Properties

Label 200.2.f.c
Level $200$
Weight $2$
Character orbit 200.f
Analytic conductor $1.597$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,2,Mod(149,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 200.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59700804043\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - \beta_1) q^{2} + ( - \beta_{3} + \beta_{2} - \beta_1 + 1) q^{3} + (\beta_{3} + \beta_1) q^{4} + (\beta_{3} + 2 \beta_{2} - \beta_1 + 2) q^{6} + ( - \beta_{3} + \beta_{2} + \beta_1 - 1) q^{7}+ \cdots + (4 \beta_{3} + 2 \beta_{2} - 4 \beta_1 + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 4 q^{3} + 4 q^{6} - 8 q^{8} + 4 q^{9} - 12 q^{12} + 4 q^{14} + 8 q^{16} + 10 q^{18} - 4 q^{22} - 8 q^{24} - 12 q^{26} + 16 q^{27} - 4 q^{28} - 8 q^{31} + 8 q^{32} + 12 q^{34} - 24 q^{36}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{2} + \zeta_{12} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{12}^{3} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{12}^{2} + \zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( ( -\beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
149.1
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
−1.36603 0.366025i −0.732051 1.73205 + 1.00000i 0 1.00000 + 0.267949i 2.73205i −2.00000 2.00000i −2.46410 0
149.2 −1.36603 + 0.366025i −0.732051 1.73205 1.00000i 0 1.00000 0.267949i 2.73205i −2.00000 + 2.00000i −2.46410 0
149.3 0.366025 1.36603i 2.73205 −1.73205 1.00000i 0 1.00000 3.73205i 0.732051i −2.00000 + 2.00000i 4.46410 0
149.4 0.366025 + 1.36603i 2.73205 −1.73205 + 1.00000i 0 1.00000 + 3.73205i 0.732051i −2.00000 2.00000i 4.46410 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 200.2.f.c 4
3.b odd 2 1 1800.2.d.p 4
4.b odd 2 1 800.2.f.c 4
5.b even 2 1 200.2.f.e 4
5.c odd 4 1 40.2.d.a 4
5.c odd 4 1 200.2.d.f 4
8.b even 2 1 200.2.f.e 4
8.d odd 2 1 800.2.f.e 4
12.b even 2 1 7200.2.d.o 4
15.d odd 2 1 1800.2.d.l 4
15.e even 4 1 360.2.k.e 4
15.e even 4 1 1800.2.k.j 4
20.d odd 2 1 800.2.f.e 4
20.e even 4 1 160.2.d.a 4
20.e even 4 1 800.2.d.e 4
24.f even 2 1 7200.2.d.n 4
24.h odd 2 1 1800.2.d.l 4
40.e odd 2 1 800.2.f.c 4
40.f even 2 1 inner 200.2.f.c 4
40.i odd 4 1 40.2.d.a 4
40.i odd 4 1 200.2.d.f 4
40.k even 4 1 160.2.d.a 4
40.k even 4 1 800.2.d.e 4
60.h even 2 1 7200.2.d.n 4
60.l odd 4 1 1440.2.k.e 4
60.l odd 4 1 7200.2.k.j 4
80.i odd 4 1 1280.2.a.a 2
80.i odd 4 1 6400.2.a.z 2
80.j even 4 1 1280.2.a.d 2
80.j even 4 1 6400.2.a.be 2
80.s even 4 1 1280.2.a.n 2
80.s even 4 1 6400.2.a.cj 2
80.t odd 4 1 1280.2.a.o 2
80.t odd 4 1 6400.2.a.ce 2
120.i odd 2 1 1800.2.d.p 4
120.m even 2 1 7200.2.d.o 4
120.q odd 4 1 1440.2.k.e 4
120.q odd 4 1 7200.2.k.j 4
120.w even 4 1 360.2.k.e 4
120.w even 4 1 1800.2.k.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.2.d.a 4 5.c odd 4 1
40.2.d.a 4 40.i odd 4 1
160.2.d.a 4 20.e even 4 1
160.2.d.a 4 40.k even 4 1
200.2.d.f 4 5.c odd 4 1
200.2.d.f 4 40.i odd 4 1
200.2.f.c 4 1.a even 1 1 trivial
200.2.f.c 4 40.f even 2 1 inner
200.2.f.e 4 5.b even 2 1
200.2.f.e 4 8.b even 2 1
360.2.k.e 4 15.e even 4 1
360.2.k.e 4 120.w even 4 1
800.2.d.e 4 20.e even 4 1
800.2.d.e 4 40.k even 4 1
800.2.f.c 4 4.b odd 2 1
800.2.f.c 4 40.e odd 2 1
800.2.f.e 4 8.d odd 2 1
800.2.f.e 4 20.d odd 2 1
1280.2.a.a 2 80.i odd 4 1
1280.2.a.d 2 80.j even 4 1
1280.2.a.n 2 80.s even 4 1
1280.2.a.o 2 80.t odd 4 1
1440.2.k.e 4 60.l odd 4 1
1440.2.k.e 4 120.q odd 4 1
1800.2.d.l 4 15.d odd 2 1
1800.2.d.l 4 24.h odd 2 1
1800.2.d.p 4 3.b odd 2 1
1800.2.d.p 4 120.i odd 2 1
1800.2.k.j 4 15.e even 4 1
1800.2.k.j 4 120.w even 4 1
6400.2.a.z 2 80.i odd 4 1
6400.2.a.be 2 80.j even 4 1
6400.2.a.ce 2 80.t odd 4 1
6400.2.a.cj 2 80.s even 4 1
7200.2.d.n 4 24.f even 2 1
7200.2.d.n 4 60.h even 2 1
7200.2.d.o 4 12.b even 2 1
7200.2.d.o 4 120.m even 2 1
7200.2.k.j 4 60.l odd 4 1
7200.2.k.j 4 120.q odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 2T_{3} - 2 \) acting on \(S_{2}^{\mathrm{new}}(200, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( (T^{2} - 2 T - 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 8T^{2} + 4 \) Copy content Toggle raw display
$11$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 56T^{2} + 16 \) Copy content Toggle raw display
$23$ \( T^{4} + 56T^{2} + 676 \) Copy content Toggle raw display
$29$ \( (T^{2} + 48)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 4 T - 8)^{2} \) Copy content Toggle raw display
$37$ \( (T - 2)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 4 T - 8)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 14 T + 46)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 56T^{2} + 484 \) Copy content Toggle raw display
$53$ \( (T^{2} - 16 T + 52)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 56T^{2} + 16 \) Copy content Toggle raw display
$61$ \( T^{4} + 104T^{2} + 1936 \) Copy content Toggle raw display
$67$ \( (T^{2} + 18 T + 78)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 4 T - 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 56T^{2} + 16 \) Copy content Toggle raw display
$79$ \( (T^{2} - 16 T + 16)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 6 T + 6)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 4 T - 44)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 248T^{2} + 8464 \) Copy content Toggle raw display
show more
show less