Properties

Label 160.2.d.a
Level 160160
Weight 22
Character orbit 160.d
Analytic conductor 1.2781.278
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,2,Mod(81,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 160=255 160 = 2^{5} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 160.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.277606432341.27760643234
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2+β1)q3+β1q5+(β3+1)q7+(2β31)q92β1q112β2q13+(β31)q152β3q17+(2β2+4β1)q19++(4β2+2β1)q99+O(q100) q + ( - \beta_{2} + \beta_1) q^{3} + \beta_1 q^{5} + (\beta_{3} + 1) q^{7} + (2 \beta_{3} - 1) q^{9} - 2 \beta_1 q^{11} - 2 \beta_{2} q^{13} + (\beta_{3} - 1) q^{15} - 2 \beta_{3} q^{17} + (2 \beta_{2} + 4 \beta_1) q^{19}+ \cdots + ( - 4 \beta_{2} + 2 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q74q94q15+4q234q25+8q31+8q3324q398q4120q4712q49+8q55+8q57+20q638q71+16q73+32q79+4q81+16q97+O(q100) 4 q + 4 q^{7} - 4 q^{9} - 4 q^{15} + 4 q^{23} - 4 q^{25} + 8 q^{31} + 8 q^{33} - 24 q^{39} - 8 q^{41} - 20 q^{47} - 12 q^{49} + 8 q^{55} + 8 q^{57} + 20 q^{63} - 8 q^{71} + 16 q^{73} + 32 q^{79} + 4 q^{81}+ \cdots - 16 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ123 \zeta_{12}^{3} Copy content Toggle raw display
β2\beta_{2}== 2ζ1221 2\zeta_{12}^{2} - 1 Copy content Toggle raw display
β3\beta_{3}== ζ123+2ζ12 -\zeta_{12}^{3} + 2\zeta_{12} Copy content Toggle raw display
ζ12\zeta_{12}== (β3+β1)/2 ( \beta_{3} + \beta_1 ) / 2 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== (β2+1)/2 ( \beta_{2} + 1 ) / 2 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== β1 \beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/160Z)×\left(\mathbb{Z}/160\mathbb{Z}\right)^\times.

nn 3131 9797 101101
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
81.1
−0.866025 0.500000i
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0 2.73205i 0 1.00000i 0 −0.732051 0 −4.46410 0
81.2 0 0.732051i 0 1.00000i 0 2.73205 0 2.46410 0
81.3 0 0.732051i 0 1.00000i 0 2.73205 0 2.46410 0
81.4 0 2.73205i 0 1.00000i 0 −0.732051 0 −4.46410 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 160.2.d.a 4
3.b odd 2 1 1440.2.k.e 4
4.b odd 2 1 40.2.d.a 4
5.b even 2 1 800.2.d.e 4
5.c odd 4 1 800.2.f.c 4
5.c odd 4 1 800.2.f.e 4
8.b even 2 1 inner 160.2.d.a 4
8.d odd 2 1 40.2.d.a 4
12.b even 2 1 360.2.k.e 4
15.d odd 2 1 7200.2.k.j 4
15.e even 4 1 7200.2.d.n 4
15.e even 4 1 7200.2.d.o 4
16.e even 4 1 1280.2.a.d 2
16.e even 4 1 1280.2.a.n 2
16.f odd 4 1 1280.2.a.a 2
16.f odd 4 1 1280.2.a.o 2
20.d odd 2 1 200.2.d.f 4
20.e even 4 1 200.2.f.c 4
20.e even 4 1 200.2.f.e 4
24.f even 2 1 360.2.k.e 4
24.h odd 2 1 1440.2.k.e 4
40.e odd 2 1 200.2.d.f 4
40.f even 2 1 800.2.d.e 4
40.i odd 4 1 800.2.f.c 4
40.i odd 4 1 800.2.f.e 4
40.k even 4 1 200.2.f.c 4
40.k even 4 1 200.2.f.e 4
60.h even 2 1 1800.2.k.j 4
60.l odd 4 1 1800.2.d.l 4
60.l odd 4 1 1800.2.d.p 4
80.k odd 4 1 6400.2.a.z 2
80.k odd 4 1 6400.2.a.ce 2
80.q even 4 1 6400.2.a.be 2
80.q even 4 1 6400.2.a.cj 2
120.i odd 2 1 7200.2.k.j 4
120.m even 2 1 1800.2.k.j 4
120.q odd 4 1 1800.2.d.l 4
120.q odd 4 1 1800.2.d.p 4
120.w even 4 1 7200.2.d.n 4
120.w even 4 1 7200.2.d.o 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.2.d.a 4 4.b odd 2 1
40.2.d.a 4 8.d odd 2 1
160.2.d.a 4 1.a even 1 1 trivial
160.2.d.a 4 8.b even 2 1 inner
200.2.d.f 4 20.d odd 2 1
200.2.d.f 4 40.e odd 2 1
200.2.f.c 4 20.e even 4 1
200.2.f.c 4 40.k even 4 1
200.2.f.e 4 20.e even 4 1
200.2.f.e 4 40.k even 4 1
360.2.k.e 4 12.b even 2 1
360.2.k.e 4 24.f even 2 1
800.2.d.e 4 5.b even 2 1
800.2.d.e 4 40.f even 2 1
800.2.f.c 4 5.c odd 4 1
800.2.f.c 4 40.i odd 4 1
800.2.f.e 4 5.c odd 4 1
800.2.f.e 4 40.i odd 4 1
1280.2.a.a 2 16.f odd 4 1
1280.2.a.d 2 16.e even 4 1
1280.2.a.n 2 16.e even 4 1
1280.2.a.o 2 16.f odd 4 1
1440.2.k.e 4 3.b odd 2 1
1440.2.k.e 4 24.h odd 2 1
1800.2.d.l 4 60.l odd 4 1
1800.2.d.l 4 120.q odd 4 1
1800.2.d.p 4 60.l odd 4 1
1800.2.d.p 4 120.q odd 4 1
1800.2.k.j 4 60.h even 2 1
1800.2.k.j 4 120.m even 2 1
6400.2.a.z 2 80.k odd 4 1
6400.2.a.be 2 80.q even 4 1
6400.2.a.ce 2 80.k odd 4 1
6400.2.a.cj 2 80.q even 4 1
7200.2.d.n 4 15.e even 4 1
7200.2.d.n 4 120.w even 4 1
7200.2.d.o 4 15.e even 4 1
7200.2.d.o 4 120.w even 4 1
7200.2.k.j 4 15.d odd 2 1
7200.2.k.j 4 120.i odd 2 1

Hecke kernels

This newform subspace is the entire newspace S2new(160,[χ])S_{2}^{\mathrm{new}}(160, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+8T2+4 T^{4} + 8T^{2} + 4 Copy content Toggle raw display
55 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
77 (T22T2)2 (T^{2} - 2 T - 2)^{2} Copy content Toggle raw display
1111 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
1313 (T2+12)2 (T^{2} + 12)^{2} Copy content Toggle raw display
1717 (T212)2 (T^{2} - 12)^{2} Copy content Toggle raw display
1919 T4+56T2+16 T^{4} + 56T^{2} + 16 Copy content Toggle raw display
2323 (T22T26)2 (T^{2} - 2 T - 26)^{2} Copy content Toggle raw display
2929 (T2+48)2 (T^{2} + 48)^{2} Copy content Toggle raw display
3131 (T24T8)2 (T^{2} - 4 T - 8)^{2} Copy content Toggle raw display
3737 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
4141 (T2+4T8)2 (T^{2} + 4 T - 8)^{2} Copy content Toggle raw display
4343 T4+104T2+2116 T^{4} + 104T^{2} + 2116 Copy content Toggle raw display
4747 (T2+10T+22)2 (T^{2} + 10 T + 22)^{2} Copy content Toggle raw display
5353 T4+152T2+2704 T^{4} + 152T^{2} + 2704 Copy content Toggle raw display
5959 T4+56T2+16 T^{4} + 56T^{2} + 16 Copy content Toggle raw display
6161 T4+104T2+1936 T^{4} + 104T^{2} + 1936 Copy content Toggle raw display
6767 T4+168T2+6084 T^{4} + 168T^{2} + 6084 Copy content Toggle raw display
7171 (T2+4T8)2 (T^{2} + 4 T - 8)^{2} Copy content Toggle raw display
7373 (T28T+4)2 (T^{2} - 8 T + 4)^{2} Copy content Toggle raw display
7979 (T216T+16)2 (T^{2} - 16 T + 16)^{2} Copy content Toggle raw display
8383 T4+24T2+36 T^{4} + 24T^{2} + 36 Copy content Toggle raw display
8989 (T24T44)2 (T^{2} - 4 T - 44)^{2} Copy content Toggle raw display
9797 (T2+8T92)2 (T^{2} + 8 T - 92)^{2} Copy content Toggle raw display
show more
show less