(653\) 12.2487 0.479329 0.239665 0.970856i \(-0.422963\pi\)
0.239665 + 0.970856i \(0.422963\pi\)
\(654\) −63.1769 16.9282i −2.47041 0.661945i
\(655\) 0 0
\(656\) 2.92820 + 5.07180i 0.114327 + 0.198020i
\(657\) 33.3205i 1.29996i
\(658\) −0.875644 + 3.26795i −0.0341362 + 0.127398i
\(659\) 17.3205i 0.674711i 0.941377 + 0.337356i \(0.109532\pi\)
−0.941377 + 0.337356i \(0.890468\pi\)
\(660\) 0 0
\(661\) 8.14359i 0.316749i −0.987379 0.158375i \(-0.949375\pi\)
0.987379 0.158375i \(-0.0506253\pi\)
\(662\) −19.1244 5.12436i −0.743289 0.199164i
\(663\) 32.7846i 1.27325i
\(664\) −2.53590 + 2.53590i −0.0984119 + 0.0984119i
\(665\) 0 0
\(666\) 3.26795 12.1962i 0.126630 0.472591i
\(667\) 42.9282 1.66219
\(668\) −9.80385 + 16.9808i −0.379322 + 0.657005i
\(669\) 15.8564i 0.613044i
\(670\) 0 0
\(671\) −17.8564 −0.689339
\(672\) 2.92820 + 10.9282i 0.112958 + 0.421565i
\(673\) 12.5359i 0.483223i −0.970373 0.241612i \(-0.922324\pi\)
0.970373 0.241612i \(-0.0776760\pi\)
\(674\) −27.1244 7.26795i −1.04479 0.279951i
\(675\) 0 0
\(676\) 1.73205 + 1.00000i 0.0666173 + 0.0384615i
\(677\) −17.6077 −0.676719 −0.338359 0.941017i \(-0.609872\pi\)
−0.338359 + 0.941017i \(0.609872\pi\)
\(678\) 48.2487 + 12.9282i 1.85298 + 0.496505i
\(679\) 10.5359 0.404331
\(680\) 0 0
\(681\) −27.4641 −1.05243
\(682\) 14.9282 + 4.00000i 0.571630 + 0.153168i
\(683\) −16.9808 −0.649751 −0.324875 0.945757i \(-0.605322\pi\)
−0.324875 + 0.945757i \(0.605322\pi\)
\(684\) −2.39230 + 4.14359i −0.0914721 + 0.158434i
\(685\) 0 0
\(686\) 13.4641 + 3.60770i 0.514062 + 0.137742i
\(687\) 10.9282i 0.416937i
\(688\) −10.5359 18.2487i −0.401677 0.695726i
\(689\) −39.7128 −1.51294
\(690\) 0 0
\(691\) 18.0000i 0.684752i 0.939563 + 0.342376i \(0.111232\pi\)
−0.939563 + 0.342376i \(0.888768\pi\)
\(692\) −3.46410 2.00000i −0.131685 0.0760286i
\(693\) 6.53590 0.248278
\(694\) 0.607695 2.26795i 0.0230678 0.0860902i
\(695\) 0 0
\(696\) 37.8564 + 37.8564i 1.43494 + 1.43494i
\(697\) 5.07180i 0.192108i
\(698\) 38.2487 + 10.2487i 1.44774 + 0.387919i
\(699\) 14.5359i 0.549798i
\(700\) 0 0
\(701\) 19.0718i 0.720332i 0.932888 + 0.360166i \(0.117280\pi\)
−0.932888 + 0.360166i \(0.882720\pi\)
\(702\) −5.07180 + 18.9282i −0.191423 + 0.714399i
\(703\) 1.07180i 0.0404236i
\(704\) −16.0000 −0.603023
\(705\) 0 0
\(706\) −17.6603 4.73205i −0.664652 0.178093i
\(707\) −2.14359 −0.0806181
\(708\) 20.3923 35.3205i 0.766390 1.32743i
\(709\) 12.7846i 0.480136i 0.970756 + 0.240068i \(0.0771698\pi\)
−0.970756 + 0.240068i \(0.922830\pi\)
\(710\) 0 0
\(711\) 4.78461 0.179437
\(712\) 17.8564 17.8564i 0.669197 0.669197i
\(713\) 33.8564i 1.26793i
\(714\) −2.53590 + 9.46410i −0.0949036 + 0.354185i
\(715\) 0 0
\(716\) 8.53590 14.7846i 0.319002 0.552527i
\(717\) 54.6410 2.04061
\(718\) −6.92820 + 25.8564i −0.258558 + 0.964953i
\(719\) 1.85641 0.0692323 0.0346161 0.999401i \(-0.488979\pi\)
0.0346161 + 0.999401i \(0.488979\pi\)
\(720\) 0 0
\(721\) 11.4641 0.426945
\(722\) 6.84936 25.5622i 0.254907 0.951326i
\(723\) 44.7846 1.66556
\(724\) 16.0000 27.7128i 0.594635 1.02994i
\(725\) 0 0
\(726\) 7.00000 26.1244i 0.259794 0.969566i
\(727\) 24.0526i 0.892060i −0.895018 0.446030i \(-0.852837\pi\)
0.895018 0.446030i \(-0.147163\pi\)
\(728\) 5.07180 + 5.07180i 0.187973 + 0.187973i
\(729\) −43.7846 −1.62165
\(730\) 0 0
\(731\) 18.2487i 0.674953i
\(732\) −24.3923 + 42.2487i −0.901566 + 1.56156i
\(733\) −35.0718 −1.29541 −0.647703 0.761893i \(-0.724270\pi\)
−0.647703 + 0.761893i \(0.724270\pi\)
\(734\) 3.92820 + 1.05256i 0.144993 + 0.0388507i
\(735\) 0 0
\(736\) 9.07180 + 33.8564i 0.334391 + 1.24796i
\(737\) 21.4641i 0.790640i
\(738\) 2.39230 8.92820i 0.0880620 0.328652i
\(739\) 29.3205i 1.07857i −0.842123 0.539286i \(-0.818694\pi\)
0.842123 0.539286i \(-0.181306\pi\)
\(740\) 0 0
\(741\) 5.07180i 0.186317i
\(742\) 11.4641 + 3.07180i 0.420860 + 0.112769i
\(743\) 10.9808i 0.402845i −0.979504 0.201423i \(-0.935444\pi\)
0.979504 0.201423i \(-0.0645564\pi\)
\(744\) 29.8564 29.8564i 1.09459 1.09459i
\(745\) 0 0
\(746\) −9.41154 + 35.1244i −0.344581 + 1.28599i
\(747\) 5.66025 0.207098
\(748\) −12.0000 6.92820i −0.438763 0.253320i
\(749\) 2.00000i 0.0730784i
\(750\) 0 0
\(751\) 26.2487 0.957829 0.478915 0.877862i \(-0.341030\pi\)
0.478915 + 0.877862i \(0.341030\pi\)
\(752\) −11.3205 + 6.53590i −0.412816 + 0.238340i
\(753\) 68.1051i 2.48189i
\(754\) 32.7846 + 8.78461i 1.19395 + 0.319917i
\(755\) 0 0
\(756\) 2.92820 5.07180i 0.106498 0.184459i
\(757\) 19.0718 0.693176 0.346588 0.938017i \(-0.387340\pi\)
0.346588 + 0.938017i \(0.387340\pi\)
\(758\) 49.5167 + 13.2679i 1.79853 + 0.481914i
\(759\) 33.8564 1.22891
\(760\) 0 0
\(761\) −5.71281 −0.207089 −0.103545 0.994625i \(-0.533018\pi\)
−0.103545 + 0.994625i \(0.533018\pi\)
\(762\) 62.4449 + 16.7321i 2.26214 + 0.606138i
\(763\) 12.3923 0.448632
\(764\) −26.5359 15.3205i −0.960035 0.554277i
\(765\) 0 0
\(766\) −28.8564 7.73205i −1.04262 0.279370i
\(767\) 25.8564i 0.933621i
\(768\) −21.8564 + 37.8564i −0.788675 + 1.36603i
\(769\) −12.9282 −0.466203 −0.233101 0.972452i \(-0.574887\pi\)
−0.233101 + 0.972452i \(0.574887\pi\)
\(770\) 0 0
\(771\) 5.46410i 0.196785i
\(772\) −0.535898 + 0.928203i −0.0192874 + 0.0334068i
\(773\) −22.3923 −0.805395 −0.402698 0.915333i \(-0.631927\pi\)
−0.402698 + 0.915333i \(0.631927\pi\)
\(774\) −8.60770 + 32.1244i −0.309397 + 1.15469i
\(775\) 0 0
\(776\) 28.7846 + 28.7846i 1.03331 + 1.03331i
\(777\) 4.00000i 0.143499i
\(778\) −9.26795 2.48334i −0.332272 0.0890320i
\(779\) 0.784610i 0.0281116i
\(780\) 0 0
\(781\) 10.9282i 0.391042i
\(782\) −7.85641 + 29.3205i −0.280945 + 1.04850i
\(783\) 27.7128i 0.990375i
\(784\) 12.9282 + 22.3923i 0.461722 + 0.799725i
\(785\) 0 0
\(786\) −74.1051 19.8564i −2.64324 0.708255i
\(787\) −16.5885 −0.591315 −0.295657 0.955294i \(-0.595539\pi\)
−0.295657 + 0.955294i \(0.595539\pi\)
\(788\) −33.7128 19.4641i −1.20097 0.693380i
\(789\) 31.8564i 1.13412i
\(790\) 0 0
\(791\) −9.46410 −0.336505
\(792\) 17.8564 + 17.8564i 0.634500 + 0.634500i
\(793\) 30.9282i 1.09829i
\(794\) −11.8038 + 44.0526i −0.418903 + 1.56337i
\(795\) 0 0
\(796\) −3.21539 1.85641i −0.113966 0.0657986i
\(797\) −50.1051 −1.77481 −0.887407 0.460986i \(-0.847496\pi\)
−0.887407 + 0.460986i \(0.847496\pi\)
\(798\) 0.392305 1.46410i 0.0138874 0.0518286i
\(799\) −11.3205 −0.400491
\(800\) 0 0
\(801\) −39.8564 −1.40826
\(802\) −2.87564 + 10.7321i −0.101543 + 0.378962i
\(803\) −14.9282 −0.526805
\(804\) 50.7846 + 29.3205i 1.79104 + 1.03405i
\(805\) 0 0
\(806\) 6.92820 25.8564i 0.244036 0.910753i
\(807\) 24.3923i 0.858650i
\(808\) −5.85641 5.85641i −0.206028 0.206028i
\(809\) −23.8564 −0.838747 −0.419373 0.907814i \(-0.637750\pi\)
−0.419373 + 0.907814i \(0.637750\pi\)
\(810\) 0 0
\(811\) 28.9282i 1.01581i −0.861414 0.507903i \(-0.830421\pi\)
0.861414 0.507903i \(-0.169579\pi\)
\(812\) −8.78461 5.07180i −0.308279 0.177985i
\(813\) −52.7846 −1.85124
\(814\) −5.46410 1.46410i −0.191517 0.0513167i
\(815\) 0 0
\(816\) −32.7846 + 18.9282i −1.14769 + 0.662620i
\(817\) 2.82309i 0.0987673i
\(818\) 4.14359 15.4641i 0.144877 0.540690i
\(819\) 11.3205i 0.395571i
\(820\) 0 0
\(821\) 34.7846i 1.21399i 0.794705 + 0.606996i \(0.207625\pi\)
−0.794705 + 0.606996i \(0.792375\pi\)
\(822\) 18.3923 + 4.92820i 0.641505 + 0.171891i
\(823\) 9.12436i 0.318055i 0.987274 + 0.159028i \(0.0508359\pi\)
−0.987274 + 0.159028i \(0.949164\pi\)
\(824\) 31.3205 + 31.3205i 1.09110 + 1.09110i
\(825\) 0 0
\(826\) −2.00000 + 7.46410i −0.0695889 + 0.259709i
\(827\) −23.1244 −0.804113 −0.402056 0.915615i \(-0.631704\pi\)
−0.402056 + 0.915615i \(0.631704\pi\)
\(828\) 27.6603 47.9090i 0.961260 1.66495i
\(829\) 28.9282i 1.00472i −0.864659 0.502359i \(-0.832466\pi\)
0.864659 0.502359i \(-0.167534\pi\)
\(830\) 0 0
\(831\) −5.46410 −0.189548
\(832\) 27.7128i 0.960769i
\(833\) 22.3923i 0.775847i
\(834\) 2.00000 + 0.535898i 0.0692543 + 0.0185566i
\(835\) 0 0
\(836\) 1.85641 + 1.07180i 0.0642052 + 0.0370689i
\(837\) −21.8564 −0.755468
\(838\) −25.1244 6.73205i −0.867906 0.232555i
\(839\) −24.7846 −0.855660 −0.427830 0.903859i \(-0.640722\pi\)
−0.427830 + 0.903859i \(0.640722\pi\)
\(840\) 0 0
\(841\) −19.0000 −0.655172
\(842\) 0.196152 + 0.0525589i 0.00675986 + 0.00181130i
\(843\) 28.7846 0.991395
\(844\) 26.7846 46.3923i 0.921964 1.59689i
\(845\) 0 0
\(846\) 19.9282 + 5.33975i 0.685146 + 0.183584i
\(847\) 5.12436i 0.176075i
\(848\) 22.9282 + 39.7128i 0.787358 + 1.36374i
\(849\) −26.3923 −0.905782
\(850\) 0 0
\(851\) 12.3923i 0.424803i
\(852\) −25.8564 14.9282i −0.885826 0.511432i
\(853\) −21.6077 −0.739833 −0.369917 0.929065i \(-0.620614\pi\)
−0.369917 + 0.929065i \(0.620614\pi\)
\(854\) 2.39230 8.92820i 0.0818630 0.305517i
\(855\) 0 0
\(856\) 5.46410 5.46410i 0.186759 0.186759i
\(857\) 19.8564i 0.678282i −0.940736 0.339141i \(-0.889864\pi\)
0.940736 0.339141i \(-0.110136\pi\)
\(858\) 25.8564 + 6.92820i 0.882723 + 0.236525i
\(859\) 28.2487i 0.963834i −0.876217 0.481917i \(-0.839941\pi\)
0.876217 0.481917i \(-0.160059\pi\)
\(860\) 0 0
\(861\) 2.92820i 0.0997929i
\(862\) −7.85641 + 29.3205i −0.267590 + 0.998660i
\(863\) 47.6603i 1.62237i −0.584787 0.811187i \(-0.698822\pi\)
0.584787 0.811187i \(-0.301178\pi\)
\(864\) 21.8564 5.85641i 0.743570 0.199239i
\(865\) 0 0
\(866\) 26.5885 + 7.12436i 0.903513 + 0.242095i
\(867\) 13.6603 0.463927
\(868\) −4.00000 + 6.92820i −0.135769 + 0.235159i
\(869\) 2.14359i 0.0727164i
\(870\) 0 0
\(871\) 37.1769 1.25969
\(872\) 33.8564 + 33.8564i 1.14652 + 1.14652i
\(873\) 64.2487i 2.17449i
\(874\) 1.21539 4.53590i 0.0411112 0.153429i
\(875\) 0 0
\(876\) −20.3923 + 35.3205i −0.688992 + 1.19337i
\(877\) 1.71281 0.0578376 0.0289188 0.999582i \(-0.490794\pi\)
0.0289188 + 0.999582i \(0.490794\pi\)
\(878\) −14.9282 + 55.7128i −0.503802 + 1.88022i
\(879\) −43.3205 −1.46116
\(880\) 0 0
\(881\) 9.46410 0.318854 0.159427 0.987210i \(-0.449035\pi\)
0.159427 + 0.987210i \(0.449035\pi\)
\(882\) 10.5622 39.4186i 0.355647 1.32729i
\(883\) −27.9090 −0.939211 −0.469606 0.882876i \(-0.655604\pi\)
−0.469606 + 0.882876i \(0.655604\pi\)
\(884\) −12.0000 + 20.7846i −0.403604 + 0.699062i
\(885\) 0 0
\(886\) 7.67949 28.6603i 0.257998 0.962860i
\(887\) 13.9090i 0.467017i −0.972355 0.233509i \(-0.924979\pi\)
0.972355 0.233509i \(-0.0750207\pi\)
\(888\) −10.9282 + 10.9282i −0.366726 + 0.366726i
\(889\) −12.2487 −0.410809
\(890\) 0 0
\(891\) 4.92820i 0.165101i
\(892\) 5.80385 10.0526i 0.194327 0.336585i
\(893\) 1.75129 0.0586046
\(894\) 29.3205 + 7.85641i 0.980624 + 0.262758i
\(895\) 0 0
\(896\) 2.14359 8.00000i 0.0716124 0.267261i
\(897\) 58.6410i 1.95797i
\(898\) 8.53590 31.8564i 0.284847 1.06306i
\(899\) 37.8564i 1.26258i
\(900\) 0 0
\(901\) 39.7128i 1.32303i
\(902\) −4.00000 1.07180i −0.133185 0.0356869i
\(903\) 10.5359i 0.350613i
\(904\) −25.8564 25.8564i −0.859971 0.859971i
\(905\) 0 0
\(906\) −12.3923 + 46.2487i −0.411707 + 1.53651i
\(907\) −4.87564 −0.161893 −0.0809466 0.996718i \(-0.525794\pi\)
−0.0809466 + 0.996718i \(0.525794\pi\)
\(908\) 17.4115 + 10.0526i 0.577822 + 0.333606i
\(909\) 13.0718i 0.433564i
\(910\) 0 0
\(911\) −49.1769 −1.62930 −0.814652 0.579950i \(-0.803072\pi\)
−0.814652 + 0.579950i \(0.803072\pi\)
\(912\) 5.07180 2.92820i 0.167944 0.0969625i
\(913\) 2.53590i 0.0839260i
\(914\) −36.5885 9.80385i −1.21024 0.324282i
\(915\) 0 0
\(916\) 4.00000 6.92820i 0.132164 0.228914i
\(917\) 14.5359 0.480018
\(918\) 18.9282 + 5.07180i 0.624724 + 0.167394i
\(919\) 38.9282 1.28412 0.642061 0.766653i \(-0.278079\pi\)
0.642061 + 0.766653i \(0.278079\pi\)
\(920\) 0 0
\(921\) 68.2487 2.24887
\(922\) −14.9282 4.00000i −0.491634 0.131733i
\(923\) −18.9282 −0.623029
\(924\) −6.92820 4.00000i −0.227921 0.131590i
\(925\) 0 0
\(926\) 15.3923 + 4.12436i 0.505823 + 0.135535i
\(927\) 69.9090i 2.29611i
\(928\) −10.1436 37.8564i −0.332980 1.24270i
\(929\) 17.4641 0.572979 0.286489 0.958083i \(-0.407512\pi\)
0.286489 + 0.958083i \(0.407512\pi\)
\(930\) 0 0
\(931\) 3.46410i 0.113531i
\(932\) 5.32051 9.21539i 0.174279 0.301860i
\(933\) 85.5692 2.80141
\(934\) 9.39230 35.0526i 0.307326 1.14695i
\(935\) 0 0
\(936\) 30.9282 30.9282i 1.01092 1.01092i
\(937\) 4.24871i 0.138799i 0.997589 + 0.0693997i \(0.0221084\pi\)
−0.997589 + 0.0693997i \(0.977892\pi\)
\(938\) −10.7321 2.87564i −0.350414 0.0938931i
\(939\) 11.3205i 0.369431i
\(940\) 0 0
\(941\) 32.0000i 1.04317i −0.853199 0.521585i \(-0.825341\pi\)
0.853199 0.521585i \(-0.174659\pi\)
\(942\) 3.07180 11.4641i 0.100085 0.373521i
\(943\) 9.07180i 0.295418i
\(944\) −25.8564 + 14.9282i −0.841554 + 0.485872i
\(945\) 0 0
\(946\) 14.3923 + 3.85641i 0.467934 + 0.125383i
\(947\) 3.12436 0.101528 0.0507640 0.998711i \(-0.483834\pi\)
0.0507640 + 0.998711i \(0.483834\pi\)
\(948\) −5.07180 2.92820i −0.164724 0.0951036i
\(949\) 25.8564i 0.839334i
\(950\) 0 0
\(951\) −23.3205 −0.756219
\(952\) 5.07180 5.07180i 0.164378 0.164378i
\(953\) 17.2154i 0.557661i 0.960340 + 0.278831i \(0.0899468\pi\)
−0.960340 + 0.278831i \(0.910053\pi\)
\(954\) 18.7321 69.9090i 0.606473 2.26339i
\(955\) 0 0
\(956\) −34.6410 20.0000i −1.12037 0.646846i
\(957\) −37.8564 −1.22372
\(958\) −2.14359 + 8.00000i −0.0692564 + 0.258468i
\(959\) −3.60770 −0.116499
\(960\) 0 0
\(961\) −1.14359 −0.0368901
\(962\) −2.53590 + 9.46410i −0.0817606 + 0.305135i
\(963\) −12.1962 −0.393016
\(964\) −28.3923 16.3923i −0.914455 0.527961i
\(965\) 0 0
\(966\) −4.53590 + 16.9282i −0.145940 + 0.544656i
\(967\) 16.3397i 0.525451i 0.964871 + 0.262725i \(0.0846213\pi\)
−0.964871 + 0.262725i \(0.915379\pi\)
\(968\) −14.0000 + 14.0000i −0.449977 + 0.449977i
\(969\) 5.07180 0.162930
\(970\) 0 0
\(971\) 36.9282i 1.18508i 0.805540 + 0.592541i \(0.201875\pi\)
−0.805540 + 0.592541i \(0.798125\pi\)
\(972\) 32.4449 + 18.7321i 1.04067 + 0.600831i
\(973\) −0.392305 −0.0125767
\(974\) 9.00000 + 2.41154i 0.288379 + 0.0772708i
\(975\) 0 0
\(976\) 30.9282 17.8564i 0.989988 0.571570i
\(977\) 24.5359i 0.784973i −0.919758 0.392486i \(-0.871615\pi\)
0.919758 0.392486i \(-0.128385\pi\)
\(978\) −0.196152 + 0.732051i −0.00627226 + 0.0234084i
\(979\) 17.8564i 0.570693i
\(980\) 0 0
\(981\) 75.5692i 2.41274i
\(982\) −23.1244 6.19615i −0.737928 0.197727i
\(983\) 48.7321i 1.55431i 0.629309 + 0.777156i \(0.283338\pi\)
−0.629309 + 0.777156i \(0.716662\pi\)
\(984\) −8.00000 + 8.00000i −0.255031 + 0.255031i
\(985\) 0 0
\(986\) 8.78461 32.7846i 0.279759 1.04407i
\(987\) −6.53590 −0.208040
\(988\) 1.85641 3.21539i 0.0590602 0.102295i
\(989\) 32.6410i 1.03792i
\(990\) 0 0
\(991\) 41.4641 1.31715 0.658575 0.752515i \(-0.271159\pi\)
0.658575 + 0.752515i \(0.271159\pi\)
\(992\) −29.8564 + 8.00000i −0.947942 + 0.254000i
\(993\) 38.2487i 1.21379i
\(994\) 5.46410 + 1.46410i 0.173311 + 0.0464385i
\(995\) 0 0
\(996\) −6.00000 3.46410i −0.190117 0.109764i
\(997\) 11.1769 0.353976 0.176988 0.984213i \(-0.443365\pi\)
0.176988 + 0.984213i \(0.443365\pi\)
\(998\) −42.9808 11.5167i −1.36053 0.364554i
\(999\) 8.00000 0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.2.f.c.149.3 4
3.2 odd 2 1800.2.d.p.1549.2 4
4.3 odd 2 800.2.f.c.49.1 4
5.2 odd 4 200.2.d.f.101.4 4
5.3 odd 4 40.2.d.a.21.1 4
5.4 even 2 200.2.f.e.149.2 4
8.3 odd 2 800.2.f.e.49.3 4
8.5 even 2 200.2.f.e.149.1 4
12.11 even 2 7200.2.d.o.2449.2 4
15.2 even 4 1800.2.k.j.901.1 4
15.8 even 4 360.2.k.e.181.4 4
15.14 odd 2 1800.2.d.l.1549.3 4
20.3 even 4 160.2.d.a.81.1 4
20.7 even 4 800.2.d.e.401.4 4
20.19 odd 2 800.2.f.e.49.4 4
24.5 odd 2 1800.2.d.l.1549.4 4
24.11 even 2 7200.2.d.n.2449.2 4
40.3 even 4 160.2.d.a.81.4 4
40.13 odd 4 40.2.d.a.21.2 yes 4
40.19 odd 2 800.2.f.c.49.2 4
40.27 even 4 800.2.d.e.401.1 4
40.29 even 2 inner 200.2.f.c.149.4 4
40.37 odd 4 200.2.d.f.101.3 4
60.23 odd 4 1440.2.k.e.721.3 4
60.47 odd 4 7200.2.k.j.3601.3 4
60.59 even 2 7200.2.d.n.2449.3 4
80.3 even 4 1280.2.a.n.1.2 2
80.13 odd 4 1280.2.a.a.1.1 2
80.27 even 4 6400.2.a.cj.1.2 2
80.37 odd 4 6400.2.a.z.1.1 2
80.43 even 4 1280.2.a.d.1.1 2
80.53 odd 4 1280.2.a.o.1.2 2
80.67 even 4 6400.2.a.be.1.1 2
80.77 odd 4 6400.2.a.ce.1.2 2
120.29 odd 2 1800.2.d.p.1549.1 4
120.53 even 4 360.2.k.e.181.3 4
120.59 even 2 7200.2.d.o.2449.3 4
120.77 even 4 1800.2.k.j.901.2 4
120.83 odd 4 1440.2.k.e.721.1 4
120.107 odd 4 7200.2.k.j.3601.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.2.d.a.21.1 4 5.3 odd 4
40.2.d.a.21.2 yes 4 40.13 odd 4
160.2.d.a.81.1 4 20.3 even 4
160.2.d.a.81.4 4 40.3 even 4
200.2.d.f.101.3 4 40.37 odd 4
200.2.d.f.101.4 4 5.2 odd 4
200.2.f.c.149.3 4 1.1 even 1 trivial
200.2.f.c.149.4 4 40.29 even 2 inner
200.2.f.e.149.1 4 8.5 even 2
200.2.f.e.149.2 4 5.4 even 2
360.2.k.e.181.3 4 120.53 even 4
360.2.k.e.181.4 4 15.8 even 4
800.2.d.e.401.1 4 40.27 even 4
800.2.d.e.401.4 4 20.7 even 4
800.2.f.c.49.1 4 4.3 odd 2
800.2.f.c.49.2 4 40.19 odd 2
800.2.f.e.49.3 4 8.3 odd 2
800.2.f.e.49.4 4 20.19 odd 2
1280.2.a.a.1.1 2 80.13 odd 4
1280.2.a.d.1.1 2 80.43 even 4
1280.2.a.n.1.2 2 80.3 even 4
1280.2.a.o.1.2 2 80.53 odd 4
1440.2.k.e.721.1 4 120.83 odd 4
1440.2.k.e.721.3 4 60.23 odd 4
1800.2.d.l.1549.3 4 15.14 odd 2
1800.2.d.l.1549.4 4 24.5 odd 2
1800.2.d.p.1549.1 4 120.29 odd 2
1800.2.d.p.1549.2 4 3.2 odd 2
1800.2.k.j.901.1 4 15.2 even 4
1800.2.k.j.901.2 4 120.77 even 4
6400.2.a.z.1.1 2 80.37 odd 4
6400.2.a.be.1.1 2 80.67 even 4
6400.2.a.ce.1.2 2 80.77 odd 4
6400.2.a.cj.1.2 2 80.27 even 4
7200.2.d.n.2449.2 4 24.11 even 2
7200.2.d.n.2449.3 4 60.59 even 2
7200.2.d.o.2449.2 4 12.11 even 2
7200.2.d.o.2449.3 4 120.59 even 2
7200.2.k.j.3601.3 4 60.47 odd 4
7200.2.k.j.3601.4 4 120.107 odd 4