Properties

Label 2023.1.d.b
Level 20232023
Weight 11
Character orbit 2023.d
Analytic conductor 1.0101.010
Analytic rank 00
Dimension 66
Projective image D9D_{9}
CM discriminant -7
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2023,1,Mod(2022,2023)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2023, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2023.2022");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2023=7172 2023 = 7 \cdot 17^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2023.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.009608520561.00960852056
Analytic rank: 00
Dimension: 66
Coefficient field: 6.0.419904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6+6x4+9x2+1 x^{6} + 6x^{4} + 9x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D9D_{9}
Projective field: Galois closure of 9.1.16748793615841.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β4β2)q2+(β2+1)q4+β3q7+(β4β2+1)q8q9β3q11β1q14+(β4β2+1)q16+(β4+β2)q18++β3q99+O(q100) q + (\beta_{4} - \beta_{2}) q^{2} + ( - \beta_{2} + 1) q^{4} + \beta_{3} q^{7} + (\beta_{4} - \beta_{2} + 1) q^{8} - q^{9} - \beta_{3} q^{11} - \beta_1 q^{14} + (\beta_{4} - \beta_{2} + 1) q^{16} + ( - \beta_{4} + \beta_{2}) q^{18}+ \cdots + \beta_{3} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+6q4+6q86q9+6q166q25+6q326q366q496q676q72+6q77+6q816q86+O(q100) 6 q + 6 q^{4} + 6 q^{8} - 6 q^{9} + 6 q^{16} - 6 q^{25} + 6 q^{32} - 6 q^{36} - 6 q^{49} - 6 q^{67} - 6 q^{72} + 6 q^{77} + 6 q^{81} - 6 q^{86}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6+6x4+9x2+1 x^{6} + 6x^{4} + 9x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2+2 \nu^{2} + 2 Copy content Toggle raw display
β3\beta_{3}== ν3+3ν \nu^{3} + 3\nu Copy content Toggle raw display
β4\beta_{4}== ν4+4ν2+2 \nu^{4} + 4\nu^{2} + 2 Copy content Toggle raw display
β5\beta_{5}== ν5+5ν3+5ν \nu^{5} + 5\nu^{3} + 5\nu Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β22 \beta_{2} - 2 Copy content Toggle raw display
ν3\nu^{3}== β33β1 \beta_{3} - 3\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β44β2+6 \beta_{4} - 4\beta_{2} + 6 Copy content Toggle raw display
ν5\nu^{5}== β55β3+10β1 \beta_{5} - 5\beta_{3} + 10\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2023Z)×\left(\mathbb{Z}/2023\mathbb{Z}\right)^\times.

nn 290290 17371737
χ(n)\chi(n) 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2022.1
1.53209i
1.53209i
0.347296i
0.347296i
1.87939i
1.87939i
−1.53209 0 1.34730 0 0 1.00000i −0.532089 −1.00000 0
2022.2 −1.53209 0 1.34730 0 0 1.00000i −0.532089 −1.00000 0
2022.3 −0.347296 0 −0.879385 0 0 1.00000i 0.652704 −1.00000 0
2022.4 −0.347296 0 −0.879385 0 0 1.00000i 0.652704 −1.00000 0
2022.5 1.87939 0 2.53209 0 0 1.00000i 2.87939 −1.00000 0
2022.6 1.87939 0 2.53209 0 0 1.00000i 2.87939 −1.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2022.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})
17.b even 2 1 inner
119.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2023.1.d.b 6
7.b odd 2 1 CM 2023.1.d.b 6
17.b even 2 1 inner 2023.1.d.b 6
17.c even 4 1 2023.1.c.c 3
17.c even 4 1 2023.1.c.d yes 3
17.d even 8 4 2023.1.f.c 12
17.e odd 16 8 2023.1.l.c 24
119.d odd 2 1 inner 2023.1.d.b 6
119.f odd 4 1 2023.1.c.c 3
119.f odd 4 1 2023.1.c.d yes 3
119.l odd 8 4 2023.1.f.c 12
119.p even 16 8 2023.1.l.c 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2023.1.c.c 3 17.c even 4 1
2023.1.c.c 3 119.f odd 4 1
2023.1.c.d yes 3 17.c even 4 1
2023.1.c.d yes 3 119.f odd 4 1
2023.1.d.b 6 1.a even 1 1 trivial
2023.1.d.b 6 7.b odd 2 1 CM
2023.1.d.b 6 17.b even 2 1 inner
2023.1.d.b 6 119.d odd 2 1 inner
2023.1.f.c 12 17.d even 8 4
2023.1.f.c 12 119.l odd 8 4
2023.1.l.c 24 17.e odd 16 8
2023.1.l.c 24 119.p even 16 8

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T233T21 T_{2}^{3} - 3T_{2} - 1 acting on S1new(2023,[χ])S_{1}^{\mathrm{new}}(2023, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T33T1)2 (T^{3} - 3 T - 1)^{2} Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 T6 T^{6} Copy content Toggle raw display
77 (T2+1)3 (T^{2} + 1)^{3} Copy content Toggle raw display
1111 (T2+1)3 (T^{2} + 1)^{3} Copy content Toggle raw display
1313 T6 T^{6} Copy content Toggle raw display
1717 T6 T^{6} Copy content Toggle raw display
1919 T6 T^{6} Copy content Toggle raw display
2323 T6+6T4++1 T^{6} + 6 T^{4} + \cdots + 1 Copy content Toggle raw display
2929 T6+6T4++1 T^{6} + 6 T^{4} + \cdots + 1 Copy content Toggle raw display
3131 T6 T^{6} Copy content Toggle raw display
3737 T6+6T4++1 T^{6} + 6 T^{4} + \cdots + 1 Copy content Toggle raw display
4141 T6 T^{6} Copy content Toggle raw display
4343 (T33T1)2 (T^{3} - 3 T - 1)^{2} Copy content Toggle raw display
4747 T6 T^{6} Copy content Toggle raw display
5353 (T33T1)2 (T^{3} - 3 T - 1)^{2} Copy content Toggle raw display
5959 T6 T^{6} Copy content Toggle raw display
6161 T6 T^{6} Copy content Toggle raw display
6767 (T+1)6 (T + 1)^{6} Copy content Toggle raw display
7171 T6+6T4++1 T^{6} + 6 T^{4} + \cdots + 1 Copy content Toggle raw display
7373 T6 T^{6} Copy content Toggle raw display
7979 T6+6T4++1 T^{6} + 6 T^{4} + \cdots + 1 Copy content Toggle raw display
8383 T6 T^{6} Copy content Toggle raw display
8989 T6 T^{6} Copy content Toggle raw display
9797 T6 T^{6} Copy content Toggle raw display
show more
show less