Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2023,1,Mod(2022,2023)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2023, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2023.2022");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2023.d (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 6.0.419904.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of 9.1.16748793615841.1 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2022.1 |
|
−1.53209 | 0 | 1.34730 | 0 | 0 | − | 1.00000i | −0.532089 | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||
2022.2 | −1.53209 | 0 | 1.34730 | 0 | 0 | 1.00000i | −0.532089 | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||
2022.3 | −0.347296 | 0 | −0.879385 | 0 | 0 | − | 1.00000i | 0.652704 | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||
2022.4 | −0.347296 | 0 | −0.879385 | 0 | 0 | 1.00000i | 0.652704 | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||
2022.5 | 1.87939 | 0 | 2.53209 | 0 | 0 | − | 1.00000i | 2.87939 | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||
2022.6 | 1.87939 | 0 | 2.53209 | 0 | 0 | 1.00000i | 2.87939 | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | CM by |
17.b | even | 2 | 1 | inner |
119.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2023.1.d.b | 6 | |
7.b | odd | 2 | 1 | CM | 2023.1.d.b | 6 | |
17.b | even | 2 | 1 | inner | 2023.1.d.b | 6 | |
17.c | even | 4 | 1 | 2023.1.c.c | ✓ | 3 | |
17.c | even | 4 | 1 | 2023.1.c.d | yes | 3 | |
17.d | even | 8 | 4 | 2023.1.f.c | 12 | ||
17.e | odd | 16 | 8 | 2023.1.l.c | 24 | ||
119.d | odd | 2 | 1 | inner | 2023.1.d.b | 6 | |
119.f | odd | 4 | 1 | 2023.1.c.c | ✓ | 3 | |
119.f | odd | 4 | 1 | 2023.1.c.d | yes | 3 | |
119.l | odd | 8 | 4 | 2023.1.f.c | 12 | ||
119.p | even | 16 | 8 | 2023.1.l.c | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
2023.1.c.c | ✓ | 3 | 17.c | even | 4 | 1 | |
2023.1.c.c | ✓ | 3 | 119.f | odd | 4 | 1 | |
2023.1.c.d | yes | 3 | 17.c | even | 4 | 1 | |
2023.1.c.d | yes | 3 | 119.f | odd | 4 | 1 | |
2023.1.d.b | 6 | 1.a | even | 1 | 1 | trivial | |
2023.1.d.b | 6 | 7.b | odd | 2 | 1 | CM | |
2023.1.d.b | 6 | 17.b | even | 2 | 1 | inner | |
2023.1.d.b | 6 | 119.d | odd | 2 | 1 | inner | |
2023.1.f.c | 12 | 17.d | even | 8 | 4 | ||
2023.1.f.c | 12 | 119.l | odd | 8 | 4 | ||
2023.1.l.c | 24 | 17.e | odd | 16 | 8 | ||
2023.1.l.c | 24 | 119.p | even | 16 | 8 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .