Properties

Label 7200.2.d.n
Level $7200$
Weight $2$
Character orbit 7200.d
Analytic conductor $57.492$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7200,2,Mod(2449,7200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7200.2449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7200.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.4922894553\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{43}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{7} + \beta_{2} q^{11} + 2 \beta_1 q^{13} + ( - 2 \beta_{3} - \beta_{2}) q^{17} + (2 \beta_{3} - \beta_{2}) q^{19} + (3 \beta_{3} + 2 \beta_{2}) q^{23} + ( - 4 \beta_{3} - 2 \beta_{2}) q^{29}+ \cdots + ( - 6 \beta_{3} - 5 \beta_{2}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{31} - 8 q^{37} + 8 q^{41} - 28 q^{43} + 12 q^{49} + 32 q^{53} - 36 q^{67} + 8 q^{71} - 8 q^{77} - 32 q^{79} - 12 q^{83} + 8 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( -\zeta_{12}^{3} + 2\zeta_{12} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\zeta_{12}^{3} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{12}^{3} + 2\zeta_{12}^{2} - 1 \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{2} + 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( ( 2\beta_{3} + \beta_{2} + 2 ) / 4 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( ( \beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(6401\) \(6751\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2449.1
−0.866025 0.500000i
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0 0 0 0 0 2.73205i 0 0 0
2449.2 0 0 0 0 0 0.732051i 0 0 0
2449.3 0 0 0 0 0 0.732051i 0 0 0
2449.4 0 0 0 0 0 2.73205i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7200.2.d.n 4
3.b odd 2 1 800.2.f.e 4
4.b odd 2 1 1800.2.d.l 4
5.b even 2 1 7200.2.d.o 4
5.c odd 4 1 1440.2.k.e 4
5.c odd 4 1 7200.2.k.j 4
8.b even 2 1 7200.2.d.o 4
8.d odd 2 1 1800.2.d.p 4
12.b even 2 1 200.2.f.e 4
15.d odd 2 1 800.2.f.c 4
15.e even 4 1 160.2.d.a 4
15.e even 4 1 800.2.d.e 4
20.d odd 2 1 1800.2.d.p 4
20.e even 4 1 360.2.k.e 4
20.e even 4 1 1800.2.k.j 4
24.f even 2 1 200.2.f.c 4
24.h odd 2 1 800.2.f.c 4
40.e odd 2 1 1800.2.d.l 4
40.f even 2 1 inner 7200.2.d.n 4
40.i odd 4 1 1440.2.k.e 4
40.i odd 4 1 7200.2.k.j 4
40.k even 4 1 360.2.k.e 4
40.k even 4 1 1800.2.k.j 4
60.h even 2 1 200.2.f.c 4
60.l odd 4 1 40.2.d.a 4
60.l odd 4 1 200.2.d.f 4
120.i odd 2 1 800.2.f.e 4
120.m even 2 1 200.2.f.e 4
120.q odd 4 1 40.2.d.a 4
120.q odd 4 1 200.2.d.f 4
120.w even 4 1 160.2.d.a 4
120.w even 4 1 800.2.d.e 4
240.z odd 4 1 1280.2.a.o 2
240.z odd 4 1 6400.2.a.ce 2
240.bb even 4 1 1280.2.a.d 2
240.bb even 4 1 6400.2.a.be 2
240.bd odd 4 1 1280.2.a.a 2
240.bd odd 4 1 6400.2.a.z 2
240.bf even 4 1 1280.2.a.n 2
240.bf even 4 1 6400.2.a.cj 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.2.d.a 4 60.l odd 4 1
40.2.d.a 4 120.q odd 4 1
160.2.d.a 4 15.e even 4 1
160.2.d.a 4 120.w even 4 1
200.2.d.f 4 60.l odd 4 1
200.2.d.f 4 120.q odd 4 1
200.2.f.c 4 24.f even 2 1
200.2.f.c 4 60.h even 2 1
200.2.f.e 4 12.b even 2 1
200.2.f.e 4 120.m even 2 1
360.2.k.e 4 20.e even 4 1
360.2.k.e 4 40.k even 4 1
800.2.d.e 4 15.e even 4 1
800.2.d.e 4 120.w even 4 1
800.2.f.c 4 15.d odd 2 1
800.2.f.c 4 24.h odd 2 1
800.2.f.e 4 3.b odd 2 1
800.2.f.e 4 120.i odd 2 1
1280.2.a.a 2 240.bd odd 4 1
1280.2.a.d 2 240.bb even 4 1
1280.2.a.n 2 240.bf even 4 1
1280.2.a.o 2 240.z odd 4 1
1440.2.k.e 4 5.c odd 4 1
1440.2.k.e 4 40.i odd 4 1
1800.2.d.l 4 4.b odd 2 1
1800.2.d.l 4 40.e odd 2 1
1800.2.d.p 4 8.d odd 2 1
1800.2.d.p 4 20.d odd 2 1
1800.2.k.j 4 20.e even 4 1
1800.2.k.j 4 40.k even 4 1
6400.2.a.z 2 240.bd odd 4 1
6400.2.a.be 2 240.bb even 4 1
6400.2.a.ce 2 240.z odd 4 1
6400.2.a.cj 2 240.bf even 4 1
7200.2.d.n 4 1.a even 1 1 trivial
7200.2.d.n 4 40.f even 2 1 inner
7200.2.d.o 4 5.b even 2 1
7200.2.d.o 4 8.b even 2 1
7200.2.k.j 4 5.c odd 4 1
7200.2.k.j 4 40.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(7200, [\chi])\):

\( T_{7}^{4} + 8T_{7}^{2} + 4 \) Copy content Toggle raw display
\( T_{11}^{2} + 4 \) Copy content Toggle raw display
\( T_{13}^{2} - 12 \) Copy content Toggle raw display
\( T_{37} + 2 \) Copy content Toggle raw display
\( T_{41}^{2} - 4T_{41} - 8 \) Copy content Toggle raw display
\( T_{53}^{2} - 16T_{53} + 52 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 8T^{2} + 4 \) Copy content Toggle raw display
$11$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 56T^{2} + 16 \) Copy content Toggle raw display
$23$ \( T^{4} + 56T^{2} + 676 \) Copy content Toggle raw display
$29$ \( (T^{2} + 48)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 4 T - 8)^{2} \) Copy content Toggle raw display
$37$ \( (T + 2)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 4 T - 8)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 14 T + 46)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 56T^{2} + 484 \) Copy content Toggle raw display
$53$ \( (T^{2} - 16 T + 52)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 56T^{2} + 16 \) Copy content Toggle raw display
$61$ \( T^{4} + 104T^{2} + 1936 \) Copy content Toggle raw display
$67$ \( (T^{2} + 18 T + 78)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 4 T - 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 56T^{2} + 16 \) Copy content Toggle raw display
$79$ \( (T^{2} + 16 T + 16)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 6 T + 6)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 4 T - 44)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 248T^{2} + 8464 \) Copy content Toggle raw display
show more
show less