L(s) = 1 | − 2·2-s + 4-s + 2·5-s − 2·7-s + 2·8-s − 4·10-s − 8·11-s + 2·13-s + 4·14-s − 4·16-s + 2·20-s + 16·22-s + 2·23-s + 8·25-s − 4·26-s − 2·28-s − 16·29-s − 8·31-s + 2·32-s − 4·35-s − 24·37-s + 4·40-s − 6·41-s + 4·43-s − 8·44-s − 4·46-s − 8·47-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 1/2·4-s + 0.894·5-s − 0.755·7-s + 0.707·8-s − 1.26·10-s − 2.41·11-s + 0.554·13-s + 1.06·14-s − 16-s + 0.447·20-s + 3.41·22-s + 0.417·23-s + 8/5·25-s − 0.784·26-s − 0.377·28-s − 2.97·29-s − 1.43·31-s + 0.353·32-s − 0.676·35-s − 3.94·37-s + 0.632·40-s − 0.937·41-s + 0.609·43-s − 1.20·44-s − 0.589·46-s − 1.16·47-s + ⋯ |
Λ(s)=(=((24⋅316⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((24⋅316⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅316⋅134
|
Sign: |
1
|
Analytic conductor: |
79972.7 |
Root analytic conductor: |
4.10079 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅316⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.1261688393 |
L(21) |
≈ |
0.1261688393 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | (1+T+T2)2 |
| 3 | | 1 |
| 13 | C2 | (1−T+T2)2 |
good | 5 | D4×C2 | 1−2T−4T2+4T3+19T4+4pT5−4p2T6−2p3T7+p4T8 |
| 7 | D4×C2 | 1+2T+T2−22T3−68T4−22pT5+p2T6+2p3T7+p4T8 |
| 11 | D4×C2 | 1+8T+29T2+104T3+400T4+104pT5+29p2T6+8p3T7+p4T8 |
| 17 | C22 | (1−14T2+p2T4)2 |
| 19 | C22 | (1+35T2+p2T4)2 |
| 23 | D4×C2 | 1−2T−16T2+52T3−221T4+52pT5−16p2T6−2p3T7+p4T8 |
| 29 | D4×C2 | 1+16T+137T2+976T3+5896T4+976pT5+137p2T6+16p3T7+p4T8 |
| 31 | D4×C2 | 1+8T−2T2+32T3+1411T4+32pT5−2p2T6+8p3T7+p4T8 |
| 37 | D4 | (1+12T+98T2+12pT3+p2T4)2 |
| 41 | D4×C2 | 1+6T−52T2+36T3+4587T4+36pT5−52p2T6+6p3T7+p4T8 |
| 43 | D4×C2 | 1−4T−26T2+176T3−773T4+176pT5−26p2T6−4p3T7+p4T8 |
| 47 | D4×C2 | 1+8T−34T2+32T3+4387T4+32pT5−34p2T6+8p3T7+p4T8 |
| 53 | C22 | (1+31T2+p2T4)2 |
| 59 | D4×C2 | 1+4T+41T2−572T3−3800T4−572pT5+41p2T6+4p3T7+p4T8 |
| 61 | D4×C2 | 1−4T−83T2+92T3+5104T4+92pT5−83p2T6−4p3T7+p4T8 |
| 67 | D4×C2 | 1−4T−14T2+416T3−4661T4+416pT5−14p2T6−4p3T7+p4T8 |
| 71 | D4 | (1−14T+179T2−14pT3+p2T4)2 |
| 73 | D4 | (1+20T+234T2+20pT3+p2T4)2 |
| 79 | D4×C2 | 1+22T+232T2+2068T3+19027T4+2068pT5+232p2T6+22p3T7+p4T8 |
| 83 | D4×C2 | 1+12T+17T2−468T3−2712T4−468pT5+17p2T6+12p3T7+p4T8 |
| 89 | D4 | (1+18T+232T2+18pT3+p2T4)2 |
| 97 | D4×C2 | 1+22T+172T2+2596T3+40987T4+2596pT5+172p2T6+22p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.50343023347658297004144691260, −6.45067596669846458275625739340, −5.94739075853214764131726926404, −5.68940830979196286181444393927, −5.49933495030901630931239670510, −5.44405449424575371312589533902, −5.41890917998285990853110665142, −5.24596935984901056438058120416, −4.77445412032991310138170276528, −4.70079091388146782023133003278, −4.31383190499627625342435877829, −4.02794798507960119317426867884, −3.76119310597636983660811651881, −3.53610977633730726269567666634, −3.41479546194235440042794125489, −2.98283677983013092562436453214, −2.80516177645499214022127405530, −2.52979534827778185615574596786, −2.44433801294175895821029272154, −1.76899579406743106525331365008, −1.61189512844226034472100702988, −1.55348797070545485839239480369, −1.29793889288221724067249575558, −0.24224900280989825176447733712, −0.23210311593268611110266612020,
0.23210311593268611110266612020, 0.24224900280989825176447733712, 1.29793889288221724067249575558, 1.55348797070545485839239480369, 1.61189512844226034472100702988, 1.76899579406743106525331365008, 2.44433801294175895821029272154, 2.52979534827778185615574596786, 2.80516177645499214022127405530, 2.98283677983013092562436453214, 3.41479546194235440042794125489, 3.53610977633730726269567666634, 3.76119310597636983660811651881, 4.02794798507960119317426867884, 4.31383190499627625342435877829, 4.70079091388146782023133003278, 4.77445412032991310138170276528, 5.24596935984901056438058120416, 5.41890917998285990853110665142, 5.44405449424575371312589533902, 5.49933495030901630931239670510, 5.68940830979196286181444393927, 5.94739075853214764131726926404, 6.45067596669846458275625739340, 6.50343023347658297004144691260