L(s) = 1 | − 1.53·2-s + 1.34·4-s + i·7-s − 0.532·8-s − 9-s − i·11-s − 1.53i·14-s − 0.532·16-s + 1.53·18-s + 1.53i·22-s − 1.87i·23-s − 25-s + 1.34i·28-s − 0.347i·29-s + 1.34·32-s + ⋯ |
L(s) = 1 | − 1.53·2-s + 1.34·4-s + i·7-s − 0.532·8-s − 9-s − i·11-s − 1.53i·14-s − 0.532·16-s + 1.53·18-s + 1.53i·22-s − 1.87i·23-s − 25-s + 1.34i·28-s − 0.347i·29-s + 1.34·32-s + ⋯ |
Λ(s)=(=(2023s/2ΓC(s)L(s)(0.410+0.911i)Λ(1−s)
Λ(s)=(=(2023s/2ΓC(s)L(s)(0.410+0.911i)Λ(1−s)
Degree: |
2 |
Conductor: |
2023
= 7⋅172
|
Sign: |
0.410+0.911i
|
Analytic conductor: |
1.00960 |
Root analytic conductor: |
1.00479 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2023(2022,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2023, ( :0), 0.410+0.911i)
|
Particular Values
L(21) |
≈ |
0.3840641073 |
L(21) |
≈ |
0.3840641073 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1−iT |
| 17 | 1 |
good | 2 | 1+1.53T+T2 |
| 3 | 1+T2 |
| 5 | 1+T2 |
| 11 | 1+iT−T2 |
| 13 | 1−T2 |
| 19 | 1−T2 |
| 23 | 1+1.87iT−T2 |
| 29 | 1+0.347iT−T2 |
| 31 | 1+T2 |
| 37 | 1+1.53iT−T2 |
| 41 | 1+T2 |
| 43 | 1−1.87T+T2 |
| 47 | 1−T2 |
| 53 | 1−1.87T+T2 |
| 59 | 1−T2 |
| 61 | 1+T2 |
| 67 | 1+T+T2 |
| 71 | 1+0.347iT−T2 |
| 73 | 1+T2 |
| 79 | 1−1.53iT−T2 |
| 83 | 1−T2 |
| 89 | 1−T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.012559155119754646807027707724, −8.532832333607967656260370230588, −8.068473483121951445617456962171, −7.07282892232719285744953670715, −6.03283883601741273295377449881, −5.63249123993757475067413102078, −4.21694942121274496795247682812, −2.80438526837903144177436316749, −2.17972705380269107249164440375, −0.50520965818687737848697960532,
1.18655545695114325122636657150, 2.26410997869816283577827879705, 3.53630148874755540983525967819, 4.59092515862668573778498521511, 5.69878736270048725278712788943, 6.70566399828813917297009893091, 7.57213833493246970661989920368, 7.76771310776585383755212617436, 8.847201325608735977525591797187, 9.418485561582072036302671788812