Properties

Label 1280.2.a.a
Level $1280$
Weight $2$
Character orbit 1280.a
Self dual yes
Analytic conductor $10.221$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,2,Mod(1,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.2208514587\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{3} - q^{5} + (\beta + 1) q^{7} + ( - 2 \beta + 1) q^{9} - 2 q^{11} - 2 \beta q^{13} + ( - \beta + 1) q^{15} - 2 \beta q^{17} + ( - 2 \beta - 4) q^{19} + 2 q^{21} + ( - 3 \beta + 1) q^{23} + \cdots + (4 \beta - 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{5} + 2 q^{7} + 2 q^{9} - 4 q^{11} + 2 q^{15} - 8 q^{19} + 4 q^{21} + 2 q^{23} + 2 q^{25} - 8 q^{27} - 4 q^{31} + 4 q^{33} - 2 q^{35} - 4 q^{37} - 12 q^{39} + 4 q^{41} - 14 q^{43} - 2 q^{45}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 −2.73205 0 −1.00000 0 −0.732051 0 4.46410 0
1.2 0 0.732051 0 −1.00000 0 2.73205 0 −2.46410 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1280.2.a.a 2
4.b odd 2 1 1280.2.a.n 2
5.b even 2 1 6400.2.a.ce 2
8.b even 2 1 1280.2.a.o 2
8.d odd 2 1 1280.2.a.d 2
16.e even 4 2 40.2.d.a 4
16.f odd 4 2 160.2.d.a 4
20.d odd 2 1 6400.2.a.be 2
40.e odd 2 1 6400.2.a.cj 2
40.f even 2 1 6400.2.a.z 2
48.i odd 4 2 360.2.k.e 4
48.k even 4 2 1440.2.k.e 4
80.i odd 4 2 200.2.f.c 4
80.j even 4 2 800.2.f.e 4
80.k odd 4 2 800.2.d.e 4
80.q even 4 2 200.2.d.f 4
80.s even 4 2 800.2.f.c 4
80.t odd 4 2 200.2.f.e 4
240.t even 4 2 7200.2.k.j 4
240.z odd 4 2 7200.2.d.o 4
240.bb even 4 2 1800.2.d.p 4
240.bd odd 4 2 7200.2.d.n 4
240.bf even 4 2 1800.2.d.l 4
240.bm odd 4 2 1800.2.k.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.2.d.a 4 16.e even 4 2
160.2.d.a 4 16.f odd 4 2
200.2.d.f 4 80.q even 4 2
200.2.f.c 4 80.i odd 4 2
200.2.f.e 4 80.t odd 4 2
360.2.k.e 4 48.i odd 4 2
800.2.d.e 4 80.k odd 4 2
800.2.f.c 4 80.s even 4 2
800.2.f.e 4 80.j even 4 2
1280.2.a.a 2 1.a even 1 1 trivial
1280.2.a.d 2 8.d odd 2 1
1280.2.a.n 2 4.b odd 2 1
1280.2.a.o 2 8.b even 2 1
1440.2.k.e 4 48.k even 4 2
1800.2.d.l 4 240.bf even 4 2
1800.2.d.p 4 240.bb even 4 2
1800.2.k.j 4 240.bm odd 4 2
6400.2.a.z 2 40.f even 2 1
6400.2.a.be 2 20.d odd 2 1
6400.2.a.ce 2 5.b even 2 1
6400.2.a.cj 2 40.e odd 2 1
7200.2.d.n 4 240.bd odd 4 2
7200.2.d.o 4 240.z odd 4 2
7200.2.k.j 4 240.t even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1280))\):

\( T_{3}^{2} + 2T_{3} - 2 \) Copy content Toggle raw display
\( T_{7}^{2} - 2T_{7} - 2 \) Copy content Toggle raw display
\( T_{11} + 2 \) Copy content Toggle raw display
\( T_{13}^{2} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2T - 2 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 2T - 2 \) Copy content Toggle raw display
$11$ \( (T + 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 12 \) Copy content Toggle raw display
$17$ \( T^{2} - 12 \) Copy content Toggle raw display
$19$ \( T^{2} + 8T + 4 \) Copy content Toggle raw display
$23$ \( T^{2} - 2T - 26 \) Copy content Toggle raw display
$29$ \( T^{2} - 48 \) Copy content Toggle raw display
$31$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$37$ \( (T + 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 4T - 8 \) Copy content Toggle raw display
$43$ \( T^{2} + 14T + 46 \) Copy content Toggle raw display
$47$ \( T^{2} - 10T + 22 \) Copy content Toggle raw display
$53$ \( T^{2} - 16T + 52 \) Copy content Toggle raw display
$59$ \( T^{2} + 8T + 4 \) Copy content Toggle raw display
$61$ \( T^{2} - 4T - 44 \) Copy content Toggle raw display
$67$ \( T^{2} + 18T + 78 \) Copy content Toggle raw display
$71$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$73$ \( T^{2} + 8T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} + 16T + 16 \) Copy content Toggle raw display
$83$ \( T^{2} + 6T + 6 \) Copy content Toggle raw display
$89$ \( T^{2} + 4T - 44 \) Copy content Toggle raw display
$97$ \( T^{2} + 8T - 92 \) Copy content Toggle raw display
show more
show less