Properties

Label 1440.2.k.e.721.3
Level $1440$
Weight $2$
Character 1440.721
Analytic conductor $11.498$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,2,Mod(721,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.721");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1440.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.4984578911\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 721.3
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1440.721
Dual form 1440.2.k.e.721.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{5} -0.732051 q^{7} -2.00000i q^{11} -3.46410i q^{13} -3.46410 q^{17} -0.535898i q^{19} -6.19615 q^{23} -1.00000 q^{25} -6.92820i q^{29} +5.46410 q^{31} -0.732051i q^{35} -2.00000i q^{37} -1.46410 q^{41} +5.26795i q^{43} +3.26795 q^{47} -6.46410 q^{49} -11.4641i q^{53} +2.00000 q^{55} -7.46410i q^{59} -8.92820i q^{61} +3.46410 q^{65} -10.7321i q^{67} +5.46410 q^{71} +7.46410 q^{73} +1.46410i q^{77} +1.07180 q^{79} +1.26795i q^{83} -3.46410i q^{85} -8.92820 q^{89} +2.53590i q^{91} +0.535898 q^{95} -14.3923 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7} - 4 q^{23} - 4 q^{25} + 8 q^{31} + 8 q^{41} + 20 q^{47} - 12 q^{49} + 8 q^{55} + 8 q^{71} + 16 q^{73} + 32 q^{79} - 8 q^{89} + 16 q^{95} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(991\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) −0.732051 −0.276689 −0.138345 0.990384i \(-0.544178\pi\)
−0.138345 + 0.990384i \(0.544178\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 2.00000i − 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) 0 0
\(13\) − 3.46410i − 0.960769i −0.877058 0.480384i \(-0.840497\pi\)
0.877058 0.480384i \(-0.159503\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.46410 −0.840168 −0.420084 0.907485i \(-0.637999\pi\)
−0.420084 + 0.907485i \(0.637999\pi\)
\(18\) 0 0
\(19\) − 0.535898i − 0.122944i −0.998109 0.0614718i \(-0.980421\pi\)
0.998109 0.0614718i \(-0.0195794\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.19615 −1.29199 −0.645994 0.763343i \(-0.723557\pi\)
−0.645994 + 0.763343i \(0.723557\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 6.92820i − 1.28654i −0.765641 0.643268i \(-0.777578\pi\)
0.765641 0.643268i \(-0.222422\pi\)
\(30\) 0 0
\(31\) 5.46410 0.981382 0.490691 0.871334i \(-0.336744\pi\)
0.490691 + 0.871334i \(0.336744\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 0.732051i − 0.123739i
\(36\) 0 0
\(37\) − 2.00000i − 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.46410 −0.228654 −0.114327 0.993443i \(-0.536471\pi\)
−0.114327 + 0.993443i \(0.536471\pi\)
\(42\) 0 0
\(43\) 5.26795i 0.803355i 0.915781 + 0.401677i \(0.131573\pi\)
−0.915781 + 0.401677i \(0.868427\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.26795 0.476679 0.238340 0.971182i \(-0.423397\pi\)
0.238340 + 0.971182i \(0.423397\pi\)
\(48\) 0 0
\(49\) −6.46410 −0.923443
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 11.4641i − 1.57472i −0.616496 0.787358i \(-0.711449\pi\)
0.616496 0.787358i \(-0.288551\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 7.46410i − 0.971743i −0.874030 0.485872i \(-0.838502\pi\)
0.874030 0.485872i \(-0.161498\pi\)
\(60\) 0 0
\(61\) − 8.92820i − 1.14314i −0.820554 0.571570i \(-0.806335\pi\)
0.820554 0.571570i \(-0.193665\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.46410 0.429669
\(66\) 0 0
\(67\) − 10.7321i − 1.31113i −0.755139 0.655564i \(-0.772431\pi\)
0.755139 0.655564i \(-0.227569\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.46410 0.648470 0.324235 0.945977i \(-0.394893\pi\)
0.324235 + 0.945977i \(0.394893\pi\)
\(72\) 0 0
\(73\) 7.46410 0.873607 0.436804 0.899557i \(-0.356111\pi\)
0.436804 + 0.899557i \(0.356111\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.46410i 0.166850i
\(78\) 0 0
\(79\) 1.07180 0.120587 0.0602933 0.998181i \(-0.480796\pi\)
0.0602933 + 0.998181i \(0.480796\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.26795i 0.139176i 0.997576 + 0.0695878i \(0.0221684\pi\)
−0.997576 + 0.0695878i \(0.977832\pi\)
\(84\) 0 0
\(85\) − 3.46410i − 0.375735i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −8.92820 −0.946388 −0.473194 0.880958i \(-0.656899\pi\)
−0.473194 + 0.880958i \(0.656899\pi\)
\(90\) 0 0
\(91\) 2.53590i 0.265834i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.535898 0.0549820
\(96\) 0 0
\(97\) −14.3923 −1.46132 −0.730659 0.682743i \(-0.760787\pi\)
−0.730659 + 0.682743i \(0.760787\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 2.92820i − 0.291367i −0.989331 0.145684i \(-0.953462\pi\)
0.989331 0.145684i \(-0.0465381\pi\)
\(102\) 0 0
\(103\) −15.6603 −1.54305 −0.771525 0.636199i \(-0.780506\pi\)
−0.771525 + 0.636199i \(0.780506\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.73205i 0.264117i 0.991242 + 0.132059i \(0.0421587\pi\)
−0.991242 + 0.132059i \(0.957841\pi\)
\(108\) 0 0
\(109\) 16.9282i 1.62143i 0.585443 + 0.810714i \(0.300921\pi\)
−0.585443 + 0.810714i \(0.699079\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.9282 1.21618 0.608092 0.793867i \(-0.291935\pi\)
0.608092 + 0.793867i \(0.291935\pi\)
\(114\) 0 0
\(115\) − 6.19615i − 0.577794i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.53590 0.232465
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 1.00000i − 0.0894427i
\(126\) 0 0
\(127\) −16.7321 −1.48473 −0.742365 0.669996i \(-0.766296\pi\)
−0.742365 + 0.669996i \(0.766296\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 19.8564i − 1.73486i −0.497557 0.867431i \(-0.665770\pi\)
0.497557 0.867431i \(-0.334230\pi\)
\(132\) 0 0
\(133\) 0.392305i 0.0340171i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.92820 −0.421045 −0.210522 0.977589i \(-0.567516\pi\)
−0.210522 + 0.977589i \(0.567516\pi\)
\(138\) 0 0
\(139\) 0.535898i 0.0454543i 0.999742 + 0.0227272i \(0.00723490\pi\)
−0.999742 + 0.0227272i \(0.992765\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.92820 −0.579365
\(144\) 0 0
\(145\) 6.92820 0.575356
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.85641i 0.643622i 0.946804 + 0.321811i \(0.104292\pi\)
−0.946804 + 0.321811i \(0.895708\pi\)
\(150\) 0 0
\(151\) 12.3923 1.00847 0.504236 0.863566i \(-0.331774\pi\)
0.504236 + 0.863566i \(0.331774\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.46410i 0.438887i
\(156\) 0 0
\(157\) − 3.07180i − 0.245156i −0.992459 0.122578i \(-0.960884\pi\)
0.992459 0.122578i \(-0.0391162\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.53590 0.357479
\(162\) 0 0
\(163\) 0.196152i 0.0153638i 0.999970 + 0.00768192i \(0.00244526\pi\)
−0.999970 + 0.00768192i \(0.997555\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −9.80385 −0.758645 −0.379322 0.925265i \(-0.623843\pi\)
−0.379322 + 0.925265i \(0.623843\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 2.00000i − 0.152057i −0.997106 0.0760286i \(-0.975776\pi\)
0.997106 0.0760286i \(-0.0242240\pi\)
\(174\) 0 0
\(175\) 0.732051 0.0553378
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 8.53590i − 0.638003i −0.947754 0.319002i \(-0.896652\pi\)
0.947754 0.319002i \(-0.103348\pi\)
\(180\) 0 0
\(181\) 16.0000i 1.18927i 0.803996 + 0.594635i \(0.202704\pi\)
−0.803996 + 0.594635i \(0.797296\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.00000 0.147043
\(186\) 0 0
\(187\) 6.92820i 0.506640i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.3205 1.10855 0.554277 0.832333i \(-0.312995\pi\)
0.554277 + 0.832333i \(0.312995\pi\)
\(192\) 0 0
\(193\) 0.535898 0.0385748 0.0192874 0.999814i \(-0.493860\pi\)
0.0192874 + 0.999814i \(0.493860\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.4641i 1.38676i 0.720572 + 0.693380i \(0.243879\pi\)
−0.720572 + 0.693380i \(0.756121\pi\)
\(198\) 0 0
\(199\) 1.85641 0.131597 0.0657986 0.997833i \(-0.479041\pi\)
0.0657986 + 0.997833i \(0.479041\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.07180i 0.355970i
\(204\) 0 0
\(205\) − 1.46410i − 0.102257i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.07180 −0.0741377
\(210\) 0 0
\(211\) − 26.7846i − 1.84393i −0.387275 0.921964i \(-0.626584\pi\)
0.387275 0.921964i \(-0.373416\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.26795 −0.359271
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.0000i 0.807207i
\(222\) 0 0
\(223\) 5.80385 0.388654 0.194327 0.980937i \(-0.437748\pi\)
0.194327 + 0.980937i \(0.437748\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.0526i 0.667212i 0.942713 + 0.333606i \(0.108265\pi\)
−0.942713 + 0.333606i \(0.891735\pi\)
\(228\) 0 0
\(229\) − 4.00000i − 0.264327i −0.991228 0.132164i \(-0.957808\pi\)
0.991228 0.132164i \(-0.0421925\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.32051 0.348558 0.174279 0.984696i \(-0.444241\pi\)
0.174279 + 0.984696i \(0.444241\pi\)
\(234\) 0 0
\(235\) 3.26795i 0.213177i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) 16.3923 1.05592 0.527961 0.849269i \(-0.322957\pi\)
0.527961 + 0.849269i \(0.322957\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 6.46410i − 0.412976i
\(246\) 0 0
\(247\) −1.85641 −0.118120
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.9282i 1.57345i 0.617301 + 0.786727i \(0.288226\pi\)
−0.617301 + 0.786727i \(0.711774\pi\)
\(252\) 0 0
\(253\) 12.3923i 0.779098i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) 0 0
\(259\) 1.46410i 0.0909748i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.6603 −0.719002 −0.359501 0.933145i \(-0.617053\pi\)
−0.359501 + 0.933145i \(0.617053\pi\)
\(264\) 0 0
\(265\) 11.4641 0.704234
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.92820i 0.544362i 0.962246 + 0.272181i \(0.0877450\pi\)
−0.962246 + 0.272181i \(0.912255\pi\)
\(270\) 0 0
\(271\) 19.3205 1.17364 0.586819 0.809718i \(-0.300380\pi\)
0.586819 + 0.809718i \(0.300380\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.00000i 0.120605i
\(276\) 0 0
\(277\) 2.00000i 0.120168i 0.998193 + 0.0600842i \(0.0191369\pi\)
−0.998193 + 0.0600842i \(0.980863\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.5359 −0.628519 −0.314260 0.949337i \(-0.601756\pi\)
−0.314260 + 0.949337i \(0.601756\pi\)
\(282\) 0 0
\(283\) 9.66025i 0.574242i 0.957894 + 0.287121i \(0.0926983\pi\)
−0.957894 + 0.287121i \(0.907302\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.07180 0.0632662
\(288\) 0 0
\(289\) −5.00000 −0.294118
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 15.8564i 0.926341i 0.886269 + 0.463171i \(0.153288\pi\)
−0.886269 + 0.463171i \(0.846712\pi\)
\(294\) 0 0
\(295\) 7.46410 0.434577
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 21.4641i 1.24130i
\(300\) 0 0
\(301\) − 3.85641i − 0.222280i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.92820 0.511227
\(306\) 0 0
\(307\) 24.9808i 1.42573i 0.701303 + 0.712864i \(0.252602\pi\)
−0.701303 + 0.712864i \(0.747398\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 31.3205 1.77602 0.888012 0.459821i \(-0.152086\pi\)
0.888012 + 0.459821i \(0.152086\pi\)
\(312\) 0 0
\(313\) −4.14359 −0.234210 −0.117105 0.993120i \(-0.537361\pi\)
−0.117105 + 0.993120i \(0.537361\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 8.53590i − 0.479424i −0.970844 0.239712i \(-0.922947\pi\)
0.970844 0.239712i \(-0.0770530\pi\)
\(318\) 0 0
\(319\) −13.8564 −0.775810
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.85641i 0.103293i
\(324\) 0 0
\(325\) 3.46410i 0.192154i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.39230 −0.131892
\(330\) 0 0
\(331\) 14.0000i 0.769510i 0.923019 + 0.384755i \(0.125714\pi\)
−0.923019 + 0.384755i \(0.874286\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.7321 0.586355
\(336\) 0 0
\(337\) −19.8564 −1.08165 −0.540824 0.841136i \(-0.681887\pi\)
−0.540824 + 0.841136i \(0.681887\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 10.9282i − 0.591795i
\(342\) 0 0
\(343\) 9.85641 0.532196
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 1.66025i − 0.0891271i −0.999007 0.0445636i \(-0.985810\pi\)
0.999007 0.0445636i \(-0.0141897\pi\)
\(348\) 0 0
\(349\) − 28.0000i − 1.49881i −0.662114 0.749403i \(-0.730341\pi\)
0.662114 0.749403i \(-0.269659\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.9282 −0.688099 −0.344049 0.938952i \(-0.611799\pi\)
−0.344049 + 0.938952i \(0.611799\pi\)
\(354\) 0 0
\(355\) 5.46410i 0.290004i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.9282 0.998992 0.499496 0.866316i \(-0.333518\pi\)
0.499496 + 0.866316i \(0.333518\pi\)
\(360\) 0 0
\(361\) 18.7128 0.984885
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.46410i 0.390689i
\(366\) 0 0
\(367\) −2.87564 −0.150107 −0.0750537 0.997179i \(-0.523913\pi\)
−0.0750537 + 0.997179i \(0.523913\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8.39230i 0.435707i
\(372\) 0 0
\(373\) − 25.7128i − 1.33136i −0.746238 0.665679i \(-0.768142\pi\)
0.746238 0.665679i \(-0.231858\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −24.0000 −1.23606
\(378\) 0 0
\(379\) 36.2487i 1.86197i 0.365056 + 0.930986i \(0.381050\pi\)
−0.365056 + 0.930986i \(0.618950\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 21.1244 1.07940 0.539702 0.841856i \(-0.318537\pi\)
0.539702 + 0.841856i \(0.318537\pi\)
\(384\) 0 0
\(385\) −1.46410 −0.0746175
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 6.78461i − 0.343993i −0.985098 0.171997i \(-0.944978\pi\)
0.985098 0.171997i \(-0.0550218\pi\)
\(390\) 0 0
\(391\) 21.4641 1.08549
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.07180i 0.0539279i
\(396\) 0 0
\(397\) 32.2487i 1.61852i 0.587453 + 0.809258i \(0.300131\pi\)
−0.587453 + 0.809258i \(0.699869\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.85641 0.392330 0.196165 0.980571i \(-0.437151\pi\)
0.196165 + 0.980571i \(0.437151\pi\)
\(402\) 0 0
\(403\) − 18.9282i − 0.942881i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.00000 −0.198273
\(408\) 0 0
\(409\) −11.3205 −0.559763 −0.279882 0.960035i \(-0.590295\pi\)
−0.279882 + 0.960035i \(0.590295\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.46410i 0.268871i
\(414\) 0 0
\(415\) −1.26795 −0.0622412
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 18.3923i 0.898523i 0.893400 + 0.449261i \(0.148313\pi\)
−0.893400 + 0.449261i \(0.851687\pi\)
\(420\) 0 0
\(421\) 0.143594i 0.00699832i 0.999994 + 0.00349916i \(0.00111382\pi\)
−0.999994 + 0.00349916i \(0.998886\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.46410 0.168034
\(426\) 0 0
\(427\) 6.53590i 0.316294i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −21.4641 −1.03389 −0.516945 0.856019i \(-0.672931\pi\)
−0.516945 + 0.856019i \(0.672931\pi\)
\(432\) 0 0
\(433\) −19.4641 −0.935385 −0.467693 0.883891i \(-0.654915\pi\)
−0.467693 + 0.883891i \(0.654915\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.32051i 0.158841i
\(438\) 0 0
\(439\) −40.7846 −1.94654 −0.973272 0.229657i \(-0.926240\pi\)
−0.973272 + 0.229657i \(0.926240\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 20.9808i 0.996826i 0.866940 + 0.498413i \(0.166084\pi\)
−0.866940 + 0.498413i \(0.833916\pi\)
\(444\) 0 0
\(445\) − 8.92820i − 0.423237i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 23.3205 1.10056 0.550281 0.834979i \(-0.314520\pi\)
0.550281 + 0.834979i \(0.314520\pi\)
\(450\) 0 0
\(451\) 2.92820i 0.137884i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.53590 −0.118885
\(456\) 0 0
\(457\) −26.7846 −1.25293 −0.626466 0.779449i \(-0.715499\pi\)
−0.626466 + 0.779449i \(0.715499\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.9282i 0.508977i 0.967076 + 0.254489i \(0.0819071\pi\)
−0.967076 + 0.254489i \(0.918093\pi\)
\(462\) 0 0
\(463\) 11.2679 0.523666 0.261833 0.965113i \(-0.415673\pi\)
0.261833 + 0.965113i \(0.415673\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 25.6603i − 1.18741i −0.804681 0.593707i \(-0.797664\pi\)
0.804681 0.593707i \(-0.202336\pi\)
\(468\) 0 0
\(469\) 7.85641i 0.362775i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10.5359 0.484441
\(474\) 0 0
\(475\) 0.535898i 0.0245887i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.85641 0.267586 0.133793 0.991009i \(-0.457284\pi\)
0.133793 + 0.991009i \(0.457284\pi\)
\(480\) 0 0
\(481\) −6.92820 −0.315899
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 14.3923i − 0.653521i
\(486\) 0 0
\(487\) −6.58846 −0.298551 −0.149276 0.988796i \(-0.547694\pi\)
−0.149276 + 0.988796i \(0.547694\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 16.9282i − 0.763959i −0.924171 0.381980i \(-0.875242\pi\)
0.924171 0.381980i \(-0.124758\pi\)
\(492\) 0 0
\(493\) 24.0000i 1.08091i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.00000 −0.179425
\(498\) 0 0
\(499\) − 31.4641i − 1.40853i −0.709939 0.704263i \(-0.751277\pi\)
0.709939 0.704263i \(-0.248723\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −0.339746 −0.0151485 −0.00757426 0.999971i \(-0.502411\pi\)
−0.00757426 + 0.999971i \(0.502411\pi\)
\(504\) 0 0
\(505\) 2.92820 0.130303
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.85641i 0.0822838i 0.999153 + 0.0411419i \(0.0130996\pi\)
−0.999153 + 0.0411419i \(0.986900\pi\)
\(510\) 0 0
\(511\) −5.46410 −0.241718
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 15.6603i − 0.690073i
\(516\) 0 0
\(517\) − 6.53590i − 0.287448i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 43.8564 1.92138 0.960692 0.277616i \(-0.0895444\pi\)
0.960692 + 0.277616i \(0.0895444\pi\)
\(522\) 0 0
\(523\) 11.8038i 0.516146i 0.966125 + 0.258073i \(0.0830875\pi\)
−0.966125 + 0.258073i \(0.916912\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −18.9282 −0.824525
\(528\) 0 0
\(529\) 15.3923 0.669231
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.07180i 0.219684i
\(534\) 0 0
\(535\) −2.73205 −0.118117
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.9282i 0.556857i
\(540\) 0 0
\(541\) − 26.9282i − 1.15773i −0.815422 0.578867i \(-0.803495\pi\)
0.815422 0.578867i \(-0.196505\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −16.9282 −0.725125
\(546\) 0 0
\(547\) − 33.2679i − 1.42243i −0.702972 0.711217i \(-0.748144\pi\)
0.702972 0.711217i \(-0.251856\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.71281 −0.158171
\(552\) 0 0
\(553\) −0.784610 −0.0333650
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 14.7846i − 0.626444i −0.949680 0.313222i \(-0.898592\pi\)
0.949680 0.313222i \(-0.101408\pi\)
\(558\) 0 0
\(559\) 18.2487 0.771838
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 22.0526i − 0.929405i −0.885467 0.464702i \(-0.846161\pi\)
0.885467 0.464702i \(-0.153839\pi\)
\(564\) 0 0
\(565\) 12.9282i 0.543894i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13.4641 0.564445 0.282222 0.959349i \(-0.408928\pi\)
0.282222 + 0.959349i \(0.408928\pi\)
\(570\) 0 0
\(571\) − 6.78461i − 0.283927i −0.989872 0.141964i \(-0.954658\pi\)
0.989872 0.141964i \(-0.0453416\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.19615 0.258397
\(576\) 0 0
\(577\) 39.5692 1.64729 0.823644 0.567107i \(-0.191937\pi\)
0.823644 + 0.567107i \(0.191937\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 0.928203i − 0.0385084i
\(582\) 0 0
\(583\) −22.9282 −0.949589
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 3.80385i − 0.157002i −0.996914 0.0785008i \(-0.974987\pi\)
0.996914 0.0785008i \(-0.0250133\pi\)
\(588\) 0 0
\(589\) − 2.92820i − 0.120655i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −32.6410 −1.34041 −0.670203 0.742178i \(-0.733793\pi\)
−0.670203 + 0.742178i \(0.733793\pi\)
\(594\) 0 0
\(595\) 2.53590i 0.103962i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −34.6410 −1.41539 −0.707697 0.706516i \(-0.750266\pi\)
−0.707697 + 0.706516i \(0.750266\pi\)
\(600\) 0 0
\(601\) 18.5359 0.756095 0.378048 0.925786i \(-0.376596\pi\)
0.378048 + 0.925786i \(0.376596\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.00000i 0.284590i
\(606\) 0 0
\(607\) −30.9808 −1.25747 −0.628735 0.777619i \(-0.716427\pi\)
−0.628735 + 0.777619i \(0.716427\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 11.3205i − 0.457979i
\(612\) 0 0
\(613\) 26.3923i 1.06598i 0.846123 + 0.532988i \(0.178931\pi\)
−0.846123 + 0.532988i \(0.821069\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.5359 0.826744 0.413372 0.910562i \(-0.364351\pi\)
0.413372 + 0.910562i \(0.364351\pi\)
\(618\) 0 0
\(619\) − 1.32051i − 0.0530757i −0.999648 0.0265379i \(-0.991552\pi\)
0.999648 0.0265379i \(-0.00844825\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.53590 0.261855
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.92820i 0.276246i
\(630\) 0 0
\(631\) 23.3205 0.928375 0.464187 0.885737i \(-0.346346\pi\)
0.464187 + 0.885737i \(0.346346\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 16.7321i − 0.663991i
\(636\) 0 0
\(637\) 22.3923i 0.887215i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.392305 −0.0154951 −0.00774755 0.999970i \(-0.502466\pi\)
−0.00774755 + 0.999970i \(0.502466\pi\)
\(642\) 0 0
\(643\) − 39.1244i − 1.54291i −0.636281 0.771457i \(-0.719528\pi\)
0.636281 0.771457i \(-0.280472\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.7321 0.657805 0.328902 0.944364i \(-0.393321\pi\)
0.328902 + 0.944364i \(0.393321\pi\)
\(648\) 0 0
\(649\) −14.9282 −0.585983
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 12.2487i − 0.479329i −0.970856 0.239665i \(-0.922963\pi\)
0.970856 0.239665i \(-0.0770375\pi\)
\(654\) 0 0
\(655\) 19.8564 0.775854
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 17.3205i − 0.674711i −0.941377 0.337356i \(-0.890468\pi\)
0.941377 0.337356i \(-0.109532\pi\)
\(660\) 0 0
\(661\) − 8.14359i − 0.316749i −0.987379 0.158375i \(-0.949375\pi\)
0.987379 0.158375i \(-0.0506253\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.392305 −0.0152129
\(666\) 0 0
\(667\) 42.9282i 1.66219i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −17.8564 −0.689339
\(672\) 0 0
\(673\) 12.5359 0.483223 0.241612 0.970373i \(-0.422324\pi\)
0.241612 + 0.970373i \(0.422324\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 17.6077i − 0.676719i −0.941017 0.338359i \(-0.890128\pi\)
0.941017 0.338359i \(-0.109872\pi\)
\(678\) 0 0
\(679\) 10.5359 0.404331
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 16.9808i − 0.649751i −0.945757 0.324875i \(-0.894678\pi\)
0.945757 0.324875i \(-0.105322\pi\)
\(684\) 0 0
\(685\) − 4.92820i − 0.188297i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −39.7128 −1.51294
\(690\) 0 0
\(691\) − 18.0000i − 0.684752i −0.939563 0.342376i \(-0.888768\pi\)
0.939563 0.342376i \(-0.111232\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.535898 −0.0203278
\(696\) 0 0
\(697\) 5.07180 0.192108
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 19.0718i − 0.720332i −0.932888 0.360166i \(-0.882720\pi\)
0.932888 0.360166i \(-0.117280\pi\)
\(702\) 0 0
\(703\) −1.07180 −0.0404236
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.14359i 0.0806181i
\(708\) 0 0
\(709\) − 12.7846i − 0.480136i −0.970756 0.240068i \(-0.922830\pi\)
0.970756 0.240068i \(-0.0771698\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −33.8564 −1.26793
\(714\) 0 0
\(715\) − 6.92820i − 0.259100i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.85641 −0.0692323 −0.0346161 0.999401i \(-0.511021\pi\)
−0.0346161 + 0.999401i \(0.511021\pi\)
\(720\) 0 0
\(721\) 11.4641 0.426945
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.92820i 0.257307i
\(726\) 0 0
\(727\) 24.0526 0.892060 0.446030 0.895018i \(-0.352837\pi\)
0.446030 + 0.895018i \(0.352837\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 18.2487i − 0.674953i
\(732\) 0 0
\(733\) − 35.0718i − 1.29541i −0.761893 0.647703i \(-0.775730\pi\)
0.761893 0.647703i \(-0.224270\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −21.4641 −0.790640
\(738\) 0 0
\(739\) − 29.3205i − 1.07857i −0.842123 0.539286i \(-0.818694\pi\)
0.842123 0.539286i \(-0.181306\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.9808 0.402845 0.201423 0.979504i \(-0.435444\pi\)
0.201423 + 0.979504i \(0.435444\pi\)
\(744\) 0 0
\(745\) −7.85641 −0.287836
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 2.00000i − 0.0730784i
\(750\) 0 0
\(751\) −26.2487 −0.957829 −0.478915 0.877862i \(-0.658970\pi\)
−0.478915 + 0.877862i \(0.658970\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12.3923i 0.451002i
\(756\) 0 0
\(757\) − 19.0718i − 0.693176i −0.938017 0.346588i \(-0.887340\pi\)
0.938017 0.346588i \(-0.112660\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.71281 0.207089 0.103545 0.994625i \(-0.466982\pi\)
0.103545 + 0.994625i \(0.466982\pi\)
\(762\) 0 0
\(763\) − 12.3923i − 0.448632i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −25.8564 −0.933621
\(768\) 0 0
\(769\) 12.9282 0.466203 0.233101 0.972452i \(-0.425113\pi\)
0.233101 + 0.972452i \(0.425113\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 22.3923i 0.805395i 0.915333 + 0.402698i \(0.131927\pi\)
−0.915333 + 0.402698i \(0.868073\pi\)
\(774\) 0 0
\(775\) −5.46410 −0.196276
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.784610i 0.0281116i
\(780\) 0 0
\(781\) − 10.9282i − 0.391042i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.07180 0.109637
\(786\) 0 0
\(787\) − 16.5885i − 0.591315i −0.955294 0.295657i \(-0.904461\pi\)
0.955294 0.295657i \(-0.0955387\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.46410 −0.336505
\(792\) 0 0
\(793\) −30.9282 −1.09829
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 50.1051i − 1.77481i −0.460986 0.887407i \(-0.652504\pi\)
0.460986 0.887407i \(-0.347496\pi\)
\(798\) 0 0
\(799\) −11.3205 −0.400491
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 14.9282i − 0.526805i
\(804\) 0 0
\(805\) 4.53590i 0.159869i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −23.8564 −0.838747 −0.419373 0.907814i \(-0.637750\pi\)
−0.419373 + 0.907814i \(0.637750\pi\)
\(810\) 0 0
\(811\) 28.9282i 1.01581i 0.861414 + 0.507903i \(0.169579\pi\)
−0.861414 + 0.507903i \(0.830421\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.196152 −0.00687092
\(816\) 0 0
\(817\) 2.82309 0.0987673
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 34.7846i − 1.21399i −0.794705 0.606996i \(-0.792375\pi\)
0.794705 0.606996i \(-0.207625\pi\)
\(822\) 0 0
\(823\) 9.12436 0.318055 0.159028 0.987274i \(-0.449164\pi\)
0.159028 + 0.987274i \(0.449164\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 23.1244i 0.804113i 0.915615 + 0.402056i \(0.131704\pi\)
−0.915615 + 0.402056i \(0.868296\pi\)
\(828\) 0 0
\(829\) 28.9282i 1.00472i 0.864659 + 0.502359i \(0.167534\pi\)
−0.864659 + 0.502359i \(0.832466\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 22.3923 0.775847
\(834\) 0 0
\(835\) − 9.80385i − 0.339276i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 24.7846 0.855660 0.427830 0.903859i \(-0.359278\pi\)
0.427830 + 0.903859i \(0.359278\pi\)
\(840\) 0 0
\(841\) −19.0000 −0.655172
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.00000i 0.0344010i
\(846\) 0 0
\(847\) −5.12436 −0.176075
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 12.3923i 0.424803i
\(852\) 0 0
\(853\) − 21.6077i − 0.739833i −0.929065 0.369917i \(-0.879386\pi\)
0.929065 0.369917i \(-0.120614\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 19.8564 0.678282 0.339141 0.940736i \(-0.389864\pi\)
0.339141 + 0.940736i \(0.389864\pi\)
\(858\) 0 0
\(859\) − 28.2487i − 0.963834i −0.876217 0.481917i \(-0.839941\pi\)
0.876217 0.481917i \(-0.160059\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 47.6603 1.62237 0.811187 0.584787i \(-0.198822\pi\)
0.811187 + 0.584787i \(0.198822\pi\)
\(864\) 0 0
\(865\) 2.00000 0.0680020
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 2.14359i − 0.0727164i
\(870\) 0 0
\(871\) −37.1769 −1.25969
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.732051i 0.0247478i
\(876\) 0 0
\(877\) − 1.71281i − 0.0578376i −0.999582 0.0289188i \(-0.990794\pi\)
0.999582 0.0289188i \(-0.00920642\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −9.46410 −0.318854 −0.159427 0.987210i \(-0.550965\pi\)
−0.159427 + 0.987210i \(0.550965\pi\)
\(882\) 0 0
\(883\) 27.9090i 0.939211i 0.882876 + 0.469606i \(0.155604\pi\)
−0.882876 + 0.469606i \(0.844396\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −13.9090 −0.467017 −0.233509 0.972355i \(-0.575021\pi\)
−0.233509 + 0.972355i \(0.575021\pi\)
\(888\) 0 0
\(889\) 12.2487 0.410809
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 1.75129i − 0.0586046i
\(894\) 0 0
\(895\) 8.53590 0.285324
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 37.8564i − 1.26258i
\(900\) 0 0
\(901\) 39.7128i 1.32303i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −16.0000 −0.531858
\(906\) 0 0
\(907\) − 4.87564i − 0.161893i −0.996718 0.0809466i \(-0.974206\pi\)
0.996718 0.0809466i \(-0.0257943\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −49.1769 −1.62930 −0.814652 0.579950i \(-0.803072\pi\)
−0.814652 + 0.579950i \(0.803072\pi\)
\(912\) 0 0
\(913\) 2.53590 0.0839260
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 14.5359i 0.480018i
\(918\) 0 0
\(919\) 38.9282 1.28412 0.642061 0.766653i \(-0.278079\pi\)
0.642061 + 0.766653i \(0.278079\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 18.9282i − 0.623029i
\(924\) 0 0
\(925\) 2.00000i 0.0657596i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17.4641 0.572979 0.286489 0.958083i \(-0.407512\pi\)
0.286489 + 0.958083i \(0.407512\pi\)
\(930\) 0 0
\(931\) 3.46410i 0.113531i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −6.92820 −0.226576
\(936\) 0 0
\(937\) 4.24871 0.138799 0.0693997 0.997589i \(-0.477892\pi\)
0.0693997 + 0.997589i \(0.477892\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 32.0000i 1.04317i 0.853199 + 0.521585i \(0.174659\pi\)
−0.853199 + 0.521585i \(0.825341\pi\)
\(942\) 0 0
\(943\) 9.07180 0.295418
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 3.12436i − 0.101528i −0.998711 0.0507640i \(-0.983834\pi\)
0.998711 0.0507640i \(-0.0161656\pi\)
\(948\) 0 0
\(949\) − 25.8564i − 0.839334i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 17.2154 0.557661 0.278831 0.960340i \(-0.410053\pi\)
0.278831 + 0.960340i \(0.410053\pi\)
\(954\) 0 0
\(955\) 15.3205i 0.495760i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.60770 0.116499
\(960\) 0 0
\(961\) −1.14359 −0.0368901
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.535898i 0.0172512i
\(966\) 0 0
\(967\) −16.3397 −0.525451 −0.262725 0.964871i \(-0.584621\pi\)
−0.262725 + 0.964871i \(0.584621\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 36.9282i 1.18508i 0.805540 + 0.592541i \(0.201875\pi\)
−0.805540 + 0.592541i \(0.798125\pi\)
\(972\) 0 0
\(973\) − 0.392305i − 0.0125767i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.5359 0.784973 0.392486 0.919758i \(-0.371615\pi\)
0.392486 + 0.919758i \(0.371615\pi\)
\(978\) 0 0
\(979\) 17.8564i 0.570693i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −48.7321 −1.55431 −0.777156 0.629309i \(-0.783338\pi\)
−0.777156 + 0.629309i \(0.783338\pi\)
\(984\) 0 0
\(985\) −19.4641 −0.620178
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 32.6410i − 1.03792i
\(990\) 0 0
\(991\) −41.4641 −1.31715 −0.658575 0.752515i \(-0.728841\pi\)
−0.658575 + 0.752515i \(0.728841\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.85641i 0.0588520i
\(996\) 0 0
\(997\) − 11.1769i − 0.353976i −0.984213 0.176988i \(-0.943365\pi\)
0.984213 0.176988i \(-0.0566354\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.2.k.e.721.3 4
3.2 odd 2 160.2.d.a.81.1 4
4.3 odd 2 360.2.k.e.181.4 4
5.2 odd 4 7200.2.d.o.2449.2 4
5.3 odd 4 7200.2.d.n.2449.3 4
5.4 even 2 7200.2.k.j.3601.3 4
8.3 odd 2 360.2.k.e.181.3 4
8.5 even 2 inner 1440.2.k.e.721.1 4
12.11 even 2 40.2.d.a.21.1 4
15.2 even 4 800.2.f.c.49.1 4
15.8 even 4 800.2.f.e.49.4 4
15.14 odd 2 800.2.d.e.401.4 4
20.3 even 4 1800.2.d.l.1549.3 4
20.7 even 4 1800.2.d.p.1549.2 4
20.19 odd 2 1800.2.k.j.901.1 4
24.5 odd 2 160.2.d.a.81.4 4
24.11 even 2 40.2.d.a.21.2 yes 4
40.3 even 4 1800.2.d.p.1549.1 4
40.13 odd 4 7200.2.d.o.2449.3 4
40.19 odd 2 1800.2.k.j.901.2 4
40.27 even 4 1800.2.d.l.1549.4 4
40.29 even 2 7200.2.k.j.3601.4 4
40.37 odd 4 7200.2.d.n.2449.2 4
48.5 odd 4 1280.2.a.d.1.1 2
48.11 even 4 1280.2.a.o.1.2 2
48.29 odd 4 1280.2.a.n.1.2 2
48.35 even 4 1280.2.a.a.1.1 2
60.23 odd 4 200.2.f.e.149.2 4
60.47 odd 4 200.2.f.c.149.3 4
60.59 even 2 200.2.d.f.101.4 4
120.29 odd 2 800.2.d.e.401.1 4
120.53 even 4 800.2.f.c.49.2 4
120.59 even 2 200.2.d.f.101.3 4
120.77 even 4 800.2.f.e.49.3 4
120.83 odd 4 200.2.f.c.149.4 4
120.107 odd 4 200.2.f.e.149.1 4
240.29 odd 4 6400.2.a.be.1.1 2
240.59 even 4 6400.2.a.z.1.1 2
240.149 odd 4 6400.2.a.cj.1.2 2
240.179 even 4 6400.2.a.ce.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.2.d.a.21.1 4 12.11 even 2
40.2.d.a.21.2 yes 4 24.11 even 2
160.2.d.a.81.1 4 3.2 odd 2
160.2.d.a.81.4 4 24.5 odd 2
200.2.d.f.101.3 4 120.59 even 2
200.2.d.f.101.4 4 60.59 even 2
200.2.f.c.149.3 4 60.47 odd 4
200.2.f.c.149.4 4 120.83 odd 4
200.2.f.e.149.1 4 120.107 odd 4
200.2.f.e.149.2 4 60.23 odd 4
360.2.k.e.181.3 4 8.3 odd 2
360.2.k.e.181.4 4 4.3 odd 2
800.2.d.e.401.1 4 120.29 odd 2
800.2.d.e.401.4 4 15.14 odd 2
800.2.f.c.49.1 4 15.2 even 4
800.2.f.c.49.2 4 120.53 even 4
800.2.f.e.49.3 4 120.77 even 4
800.2.f.e.49.4 4 15.8 even 4
1280.2.a.a.1.1 2 48.35 even 4
1280.2.a.d.1.1 2 48.5 odd 4
1280.2.a.n.1.2 2 48.29 odd 4
1280.2.a.o.1.2 2 48.11 even 4
1440.2.k.e.721.1 4 8.5 even 2 inner
1440.2.k.e.721.3 4 1.1 even 1 trivial
1800.2.d.l.1549.3 4 20.3 even 4
1800.2.d.l.1549.4 4 40.27 even 4
1800.2.d.p.1549.1 4 40.3 even 4
1800.2.d.p.1549.2 4 20.7 even 4
1800.2.k.j.901.1 4 20.19 odd 2
1800.2.k.j.901.2 4 40.19 odd 2
6400.2.a.z.1.1 2 240.59 even 4
6400.2.a.be.1.1 2 240.29 odd 4
6400.2.a.ce.1.2 2 240.179 even 4
6400.2.a.cj.1.2 2 240.149 odd 4
7200.2.d.n.2449.2 4 40.37 odd 4
7200.2.d.n.2449.3 4 5.3 odd 4
7200.2.d.o.2449.2 4 5.2 odd 4
7200.2.d.o.2449.3 4 40.13 odd 4
7200.2.k.j.3601.3 4 5.4 even 2
7200.2.k.j.3601.4 4 40.29 even 2