Properties

Label 2023.1.c.c
Level $2023$
Weight $1$
Character orbit 2023.c
Self dual yes
Analytic conductor $1.010$
Analytic rank $0$
Dimension $3$
Projective image $D_{9}$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2023,1,Mod(1735,2023)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2023, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2023.1735");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2023.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.00960852056\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.16748793615841.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + 1) q^{4} - q^{7} + ( - \beta_1 - 1) q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} + (\beta_{2} + 1) q^{4} - q^{7} + ( - \beta_1 - 1) q^{8} + q^{9} + q^{11} + \beta_1 q^{14} + (\beta_1 + 1) q^{16} - \beta_1 q^{18} - \beta_1 q^{22} + (\beta_{2} - \beta_1) q^{23} + q^{25} + ( - \beta_{2} - 1) q^{28} - \beta_{2} q^{29} + ( - \beta_{2} - 1) q^{32} + (\beta_{2} + 1) q^{36} + \beta_1 q^{37} + ( - \beta_{2} + \beta_1) q^{43} + (\beta_{2} + 1) q^{44} + (\beta_{2} - \beta_1 + 1) q^{46} + q^{49} - \beta_1 q^{50} + ( - \beta_{2} + \beta_1) q^{53} + (\beta_1 + 1) q^{56} + (\beta_1 + 1) q^{58} - q^{63} + \beta_1 q^{64} - q^{67} - \beta_{2} q^{71} + ( - \beta_1 - 1) q^{72} + ( - \beta_{2} - 2) q^{74} - q^{77} + \beta_1 q^{79} + q^{81} + ( - \beta_{2} + \beta_1 - 1) q^{86} + ( - \beta_1 - 1) q^{88} + ( - \beta_1 + 1) q^{92} - \beta_1 q^{98} + q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{4} - 3 q^{7} - 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{4} - 3 q^{7} - 3 q^{8} + 3 q^{9} + 3 q^{11} + 3 q^{16} + 3 q^{25} - 3 q^{28} - 3 q^{32} + 3 q^{36} + 3 q^{44} + 3 q^{46} + 3 q^{49} + 3 q^{56} + 3 q^{58} - 3 q^{63} - 3 q^{67} - 3 q^{72} - 6 q^{74} - 3 q^{77} + 3 q^{81} - 3 q^{86} - 3 q^{88} + 3 q^{92} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{18} + \zeta_{18}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2023\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(1737\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1735.1
1.87939
−0.347296
−1.53209
−1.87939 0 2.53209 0 0 −1.00000 −2.87939 1.00000 0
1735.2 0.347296 0 −0.879385 0 0 −1.00000 −0.652704 1.00000 0
1735.3 1.53209 0 1.34730 0 0 −1.00000 0.532089 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2023.1.c.c 3
7.b odd 2 1 CM 2023.1.c.c 3
17.b even 2 1 2023.1.c.d yes 3
17.c even 4 2 2023.1.d.b 6
17.d even 8 4 2023.1.f.c 12
17.e odd 16 8 2023.1.l.c 24
119.d odd 2 1 2023.1.c.d yes 3
119.f odd 4 2 2023.1.d.b 6
119.l odd 8 4 2023.1.f.c 12
119.p even 16 8 2023.1.l.c 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2023.1.c.c 3 1.a even 1 1 trivial
2023.1.c.c 3 7.b odd 2 1 CM
2023.1.c.d yes 3 17.b even 2 1
2023.1.c.d yes 3 119.d odd 2 1
2023.1.d.b 6 17.c even 4 2
2023.1.d.b 6 119.f odd 4 2
2023.1.f.c 12 17.d even 8 4
2023.1.f.c 12 119.l odd 8 4
2023.1.l.c 24 17.e odd 16 8
2023.1.l.c 24 119.p even 16 8

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2023, [\chi])\):

\( T_{2}^{3} - 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{11} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 3T + 1 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( (T + 1)^{3} \) Copy content Toggle raw display
$11$ \( (T - 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} \) Copy content Toggle raw display
$19$ \( T^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 3T - 1 \) Copy content Toggle raw display
$29$ \( T^{3} - 3T - 1 \) Copy content Toggle raw display
$31$ \( T^{3} \) Copy content Toggle raw display
$37$ \( T^{3} - 3T - 1 \) Copy content Toggle raw display
$41$ \( T^{3} \) Copy content Toggle raw display
$43$ \( T^{3} - 3T + 1 \) Copy content Toggle raw display
$47$ \( T^{3} \) Copy content Toggle raw display
$53$ \( T^{3} - 3T + 1 \) Copy content Toggle raw display
$59$ \( T^{3} \) Copy content Toggle raw display
$61$ \( T^{3} \) Copy content Toggle raw display
$67$ \( (T + 1)^{3} \) Copy content Toggle raw display
$71$ \( T^{3} - 3T - 1 \) Copy content Toggle raw display
$73$ \( T^{3} \) Copy content Toggle raw display
$79$ \( T^{3} - 3T - 1 \) Copy content Toggle raw display
$83$ \( T^{3} \) Copy content Toggle raw display
$89$ \( T^{3} \) Copy content Toggle raw display
$97$ \( T^{3} \) Copy content Toggle raw display
show more
show less