L(s) = 1 | − 1.53·2-s + 1.34·4-s + i·7-s − 0.532·8-s − 9-s − i·11-s − 1.53i·14-s − 0.532·16-s + 1.53·18-s + 1.53i·22-s − 1.87i·23-s − 25-s + 1.34i·28-s − 0.347i·29-s + 1.34·32-s + ⋯ |
L(s) = 1 | − 1.53·2-s + 1.34·4-s + i·7-s − 0.532·8-s − 9-s − i·11-s − 1.53i·14-s − 0.532·16-s + 1.53·18-s + 1.53i·22-s − 1.87i·23-s − 25-s + 1.34i·28-s − 0.347i·29-s + 1.34·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.410 + 0.911i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.410 + 0.911i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3840641073\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3840641073\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 - iT \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + 1.53T + T^{2} \) |
| 3 | \( 1 + T^{2} \) |
| 5 | \( 1 + T^{2} \) |
| 11 | \( 1 + iT - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + 1.87iT - T^{2} \) |
| 29 | \( 1 + 0.347iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + 1.53iT - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - 1.87T + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - 1.87T + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( 1 + 0.347iT - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - 1.53iT - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.012559155119754646807027707724, −8.532832333607967656260370230588, −8.068473483121951445617456962171, −7.07282892232719285744953670715, −6.03283883601741273295377449881, −5.63249123993757475067413102078, −4.21694942121274496795247682812, −2.80438526837903144177436316749, −2.17972705380269107249164440375, −0.50520965818687737848697960532,
1.18655545695114325122636657150, 2.26410997869816283577827879705, 3.53630148874755540983525967819, 4.59092515862668573778498521511, 5.69878736270048725278712788943, 6.70566399828813917297009893091, 7.57213833493246970661989920368, 7.76771310776585383755212617436, 8.847201325608735977525591797187, 9.418485561582072036302671788812