Properties

Label 2106.2.e.bd.1405.2
Level $2106$
Weight $2$
Character 2106.1405
Analytic conductor $16.816$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2106,2,Mod(703,2106)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2106, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2106.703");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2106 = 2 \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2106.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8164946657\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1405.2
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2106.1405
Dual form 2106.2.e.bd.703.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(1.36603 - 2.36603i) q^{5} +(1.23205 + 2.13397i) q^{7} +1.00000 q^{8} -2.73205 q^{10} +(-2.86603 - 4.96410i) q^{11} +(0.500000 - 0.866025i) q^{13} +(1.23205 - 2.13397i) q^{14} +(-0.500000 - 0.866025i) q^{16} -6.92820 q^{17} +1.73205 q^{19} +(1.36603 + 2.36603i) q^{20} +(-2.86603 + 4.96410i) q^{22} +(-2.09808 + 3.63397i) q^{23} +(-1.23205 - 2.13397i) q^{25} -1.00000 q^{26} -2.46410 q^{28} +(-4.86603 - 8.42820i) q^{29} +(-3.73205 + 6.46410i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(3.46410 + 6.00000i) q^{34} +6.73205 q^{35} -2.53590 q^{37} +(-0.866025 - 1.50000i) q^{38} +(1.36603 - 2.36603i) q^{40} +(-0.633975 + 1.09808i) q^{41} +(-2.46410 - 4.26795i) q^{43} +5.73205 q^{44} +4.19615 q^{46} +(-0.267949 - 0.464102i) q^{47} +(0.464102 - 0.803848i) q^{49} +(-1.23205 + 2.13397i) q^{50} +(0.500000 + 0.866025i) q^{52} +8.66025 q^{53} -15.6603 q^{55} +(1.23205 + 2.13397i) q^{56} +(-4.86603 + 8.42820i) q^{58} +(-7.06218 + 12.2321i) q^{59} +(-1.59808 - 2.76795i) q^{61} +7.46410 q^{62} +1.00000 q^{64} +(-1.36603 - 2.36603i) q^{65} +(6.19615 - 10.7321i) q^{67} +(3.46410 - 6.00000i) q^{68} +(-3.36603 - 5.83013i) q^{70} +10.4641 q^{71} -13.4641 q^{73} +(1.26795 + 2.19615i) q^{74} +(-0.866025 + 1.50000i) q^{76} +(7.06218 - 12.2321i) q^{77} +(-2.90192 - 5.02628i) q^{79} -2.73205 q^{80} +1.26795 q^{82} +(-7.33013 - 12.6962i) q^{83} +(-9.46410 + 16.3923i) q^{85} +(-2.46410 + 4.26795i) q^{86} +(-2.86603 - 4.96410i) q^{88} -14.1962 q^{89} +2.46410 q^{91} +(-2.09808 - 3.63397i) q^{92} +(-0.267949 + 0.464102i) q^{94} +(2.36603 - 4.09808i) q^{95} +(-4.63397 - 8.02628i) q^{97} -0.928203 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} + 2 q^{5} - 2 q^{7} + 4 q^{8} - 4 q^{10} - 8 q^{11} + 2 q^{13} - 2 q^{14} - 2 q^{16} + 2 q^{20} - 8 q^{22} + 2 q^{23} + 2 q^{25} - 4 q^{26} + 4 q^{28} - 16 q^{29} - 8 q^{31} - 2 q^{32}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2106\mathbb{Z}\right)^\times\).

\(n\) \(1379\) \(1783\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.36603 2.36603i 0.610905 1.05812i −0.380183 0.924911i \(-0.624139\pi\)
0.991088 0.133207i \(-0.0425277\pi\)
\(6\) 0 0
\(7\) 1.23205 + 2.13397i 0.465671 + 0.806567i 0.999232 0.0391956i \(-0.0124795\pi\)
−0.533560 + 0.845762i \(0.679146\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −2.73205 −0.863950
\(11\) −2.86603 4.96410i −0.864139 1.49673i −0.867899 0.496740i \(-0.834530\pi\)
0.00376022 0.999993i \(-0.498803\pi\)
\(12\) 0 0
\(13\) 0.500000 0.866025i 0.138675 0.240192i
\(14\) 1.23205 2.13397i 0.329279 0.570329i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −6.92820 −1.68034 −0.840168 0.542326i \(-0.817544\pi\)
−0.840168 + 0.542326i \(0.817544\pi\)
\(18\) 0 0
\(19\) 1.73205 0.397360 0.198680 0.980064i \(-0.436335\pi\)
0.198680 + 0.980064i \(0.436335\pi\)
\(20\) 1.36603 + 2.36603i 0.305453 + 0.529059i
\(21\) 0 0
\(22\) −2.86603 + 4.96410i −0.611039 + 1.05835i
\(23\) −2.09808 + 3.63397i −0.437479 + 0.757736i −0.997494 0.0707462i \(-0.977462\pi\)
0.560015 + 0.828482i \(0.310795\pi\)
\(24\) 0 0
\(25\) −1.23205 2.13397i −0.246410 0.426795i
\(26\) −1.00000 −0.196116
\(27\) 0 0
\(28\) −2.46410 −0.465671
\(29\) −4.86603 8.42820i −0.903598 1.56508i −0.822788 0.568349i \(-0.807583\pi\)
−0.0808103 0.996729i \(-0.525751\pi\)
\(30\) 0 0
\(31\) −3.73205 + 6.46410i −0.670296 + 1.16099i 0.307524 + 0.951540i \(0.400500\pi\)
−0.977820 + 0.209447i \(0.932834\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 3.46410 + 6.00000i 0.594089 + 1.02899i
\(35\) 6.73205 1.13792
\(36\) 0 0
\(37\) −2.53590 −0.416899 −0.208450 0.978033i \(-0.566842\pi\)
−0.208450 + 0.978033i \(0.566842\pi\)
\(38\) −0.866025 1.50000i −0.140488 0.243332i
\(39\) 0 0
\(40\) 1.36603 2.36603i 0.215988 0.374101i
\(41\) −0.633975 + 1.09808i −0.0990102 + 0.171491i −0.911275 0.411798i \(-0.864901\pi\)
0.812265 + 0.583289i \(0.198234\pi\)
\(42\) 0 0
\(43\) −2.46410 4.26795i −0.375772 0.650856i 0.614670 0.788784i \(-0.289289\pi\)
−0.990442 + 0.137928i \(0.955956\pi\)
\(44\) 5.73205 0.864139
\(45\) 0 0
\(46\) 4.19615 0.618689
\(47\) −0.267949 0.464102i −0.0390844 0.0676962i 0.845821 0.533466i \(-0.179111\pi\)
−0.884906 + 0.465770i \(0.845777\pi\)
\(48\) 0 0
\(49\) 0.464102 0.803848i 0.0663002 0.114835i
\(50\) −1.23205 + 2.13397i −0.174238 + 0.301790i
\(51\) 0 0
\(52\) 0.500000 + 0.866025i 0.0693375 + 0.120096i
\(53\) 8.66025 1.18958 0.594789 0.803882i \(-0.297236\pi\)
0.594789 + 0.803882i \(0.297236\pi\)
\(54\) 0 0
\(55\) −15.6603 −2.11163
\(56\) 1.23205 + 2.13397i 0.164640 + 0.285164i
\(57\) 0 0
\(58\) −4.86603 + 8.42820i −0.638940 + 1.10668i
\(59\) −7.06218 + 12.2321i −0.919417 + 1.59248i −0.119115 + 0.992880i \(0.538006\pi\)
−0.800302 + 0.599597i \(0.795328\pi\)
\(60\) 0 0
\(61\) −1.59808 2.76795i −0.204613 0.354400i 0.745397 0.666621i \(-0.232260\pi\)
−0.950009 + 0.312222i \(0.898927\pi\)
\(62\) 7.46410 0.947942
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.36603 2.36603i −0.169435 0.293469i
\(66\) 0 0
\(67\) 6.19615 10.7321i 0.756980 1.31113i −0.187403 0.982283i \(-0.560007\pi\)
0.944384 0.328846i \(-0.106660\pi\)
\(68\) 3.46410 6.00000i 0.420084 0.727607i
\(69\) 0 0
\(70\) −3.36603 5.83013i −0.402317 0.696833i
\(71\) 10.4641 1.24186 0.620930 0.783866i \(-0.286755\pi\)
0.620930 + 0.783866i \(0.286755\pi\)
\(72\) 0 0
\(73\) −13.4641 −1.57585 −0.787927 0.615769i \(-0.788846\pi\)
−0.787927 + 0.615769i \(0.788846\pi\)
\(74\) 1.26795 + 2.19615i 0.147396 + 0.255298i
\(75\) 0 0
\(76\) −0.866025 + 1.50000i −0.0993399 + 0.172062i
\(77\) 7.06218 12.2321i 0.804810 1.39397i
\(78\) 0 0
\(79\) −2.90192 5.02628i −0.326492 0.565501i 0.655321 0.755350i \(-0.272533\pi\)
−0.981813 + 0.189850i \(0.939200\pi\)
\(80\) −2.73205 −0.305453
\(81\) 0 0
\(82\) 1.26795 0.140022
\(83\) −7.33013 12.6962i −0.804586 1.39358i −0.916570 0.399874i \(-0.869054\pi\)
0.111984 0.993710i \(-0.464279\pi\)
\(84\) 0 0
\(85\) −9.46410 + 16.3923i −1.02653 + 1.77800i
\(86\) −2.46410 + 4.26795i −0.265711 + 0.460225i
\(87\) 0 0
\(88\) −2.86603 4.96410i −0.305519 0.529175i
\(89\) −14.1962 −1.50479 −0.752395 0.658713i \(-0.771101\pi\)
−0.752395 + 0.658713i \(0.771101\pi\)
\(90\) 0 0
\(91\) 2.46410 0.258308
\(92\) −2.09808 3.63397i −0.218740 0.378868i
\(93\) 0 0
\(94\) −0.267949 + 0.464102i −0.0276368 + 0.0478684i
\(95\) 2.36603 4.09808i 0.242749 0.420454i
\(96\) 0 0
\(97\) −4.63397 8.02628i −0.470509 0.814945i 0.528922 0.848670i \(-0.322596\pi\)
−0.999431 + 0.0337250i \(0.989263\pi\)
\(98\) −0.928203 −0.0937627
\(99\) 0 0
\(100\) 2.46410 0.246410
\(101\) 4.06218 + 7.03590i 0.404202 + 0.700098i 0.994228 0.107286i \(-0.0342160\pi\)
−0.590026 + 0.807384i \(0.700883\pi\)
\(102\) 0 0
\(103\) −3.73205 + 6.46410i −0.367730 + 0.636927i −0.989210 0.146503i \(-0.953198\pi\)
0.621480 + 0.783430i \(0.286532\pi\)
\(104\) 0.500000 0.866025i 0.0490290 0.0849208i
\(105\) 0 0
\(106\) −4.33013 7.50000i −0.420579 0.728464i
\(107\) 6.73205 0.650812 0.325406 0.945574i \(-0.394499\pi\)
0.325406 + 0.945574i \(0.394499\pi\)
\(108\) 0 0
\(109\) 10.5885 1.01419 0.507095 0.861890i \(-0.330719\pi\)
0.507095 + 0.861890i \(0.330719\pi\)
\(110\) 7.83013 + 13.5622i 0.746573 + 1.29310i
\(111\) 0 0
\(112\) 1.23205 2.13397i 0.116418 0.201642i
\(113\) 3.96410 6.86603i 0.372911 0.645901i −0.617101 0.786884i \(-0.711693\pi\)
0.990012 + 0.140983i \(0.0450262\pi\)
\(114\) 0 0
\(115\) 5.73205 + 9.92820i 0.534516 + 0.925810i
\(116\) 9.73205 0.903598
\(117\) 0 0
\(118\) 14.1244 1.30025
\(119\) −8.53590 14.7846i −0.782485 1.35530i
\(120\) 0 0
\(121\) −10.9282 + 18.9282i −0.993473 + 1.72075i
\(122\) −1.59808 + 2.76795i −0.144683 + 0.250598i
\(123\) 0 0
\(124\) −3.73205 6.46410i −0.335148 0.580493i
\(125\) 6.92820 0.619677
\(126\) 0 0
\(127\) −4.53590 −0.402496 −0.201248 0.979540i \(-0.564500\pi\)
−0.201248 + 0.979540i \(0.564500\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −1.36603 + 2.36603i −0.119808 + 0.207514i
\(131\) −4.46410 + 7.73205i −0.390030 + 0.675552i −0.992453 0.122625i \(-0.960869\pi\)
0.602423 + 0.798177i \(0.294202\pi\)
\(132\) 0 0
\(133\) 2.13397 + 3.69615i 0.185039 + 0.320497i
\(134\) −12.3923 −1.07053
\(135\) 0 0
\(136\) −6.92820 −0.594089
\(137\) −0.464102 0.803848i −0.0396509 0.0686773i 0.845519 0.533945i \(-0.179291\pi\)
−0.885170 + 0.465268i \(0.845958\pi\)
\(138\) 0 0
\(139\) 5.09808 8.83013i 0.432413 0.748962i −0.564667 0.825319i \(-0.690996\pi\)
0.997081 + 0.0763570i \(0.0243289\pi\)
\(140\) −3.36603 + 5.83013i −0.284481 + 0.492736i
\(141\) 0 0
\(142\) −5.23205 9.06218i −0.439064 0.760481i
\(143\) −5.73205 −0.479338
\(144\) 0 0
\(145\) −26.5885 −2.20805
\(146\) 6.73205 + 11.6603i 0.557148 + 0.965009i
\(147\) 0 0
\(148\) 1.26795 2.19615i 0.104225 0.180523i
\(149\) −11.3660 + 19.6865i −0.931141 + 1.61278i −0.149766 + 0.988721i \(0.547852\pi\)
−0.781375 + 0.624062i \(0.785481\pi\)
\(150\) 0 0
\(151\) 6.69615 + 11.5981i 0.544925 + 0.943838i 0.998612 + 0.0526767i \(0.0167753\pi\)
−0.453686 + 0.891161i \(0.649891\pi\)
\(152\) 1.73205 0.140488
\(153\) 0 0
\(154\) −14.1244 −1.13817
\(155\) 10.1962 + 17.6603i 0.818975 + 1.41851i
\(156\) 0 0
\(157\) 2.86603 4.96410i 0.228734 0.396178i −0.728699 0.684834i \(-0.759875\pi\)
0.957433 + 0.288655i \(0.0932082\pi\)
\(158\) −2.90192 + 5.02628i −0.230865 + 0.399869i
\(159\) 0 0
\(160\) 1.36603 + 2.36603i 0.107994 + 0.187051i
\(161\) −10.3397 −0.814886
\(162\) 0 0
\(163\) −6.53590 −0.511931 −0.255966 0.966686i \(-0.582393\pi\)
−0.255966 + 0.966686i \(0.582393\pi\)
\(164\) −0.633975 1.09808i −0.0495051 0.0857453i
\(165\) 0 0
\(166\) −7.33013 + 12.6962i −0.568928 + 0.985413i
\(167\) 3.69615 6.40192i 0.286017 0.495396i −0.686838 0.726810i \(-0.741002\pi\)
0.972855 + 0.231414i \(0.0743353\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 18.9282 1.45173
\(171\) 0 0
\(172\) 4.92820 0.375772
\(173\) −3.59808 6.23205i −0.273557 0.473814i 0.696213 0.717835i \(-0.254867\pi\)
−0.969770 + 0.244021i \(0.921533\pi\)
\(174\) 0 0
\(175\) 3.03590 5.25833i 0.229492 0.397492i
\(176\) −2.86603 + 4.96410i −0.216035 + 0.374183i
\(177\) 0 0
\(178\) 7.09808 + 12.2942i 0.532023 + 0.921491i
\(179\) 2.53590 0.189542 0.0947710 0.995499i \(-0.469788\pi\)
0.0947710 + 0.995499i \(0.469788\pi\)
\(180\) 0 0
\(181\) −9.58846 −0.712704 −0.356352 0.934352i \(-0.615980\pi\)
−0.356352 + 0.934352i \(0.615980\pi\)
\(182\) −1.23205 2.13397i −0.0913257 0.158181i
\(183\) 0 0
\(184\) −2.09808 + 3.63397i −0.154672 + 0.267900i
\(185\) −3.46410 + 6.00000i −0.254686 + 0.441129i
\(186\) 0 0
\(187\) 19.8564 + 34.3923i 1.45204 + 2.51501i
\(188\) 0.535898 0.0390844
\(189\) 0 0
\(190\) −4.73205 −0.343299
\(191\) 4.46410 + 7.73205i 0.323011 + 0.559472i 0.981108 0.193462i \(-0.0619716\pi\)
−0.658097 + 0.752933i \(0.728638\pi\)
\(192\) 0 0
\(193\) −2.09808 + 3.63397i −0.151023 + 0.261579i −0.931604 0.363476i \(-0.881590\pi\)
0.780581 + 0.625055i \(0.214923\pi\)
\(194\) −4.63397 + 8.02628i −0.332700 + 0.576253i
\(195\) 0 0
\(196\) 0.464102 + 0.803848i 0.0331501 + 0.0574177i
\(197\) −26.7846 −1.90832 −0.954162 0.299290i \(-0.903250\pi\)
−0.954162 + 0.299290i \(0.903250\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) −1.23205 2.13397i −0.0871191 0.150895i
\(201\) 0 0
\(202\) 4.06218 7.03590i 0.285814 0.495044i
\(203\) 11.9904 20.7679i 0.841560 1.45762i
\(204\) 0 0
\(205\) 1.73205 + 3.00000i 0.120972 + 0.209529i
\(206\) 7.46410 0.520049
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) −4.96410 8.59808i −0.343374 0.594741i
\(210\) 0 0
\(211\) 9.56218 16.5622i 0.658287 1.14019i −0.322771 0.946477i \(-0.604614\pi\)
0.981059 0.193710i \(-0.0620522\pi\)
\(212\) −4.33013 + 7.50000i −0.297394 + 0.515102i
\(213\) 0 0
\(214\) −3.36603 5.83013i −0.230097 0.398539i
\(215\) −13.4641 −0.918244
\(216\) 0 0
\(217\) −18.3923 −1.24855
\(218\) −5.29423 9.16987i −0.358570 0.621062i
\(219\) 0 0
\(220\) 7.83013 13.5622i 0.527907 0.914362i
\(221\) −3.46410 + 6.00000i −0.233021 + 0.403604i
\(222\) 0 0
\(223\) −5.89230 10.2058i −0.394578 0.683429i 0.598469 0.801146i \(-0.295776\pi\)
−0.993047 + 0.117717i \(0.962443\pi\)
\(224\) −2.46410 −0.164640
\(225\) 0 0
\(226\) −7.92820 −0.527376
\(227\) −7.33013 12.6962i −0.486518 0.842673i 0.513362 0.858172i \(-0.328400\pi\)
−0.999880 + 0.0154988i \(0.995066\pi\)
\(228\) 0 0
\(229\) 6.46410 11.1962i 0.427160 0.739863i −0.569460 0.822019i \(-0.692847\pi\)
0.996619 + 0.0821568i \(0.0261808\pi\)
\(230\) 5.73205 9.92820i 0.377960 0.654646i
\(231\) 0 0
\(232\) −4.86603 8.42820i −0.319470 0.553339i
\(233\) −3.39230 −0.222237 −0.111119 0.993807i \(-0.535443\pi\)
−0.111119 + 0.993807i \(0.535443\pi\)
\(234\) 0 0
\(235\) −1.46410 −0.0955075
\(236\) −7.06218 12.2321i −0.459709 0.796239i
\(237\) 0 0
\(238\) −8.53590 + 14.7846i −0.553300 + 0.958344i
\(239\) 1.03590 1.79423i 0.0670067 0.116059i −0.830576 0.556906i \(-0.811988\pi\)
0.897582 + 0.440847i \(0.145322\pi\)
\(240\) 0 0
\(241\) 3.63397 + 6.29423i 0.234085 + 0.405447i 0.959006 0.283385i \(-0.0914573\pi\)
−0.724921 + 0.688832i \(0.758124\pi\)
\(242\) 21.8564 1.40498
\(243\) 0 0
\(244\) 3.19615 0.204613
\(245\) −1.26795 2.19615i −0.0810063 0.140307i
\(246\) 0 0
\(247\) 0.866025 1.50000i 0.0551039 0.0954427i
\(248\) −3.73205 + 6.46410i −0.236985 + 0.410471i
\(249\) 0 0
\(250\) −3.46410 6.00000i −0.219089 0.379473i
\(251\) 2.19615 0.138620 0.0693100 0.997595i \(-0.477920\pi\)
0.0693100 + 0.997595i \(0.477920\pi\)
\(252\) 0 0
\(253\) 24.0526 1.51217
\(254\) 2.26795 + 3.92820i 0.142304 + 0.246477i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −0.232051 + 0.401924i −0.0144749 + 0.0250713i −0.873172 0.487412i \(-0.837941\pi\)
0.858697 + 0.512483i \(0.171274\pi\)
\(258\) 0 0
\(259\) −3.12436 5.41154i −0.194138 0.336257i
\(260\) 2.73205 0.169435
\(261\) 0 0
\(262\) 8.92820 0.551586
\(263\) 9.63397 + 16.6865i 0.594056 + 1.02894i 0.993679 + 0.112256i \(0.0358077\pi\)
−0.399623 + 0.916680i \(0.630859\pi\)
\(264\) 0 0
\(265\) 11.8301 20.4904i 0.726719 1.25871i
\(266\) 2.13397 3.69615i 0.130842 0.226626i
\(267\) 0 0
\(268\) 6.19615 + 10.7321i 0.378490 + 0.655564i
\(269\) −11.0718 −0.675059 −0.337530 0.941315i \(-0.609591\pi\)
−0.337530 + 0.941315i \(0.609591\pi\)
\(270\) 0 0
\(271\) 5.39230 0.327559 0.163780 0.986497i \(-0.447631\pi\)
0.163780 + 0.986497i \(0.447631\pi\)
\(272\) 3.46410 + 6.00000i 0.210042 + 0.363803i
\(273\) 0 0
\(274\) −0.464102 + 0.803848i −0.0280374 + 0.0485622i
\(275\) −7.06218 + 12.2321i −0.425865 + 0.737620i
\(276\) 0 0
\(277\) −7.79423 13.5000i −0.468310 0.811136i 0.531034 0.847350i \(-0.321804\pi\)
−0.999344 + 0.0362140i \(0.988470\pi\)
\(278\) −10.1962 −0.611525
\(279\) 0 0
\(280\) 6.73205 0.402317
\(281\) −15.3923 26.6603i −0.918228 1.59042i −0.802105 0.597183i \(-0.796287\pi\)
−0.116123 0.993235i \(-0.537047\pi\)
\(282\) 0 0
\(283\) −3.73205 + 6.46410i −0.221847 + 0.384251i −0.955369 0.295415i \(-0.904542\pi\)
0.733522 + 0.679666i \(0.237875\pi\)
\(284\) −5.23205 + 9.06218i −0.310465 + 0.537741i
\(285\) 0 0
\(286\) 2.86603 + 4.96410i 0.169472 + 0.293533i
\(287\) −3.12436 −0.184425
\(288\) 0 0
\(289\) 31.0000 1.82353
\(290\) 13.2942 + 23.0263i 0.780664 + 1.35215i
\(291\) 0 0
\(292\) 6.73205 11.6603i 0.393963 0.682365i
\(293\) −2.00000 + 3.46410i −0.116841 + 0.202375i −0.918514 0.395388i \(-0.870610\pi\)
0.801673 + 0.597763i \(0.203944\pi\)
\(294\) 0 0
\(295\) 19.2942 + 33.4186i 1.12335 + 1.94571i
\(296\) −2.53590 −0.147396
\(297\) 0 0
\(298\) 22.7321 1.31683
\(299\) 2.09808 + 3.63397i 0.121335 + 0.210158i
\(300\) 0 0
\(301\) 6.07180 10.5167i 0.349973 0.606170i
\(302\) 6.69615 11.5981i 0.385320 0.667394i
\(303\) 0 0
\(304\) −0.866025 1.50000i −0.0496700 0.0860309i
\(305\) −8.73205 −0.499996
\(306\) 0 0
\(307\) −9.07180 −0.517755 −0.258877 0.965910i \(-0.583353\pi\)
−0.258877 + 0.965910i \(0.583353\pi\)
\(308\) 7.06218 + 12.2321i 0.402405 + 0.696986i
\(309\) 0 0
\(310\) 10.1962 17.6603i 0.579103 1.00304i
\(311\) 2.07180 3.58846i 0.117481 0.203483i −0.801288 0.598279i \(-0.795851\pi\)
0.918769 + 0.394796i \(0.129185\pi\)
\(312\) 0 0
\(313\) −11.5000 19.9186i −0.650018 1.12586i −0.983118 0.182973i \(-0.941428\pi\)
0.333099 0.942892i \(-0.391906\pi\)
\(314\) −5.73205 −0.323478
\(315\) 0 0
\(316\) 5.80385 0.326492
\(317\) 4.56218 + 7.90192i 0.256237 + 0.443816i 0.965231 0.261399i \(-0.0841838\pi\)
−0.708993 + 0.705215i \(0.750850\pi\)
\(318\) 0 0
\(319\) −27.8923 + 48.3109i −1.56167 + 2.70489i
\(320\) 1.36603 2.36603i 0.0763631 0.132265i
\(321\) 0 0
\(322\) 5.16987 + 8.95448i 0.288106 + 0.499014i
\(323\) −12.0000 −0.667698
\(324\) 0 0
\(325\) −2.46410 −0.136684
\(326\) 3.26795 + 5.66025i 0.180995 + 0.313492i
\(327\) 0 0
\(328\) −0.633975 + 1.09808i −0.0350054 + 0.0606311i
\(329\) 0.660254 1.14359i 0.0364010 0.0630484i
\(330\) 0 0
\(331\) −2.73205 4.73205i −0.150167 0.260097i 0.781122 0.624379i \(-0.214648\pi\)
−0.931289 + 0.364282i \(0.881314\pi\)
\(332\) 14.6603 0.804586
\(333\) 0 0
\(334\) −7.39230 −0.404489
\(335\) −16.9282 29.3205i −0.924887 1.60195i
\(336\) 0 0
\(337\) 8.92820 15.4641i 0.486350 0.842383i −0.513527 0.858074i \(-0.671661\pi\)
0.999877 + 0.0156903i \(0.00499459\pi\)
\(338\) −0.500000 + 0.866025i −0.0271964 + 0.0471056i
\(339\) 0 0
\(340\) −9.46410 16.3923i −0.513263 0.888998i
\(341\) 42.7846 2.31692
\(342\) 0 0
\(343\) 19.5359 1.05484
\(344\) −2.46410 4.26795i −0.132855 0.230112i
\(345\) 0 0
\(346\) −3.59808 + 6.23205i −0.193434 + 0.335037i
\(347\) 9.63397 16.6865i 0.517179 0.895780i −0.482622 0.875829i \(-0.660316\pi\)
0.999801 0.0199514i \(-0.00635113\pi\)
\(348\) 0 0
\(349\) 11.7321 + 20.3205i 0.628002 + 1.08773i 0.987952 + 0.154760i \(0.0494605\pi\)
−0.359950 + 0.932972i \(0.617206\pi\)
\(350\) −6.07180 −0.324551
\(351\) 0 0
\(352\) 5.73205 0.305519
\(353\) 10.2942 + 17.8301i 0.547907 + 0.949002i 0.998418 + 0.0562312i \(0.0179084\pi\)
−0.450511 + 0.892771i \(0.648758\pi\)
\(354\) 0 0
\(355\) 14.2942 24.7583i 0.758659 1.31404i
\(356\) 7.09808 12.2942i 0.376197 0.651593i
\(357\) 0 0
\(358\) −1.26795 2.19615i −0.0670132 0.116070i
\(359\) 19.8564 1.04798 0.523991 0.851724i \(-0.324443\pi\)
0.523991 + 0.851724i \(0.324443\pi\)
\(360\) 0 0
\(361\) −16.0000 −0.842105
\(362\) 4.79423 + 8.30385i 0.251979 + 0.436441i
\(363\) 0 0
\(364\) −1.23205 + 2.13397i −0.0645770 + 0.111851i
\(365\) −18.3923 + 31.8564i −0.962697 + 1.66744i
\(366\) 0 0
\(367\) 2.29423 + 3.97372i 0.119758 + 0.207427i 0.919672 0.392688i \(-0.128455\pi\)
−0.799914 + 0.600115i \(0.795122\pi\)
\(368\) 4.19615 0.218740
\(369\) 0 0
\(370\) 6.92820 0.360180
\(371\) 10.6699 + 18.4808i 0.553952 + 0.959473i
\(372\) 0 0
\(373\) −0.937822 + 1.62436i −0.0485586 + 0.0841059i −0.889283 0.457357i \(-0.848796\pi\)
0.840724 + 0.541463i \(0.182129\pi\)
\(374\) 19.8564 34.3923i 1.02675 1.77838i
\(375\) 0 0
\(376\) −0.267949 0.464102i −0.0138184 0.0239342i
\(377\) −9.73205 −0.501226
\(378\) 0 0
\(379\) 35.0526 1.80053 0.900265 0.435343i \(-0.143373\pi\)
0.900265 + 0.435343i \(0.143373\pi\)
\(380\) 2.36603 + 4.09808i 0.121375 + 0.210227i
\(381\) 0 0
\(382\) 4.46410 7.73205i 0.228403 0.395606i
\(383\) −3.69615 + 6.40192i −0.188865 + 0.327123i −0.944872 0.327440i \(-0.893814\pi\)
0.756007 + 0.654563i \(0.227147\pi\)
\(384\) 0 0
\(385\) −19.2942 33.4186i −0.983325 1.70317i
\(386\) 4.19615 0.213579
\(387\) 0 0
\(388\) 9.26795 0.470509
\(389\) 6.92820 + 12.0000i 0.351274 + 0.608424i 0.986473 0.163924i \(-0.0524153\pi\)
−0.635199 + 0.772348i \(0.719082\pi\)
\(390\) 0 0
\(391\) 14.5359 25.1769i 0.735112 1.27325i
\(392\) 0.464102 0.803848i 0.0234407 0.0406004i
\(393\) 0 0
\(394\) 13.3923 + 23.1962i 0.674695 + 1.16861i
\(395\) −15.8564 −0.797822
\(396\) 0 0
\(397\) 33.8564 1.69920 0.849602 0.527424i \(-0.176842\pi\)
0.849602 + 0.527424i \(0.176842\pi\)
\(398\) 2.00000 + 3.46410i 0.100251 + 0.173640i
\(399\) 0 0
\(400\) −1.23205 + 2.13397i −0.0616025 + 0.106699i
\(401\) 7.09808 12.2942i 0.354461 0.613944i −0.632565 0.774508i \(-0.717998\pi\)
0.987026 + 0.160563i \(0.0513310\pi\)
\(402\) 0 0
\(403\) 3.73205 + 6.46410i 0.185907 + 0.322000i
\(404\) −8.12436 −0.404202
\(405\) 0 0
\(406\) −23.9808 −1.19015
\(407\) 7.26795 + 12.5885i 0.360259 + 0.623987i
\(408\) 0 0
\(409\) 11.7321 20.3205i 0.580113 1.00478i −0.415353 0.909660i \(-0.636342\pi\)
0.995465 0.0951241i \(-0.0303248\pi\)
\(410\) 1.73205 3.00000i 0.0855399 0.148159i
\(411\) 0 0
\(412\) −3.73205 6.46410i −0.183865 0.318463i
\(413\) −34.8038 −1.71259
\(414\) 0 0
\(415\) −40.0526 −1.96610
\(416\) 0.500000 + 0.866025i 0.0245145 + 0.0424604i
\(417\) 0 0
\(418\) −4.96410 + 8.59808i −0.242802 + 0.420546i
\(419\) 8.83013 15.2942i 0.431380 0.747172i −0.565612 0.824671i \(-0.691360\pi\)
0.996992 + 0.0774992i \(0.0246935\pi\)
\(420\) 0 0
\(421\) −17.7583 30.7583i −0.865488 1.49907i −0.866562 0.499070i \(-0.833675\pi\)
0.00107369 0.999999i \(-0.499658\pi\)
\(422\) −19.1244 −0.930959
\(423\) 0 0
\(424\) 8.66025 0.420579
\(425\) 8.53590 + 14.7846i 0.414052 + 0.717159i
\(426\) 0 0
\(427\) 3.93782 6.82051i 0.190565 0.330068i
\(428\) −3.36603 + 5.83013i −0.162703 + 0.281810i
\(429\) 0 0
\(430\) 6.73205 + 11.6603i 0.324648 + 0.562307i
\(431\) 36.4641 1.75641 0.878207 0.478281i \(-0.158740\pi\)
0.878207 + 0.478281i \(0.158740\pi\)
\(432\) 0 0
\(433\) 2.60770 0.125318 0.0626589 0.998035i \(-0.480042\pi\)
0.0626589 + 0.998035i \(0.480042\pi\)
\(434\) 9.19615 + 15.9282i 0.441429 + 0.764578i
\(435\) 0 0
\(436\) −5.29423 + 9.16987i −0.253548 + 0.439157i
\(437\) −3.63397 + 6.29423i −0.173837 + 0.301094i
\(438\) 0 0
\(439\) 14.0000 + 24.2487i 0.668184 + 1.15733i 0.978412 + 0.206666i \(0.0662612\pi\)
−0.310228 + 0.950662i \(0.600405\pi\)
\(440\) −15.6603 −0.746573
\(441\) 0 0
\(442\) 6.92820 0.329541
\(443\) 13.8564 + 24.0000i 0.658338 + 1.14027i 0.981046 + 0.193776i \(0.0620735\pi\)
−0.322708 + 0.946499i \(0.604593\pi\)
\(444\) 0 0
\(445\) −19.3923 + 33.5885i −0.919283 + 1.59225i
\(446\) −5.89230 + 10.2058i −0.279009 + 0.483257i
\(447\) 0 0
\(448\) 1.23205 + 2.13397i 0.0582089 + 0.100821i
\(449\) −8.00000 −0.377543 −0.188772 0.982021i \(-0.560451\pi\)
−0.188772 + 0.982021i \(0.560451\pi\)
\(450\) 0 0
\(451\) 7.26795 0.342234
\(452\) 3.96410 + 6.86603i 0.186456 + 0.322951i
\(453\) 0 0
\(454\) −7.33013 + 12.6962i −0.344020 + 0.595860i
\(455\) 3.36603 5.83013i 0.157802 0.273321i
\(456\) 0 0
\(457\) −11.1699 19.3468i −0.522505 0.905005i −0.999657 0.0261840i \(-0.991664\pi\)
0.477153 0.878821i \(-0.341669\pi\)
\(458\) −12.9282 −0.604095
\(459\) 0 0
\(460\) −11.4641 −0.534516
\(461\) −19.0981 33.0788i −0.889486 1.54064i −0.840484 0.541836i \(-0.817729\pi\)
−0.0490021 0.998799i \(-0.515604\pi\)
\(462\) 0 0
\(463\) −0.160254 + 0.277568i −0.00744764 + 0.0128997i −0.869725 0.493536i \(-0.835704\pi\)
0.862278 + 0.506436i \(0.169037\pi\)
\(464\) −4.86603 + 8.42820i −0.225900 + 0.391270i
\(465\) 0 0
\(466\) 1.69615 + 2.93782i 0.0785727 + 0.136092i
\(467\) −0.875644 −0.0405200 −0.0202600 0.999795i \(-0.506449\pi\)
−0.0202600 + 0.999795i \(0.506449\pi\)
\(468\) 0 0
\(469\) 30.5359 1.41002
\(470\) 0.732051 + 1.26795i 0.0337670 + 0.0584861i
\(471\) 0 0
\(472\) −7.06218 + 12.2321i −0.325063 + 0.563026i
\(473\) −14.1244 + 24.4641i −0.649439 + 1.12486i
\(474\) 0 0
\(475\) −2.13397 3.69615i −0.0979135 0.169591i
\(476\) 17.0718 0.782485
\(477\) 0 0
\(478\) −2.07180 −0.0947618
\(479\) −13.6244 23.5981i −0.622513 1.07822i −0.989016 0.147807i \(-0.952779\pi\)
0.366504 0.930417i \(-0.380555\pi\)
\(480\) 0 0
\(481\) −1.26795 + 2.19615i −0.0578135 + 0.100136i
\(482\) 3.63397 6.29423i 0.165523 0.286694i
\(483\) 0 0
\(484\) −10.9282 18.9282i −0.496737 0.860373i
\(485\) −25.3205 −1.14975
\(486\) 0 0
\(487\) 0.607695 0.0275373 0.0137686 0.999905i \(-0.495617\pi\)
0.0137686 + 0.999905i \(0.495617\pi\)
\(488\) −1.59808 2.76795i −0.0723415 0.125299i
\(489\) 0 0
\(490\) −1.26795 + 2.19615i −0.0572801 + 0.0992121i
\(491\) 15.6603 27.1244i 0.706737 1.22411i −0.259324 0.965791i \(-0.583500\pi\)
0.966061 0.258315i \(-0.0831671\pi\)
\(492\) 0 0
\(493\) 33.7128 + 58.3923i 1.51835 + 2.62986i
\(494\) −1.73205 −0.0779287
\(495\) 0 0
\(496\) 7.46410 0.335148
\(497\) 12.8923 + 22.3301i 0.578299 + 1.00164i
\(498\) 0 0
\(499\) −1.59808 + 2.76795i −0.0715397 + 0.123910i −0.899576 0.436764i \(-0.856125\pi\)
0.828037 + 0.560674i \(0.189458\pi\)
\(500\) −3.46410 + 6.00000i −0.154919 + 0.268328i
\(501\) 0 0
\(502\) −1.09808 1.90192i −0.0490095 0.0848870i
\(503\) 20.9808 0.935486 0.467743 0.883865i \(-0.345067\pi\)
0.467743 + 0.883865i \(0.345067\pi\)
\(504\) 0 0
\(505\) 22.1962 0.987716
\(506\) −12.0263 20.8301i −0.534633 0.926012i
\(507\) 0 0
\(508\) 2.26795 3.92820i 0.100624 0.174286i
\(509\) 5.26795 9.12436i 0.233498 0.404430i −0.725337 0.688394i \(-0.758316\pi\)
0.958835 + 0.283964i \(0.0916495\pi\)
\(510\) 0 0
\(511\) −16.5885 28.7321i −0.733830 1.27103i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 0.464102 0.0204706
\(515\) 10.1962 + 17.6603i 0.449296 + 0.778204i
\(516\) 0 0
\(517\) −1.53590 + 2.66025i −0.0675487 + 0.116998i
\(518\) −3.12436 + 5.41154i −0.137276 + 0.237770i
\(519\) 0 0
\(520\) −1.36603 2.36603i −0.0599042 0.103757i
\(521\) −21.2487 −0.930923 −0.465461 0.885068i \(-0.654112\pi\)
−0.465461 + 0.885068i \(0.654112\pi\)
\(522\) 0 0
\(523\) 19.5167 0.853404 0.426702 0.904392i \(-0.359675\pi\)
0.426702 + 0.904392i \(0.359675\pi\)
\(524\) −4.46410 7.73205i −0.195015 0.337776i
\(525\) 0 0
\(526\) 9.63397 16.6865i 0.420061 0.727567i
\(527\) 25.8564 44.7846i 1.12632 1.95085i
\(528\) 0 0
\(529\) 2.69615 + 4.66987i 0.117224 + 0.203038i
\(530\) −23.6603 −1.02774
\(531\) 0 0
\(532\) −4.26795 −0.185039
\(533\) 0.633975 + 1.09808i 0.0274605 + 0.0475630i
\(534\) 0 0
\(535\) 9.19615 15.9282i 0.397584 0.688636i
\(536\) 6.19615 10.7321i 0.267633 0.463554i
\(537\) 0 0
\(538\) 5.53590 + 9.58846i 0.238670 + 0.413388i
\(539\) −5.32051 −0.229171
\(540\) 0 0
\(541\) 10.8756 0.467580 0.233790 0.972287i \(-0.424887\pi\)
0.233790 + 0.972287i \(0.424887\pi\)
\(542\) −2.69615 4.66987i −0.115810 0.200588i
\(543\) 0 0
\(544\) 3.46410 6.00000i 0.148522 0.257248i
\(545\) 14.4641 25.0526i 0.619574 1.07313i
\(546\) 0 0
\(547\) −20.4641 35.4449i −0.874982 1.51551i −0.856782 0.515679i \(-0.827540\pi\)
−0.0181997 0.999834i \(-0.505793\pi\)
\(548\) 0.928203 0.0396509
\(549\) 0 0
\(550\) 14.1244 0.602265
\(551\) −8.42820 14.5981i −0.359054 0.621899i
\(552\) 0 0
\(553\) 7.15064 12.3853i 0.304076 0.526675i
\(554\) −7.79423 + 13.5000i −0.331145 + 0.573560i
\(555\) 0 0
\(556\) 5.09808 + 8.83013i 0.216207 + 0.374481i
\(557\) 18.2487 0.773223 0.386611 0.922243i \(-0.373645\pi\)
0.386611 + 0.922243i \(0.373645\pi\)
\(558\) 0 0
\(559\) −4.92820 −0.208441
\(560\) −3.36603 5.83013i −0.142241 0.246368i
\(561\) 0 0
\(562\) −15.3923 + 26.6603i −0.649285 + 1.12459i
\(563\) 21.0981 36.5429i 0.889178 1.54010i 0.0483289 0.998831i \(-0.484610\pi\)
0.840849 0.541270i \(-0.182056\pi\)
\(564\) 0 0
\(565\) −10.8301 18.7583i −0.455627 0.789169i
\(566\) 7.46410 0.313740
\(567\) 0 0
\(568\) 10.4641 0.439064
\(569\) −14.0000 24.2487i −0.586911 1.01656i −0.994634 0.103454i \(-0.967011\pi\)
0.407724 0.913105i \(-0.366323\pi\)
\(570\) 0 0
\(571\) 17.3660 30.0788i 0.726746 1.25876i −0.231506 0.972833i \(-0.574365\pi\)
0.958251 0.285927i \(-0.0923014\pi\)
\(572\) 2.86603 4.96410i 0.119835 0.207560i
\(573\) 0 0
\(574\) 1.56218 + 2.70577i 0.0652040 + 0.112937i
\(575\) 10.3397 0.431197
\(576\) 0 0
\(577\) 2.53590 0.105571 0.0527854 0.998606i \(-0.483190\pi\)
0.0527854 + 0.998606i \(0.483190\pi\)
\(578\) −15.5000 26.8468i −0.644715 1.11668i
\(579\) 0 0
\(580\) 13.2942 23.0263i 0.552013 0.956114i
\(581\) 18.0622 31.2846i 0.749345 1.29790i
\(582\) 0 0
\(583\) −24.8205 42.9904i −1.02796 1.78048i
\(584\) −13.4641 −0.557148
\(585\) 0 0
\(586\) 4.00000 0.165238
\(587\) −3.19615 5.53590i −0.131919 0.228491i 0.792497 0.609876i \(-0.208781\pi\)
−0.924416 + 0.381385i \(0.875447\pi\)
\(588\) 0 0
\(589\) −6.46410 + 11.1962i −0.266349 + 0.461329i
\(590\) 19.2942 33.4186i 0.794331 1.37582i
\(591\) 0 0
\(592\) 1.26795 + 2.19615i 0.0521124 + 0.0902613i
\(593\) −9.66025 −0.396699 −0.198350 0.980131i \(-0.563558\pi\)
−0.198350 + 0.980131i \(0.563558\pi\)
\(594\) 0 0
\(595\) −46.6410 −1.91210
\(596\) −11.3660 19.6865i −0.465571 0.806392i
\(597\) 0 0
\(598\) 2.09808 3.63397i 0.0857967 0.148604i
\(599\) 11.2224 19.4378i 0.458536 0.794208i −0.540348 0.841442i \(-0.681707\pi\)
0.998884 + 0.0472339i \(0.0150406\pi\)
\(600\) 0 0
\(601\) 21.0885 + 36.5263i 0.860216 + 1.48994i 0.871720 + 0.490004i \(0.163005\pi\)
−0.0115040 + 0.999934i \(0.503662\pi\)
\(602\) −12.1436 −0.494936
\(603\) 0 0
\(604\) −13.3923 −0.544925
\(605\) 29.8564 + 51.7128i 1.21384 + 2.10242i
\(606\) 0 0
\(607\) −14.1962 + 24.5885i −0.576204 + 0.998015i 0.419706 + 0.907660i \(0.362133\pi\)
−0.995910 + 0.0903544i \(0.971200\pi\)
\(608\) −0.866025 + 1.50000i −0.0351220 + 0.0608330i
\(609\) 0 0
\(610\) 4.36603 + 7.56218i 0.176775 + 0.306184i
\(611\) −0.535898 −0.0216801
\(612\) 0 0
\(613\) −10.9282 −0.441386 −0.220693 0.975343i \(-0.570832\pi\)
−0.220693 + 0.975343i \(0.570832\pi\)
\(614\) 4.53590 + 7.85641i 0.183054 + 0.317059i
\(615\) 0 0
\(616\) 7.06218 12.2321i 0.284543 0.492843i
\(617\) −4.36603 + 7.56218i −0.175770 + 0.304442i −0.940427 0.339995i \(-0.889575\pi\)
0.764658 + 0.644437i \(0.222908\pi\)
\(618\) 0 0
\(619\) −13.7224 23.7679i −0.551551 0.955315i −0.998163 0.0605867i \(-0.980703\pi\)
0.446612 0.894728i \(-0.352631\pi\)
\(620\) −20.3923 −0.818975
\(621\) 0 0
\(622\) −4.14359 −0.166143
\(623\) −17.4904 30.2942i −0.700737 1.21371i
\(624\) 0 0
\(625\) 15.6244 27.0622i 0.624974 1.08249i
\(626\) −11.5000 + 19.9186i −0.459632 + 0.796107i
\(627\) 0 0
\(628\) 2.86603 + 4.96410i 0.114367 + 0.198089i
\(629\) 17.5692 0.700531
\(630\) 0 0
\(631\) 4.21539 0.167812 0.0839060 0.996474i \(-0.473260\pi\)
0.0839060 + 0.996474i \(0.473260\pi\)
\(632\) −2.90192 5.02628i −0.115432 0.199935i
\(633\) 0 0
\(634\) 4.56218 7.90192i 0.181187 0.313825i
\(635\) −6.19615 + 10.7321i −0.245887 + 0.425888i
\(636\) 0 0
\(637\) −0.464102 0.803848i −0.0183884 0.0318496i
\(638\) 55.7846 2.20853
\(639\) 0 0
\(640\) −2.73205 −0.107994
\(641\) 11.0359 + 19.1147i 0.435892 + 0.754987i 0.997368 0.0725062i \(-0.0230997\pi\)
−0.561476 + 0.827493i \(0.689766\pi\)
\(642\) 0 0
\(643\) 17.8660 30.9449i 0.704567 1.22035i −0.262280 0.964992i \(-0.584474\pi\)
0.966847 0.255355i \(-0.0821922\pi\)
\(644\) 5.16987 8.95448i 0.203722 0.352856i
\(645\) 0 0
\(646\) 6.00000 + 10.3923i 0.236067 + 0.408880i
\(647\) −20.3397 −0.799638 −0.399819 0.916594i \(-0.630927\pi\)
−0.399819 + 0.916594i \(0.630927\pi\)
\(648\) 0 0
\(649\) 80.9615 3.17802
\(650\) 1.23205 + 2.13397i 0.0483250 + 0.0837014i
\(651\) 0 0
\(652\) 3.26795 5.66025i 0.127983 0.221673i
\(653\) −18.1244 + 31.3923i −0.709261 + 1.22848i 0.255871 + 0.966711i \(0.417638\pi\)
−0.965132 + 0.261765i \(0.915696\pi\)
\(654\) 0 0
\(655\) 12.1962 + 21.1244i 0.476543 + 0.825397i
\(656\) 1.26795 0.0495051
\(657\) 0 0
\(658\) −1.32051 −0.0514788
\(659\) −1.26795 2.19615i −0.0493923 0.0855500i 0.840272 0.542165i \(-0.182395\pi\)
−0.889665 + 0.456615i \(0.849062\pi\)
\(660\) 0 0
\(661\) 0.732051 1.26795i 0.0284735 0.0493175i −0.851438 0.524456i \(-0.824269\pi\)
0.879911 + 0.475139i \(0.157602\pi\)
\(662\) −2.73205 + 4.73205i −0.106184 + 0.183916i
\(663\) 0 0
\(664\) −7.33013 12.6962i −0.284464 0.492706i
\(665\) 11.6603 0.452165
\(666\) 0 0
\(667\) 40.8372 1.58122
\(668\) 3.69615 + 6.40192i 0.143008 + 0.247698i
\(669\) 0 0
\(670\) −16.9282 + 29.3205i −0.653994 + 1.13275i
\(671\) −9.16025 + 15.8660i −0.353628 + 0.612501i
\(672\) 0 0
\(673\) 23.1603 + 40.1147i 0.892762 + 1.54631i 0.836550 + 0.547891i \(0.184569\pi\)
0.0562122 + 0.998419i \(0.482098\pi\)
\(674\) −17.8564 −0.687803
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) −4.33013 7.50000i −0.166420 0.288248i 0.770738 0.637152i \(-0.219888\pi\)
−0.937159 + 0.348903i \(0.886554\pi\)
\(678\) 0 0
\(679\) 11.4186 19.7776i 0.438205 0.758993i
\(680\) −9.46410 + 16.3923i −0.362932 + 0.628616i
\(681\) 0 0
\(682\) −21.3923 37.0526i −0.819154 1.41882i
\(683\) 10.6795 0.408639 0.204320 0.978904i \(-0.434502\pi\)
0.204320 + 0.978904i \(0.434502\pi\)
\(684\) 0 0
\(685\) −2.53590 −0.0968917
\(686\) −9.76795 16.9186i −0.372942 0.645955i
\(687\) 0 0
\(688\) −2.46410 + 4.26795i −0.0939430 + 0.162714i
\(689\) 4.33013 7.50000i 0.164965 0.285727i
\(690\) 0 0
\(691\) 22.1865 + 38.4282i 0.844016 + 1.46188i 0.886473 + 0.462779i \(0.153148\pi\)
−0.0424579 + 0.999098i \(0.513519\pi\)
\(692\) 7.19615 0.273557
\(693\) 0 0
\(694\) −19.2679 −0.731401
\(695\) −13.9282 24.1244i −0.528327 0.915089i
\(696\) 0 0
\(697\) 4.39230 7.60770i 0.166370 0.288162i
\(698\) 11.7321 20.3205i 0.444065 0.769143i
\(699\) 0 0
\(700\) 3.03590 + 5.25833i 0.114746 + 0.198746i
\(701\) −25.0526 −0.946222 −0.473111 0.881003i \(-0.656869\pi\)
−0.473111 + 0.881003i \(0.656869\pi\)
\(702\) 0 0
\(703\) −4.39230 −0.165659
\(704\) −2.86603 4.96410i −0.108017 0.187092i
\(705\) 0 0
\(706\) 10.2942 17.8301i 0.387428 0.671046i
\(707\) −10.0096 + 17.3372i −0.376450 + 0.652031i
\(708\) 0 0
\(709\) 3.26795 + 5.66025i 0.122730 + 0.212575i 0.920843 0.389932i \(-0.127502\pi\)
−0.798113 + 0.602508i \(0.794168\pi\)
\(710\) −28.5885 −1.07291
\(711\) 0 0
\(712\) −14.1962 −0.532023
\(713\) −15.6603 27.1244i −0.586481 1.01582i
\(714\) 0 0
\(715\) −7.83013 + 13.5622i −0.292830 + 0.507197i
\(716\) −1.26795 + 2.19615i −0.0473855 + 0.0820741i
\(717\) 0 0
\(718\) −9.92820 17.1962i −0.370517 0.641755i
\(719\) 33.2679 1.24069 0.620343 0.784331i \(-0.286994\pi\)
0.620343 + 0.784331i \(0.286994\pi\)
\(720\) 0 0
\(721\) −18.3923 −0.684965
\(722\) 8.00000 + 13.8564i 0.297729 + 0.515682i
\(723\) 0 0
\(724\) 4.79423 8.30385i 0.178176 0.308610i
\(725\) −11.9904 + 20.7679i −0.445312 + 0.771302i
\(726\) 0 0
\(727\) −23.4641 40.6410i −0.870235 1.50729i −0.861753 0.507328i \(-0.830633\pi\)
−0.00848222 0.999964i \(-0.502700\pi\)
\(728\) 2.46410 0.0913257
\(729\) 0 0
\(730\) 36.7846 1.36146
\(731\) 17.0718 + 29.5692i 0.631423 + 1.09366i
\(732\) 0 0
\(733\) −23.2224 + 40.2224i −0.857740 + 1.48565i 0.0163394 + 0.999867i \(0.494799\pi\)
−0.874079 + 0.485783i \(0.838535\pi\)
\(734\) 2.29423 3.97372i 0.0846815 0.146673i
\(735\) 0 0
\(736\) −2.09808 3.63397i −0.0773361 0.133950i
\(737\) −71.0333 −2.61655
\(738\) 0 0
\(739\) −43.0526 −1.58371 −0.791857 0.610707i \(-0.790886\pi\)
−0.791857 + 0.610707i \(0.790886\pi\)
\(740\) −3.46410 6.00000i −0.127343 0.220564i
\(741\) 0 0
\(742\) 10.6699 18.4808i 0.391703 0.678450i
\(743\) −3.16025 + 5.47372i −0.115938 + 0.200811i −0.918155 0.396223i \(-0.870321\pi\)
0.802216 + 0.597034i \(0.203654\pi\)
\(744\) 0 0
\(745\) 31.0526 + 53.7846i 1.13768 + 1.97052i
\(746\) 1.87564 0.0686722
\(747\) 0 0
\(748\) −39.7128 −1.45204
\(749\) 8.29423 + 14.3660i 0.303065 + 0.524923i
\(750\) 0 0
\(751\) 3.00000 5.19615i 0.109472 0.189610i −0.806085 0.591800i \(-0.798417\pi\)
0.915556 + 0.402190i \(0.131751\pi\)
\(752\) −0.267949 + 0.464102i −0.00977110 + 0.0169240i
\(753\) 0 0
\(754\) 4.86603 + 8.42820i 0.177210 + 0.306937i
\(755\) 36.5885 1.33159
\(756\) 0 0
\(757\) 14.6603 0.532836 0.266418 0.963858i \(-0.414160\pi\)
0.266418 + 0.963858i \(0.414160\pi\)
\(758\) −17.5263 30.3564i −0.636583 1.10259i
\(759\) 0 0
\(760\) 2.36603 4.09808i 0.0858248 0.148653i
\(761\) −22.3923 + 38.7846i −0.811720 + 1.40594i 0.0999386 + 0.994994i \(0.468135\pi\)
−0.911659 + 0.410947i \(0.865198\pi\)
\(762\) 0 0
\(763\) 13.0455 + 22.5955i 0.472279 + 0.818012i
\(764\) −8.92820 −0.323011
\(765\) 0 0
\(766\) 7.39230 0.267095
\(767\) 7.06218 + 12.2321i 0.255000 + 0.441674i
\(768\) 0 0
\(769\) −7.85641 + 13.6077i −0.283309 + 0.490706i −0.972198 0.234161i \(-0.924766\pi\)
0.688889 + 0.724867i \(0.258099\pi\)
\(770\) −19.2942 + 33.4186i −0.695316 + 1.20432i
\(771\) 0 0
\(772\) −2.09808 3.63397i −0.0755114 0.130790i
\(773\) 33.8564 1.21773 0.608865 0.793274i \(-0.291625\pi\)
0.608865 + 0.793274i \(0.291625\pi\)
\(774\) 0 0
\(775\) 18.3923 0.660671
\(776\) −4.63397 8.02628i −0.166350 0.288127i
\(777\) 0 0
\(778\) 6.92820 12.0000i 0.248388 0.430221i
\(779\) −1.09808 + 1.90192i −0.0393427 + 0.0681435i
\(780\) 0 0
\(781\) −29.9904 51.9449i −1.07314 1.85873i
\(782\) −29.0718 −1.03961
\(783\) 0 0
\(784\) −0.928203 −0.0331501
\(785\) −7.83013 13.5622i −0.279469 0.484055i
\(786\) 0 0
\(787\) −24.5981 + 42.6051i −0.876827 + 1.51871i −0.0220227 + 0.999757i \(0.507011\pi\)
−0.854804 + 0.518951i \(0.826323\pi\)
\(788\) 13.3923 23.1962i 0.477081 0.826329i
\(789\) 0 0
\(790\) 7.92820 + 13.7321i 0.282073 + 0.488564i
\(791\) 19.5359 0.694617
\(792\) 0 0
\(793\) −3.19615 −0.113499
\(794\) −16.9282 29.3205i −0.600759 1.04055i
\(795\) 0 0
\(796\) 2.00000 3.46410i 0.0708881 0.122782i
\(797\) −9.99038 + 17.3038i −0.353877 + 0.612934i −0.986925 0.161179i \(-0.948470\pi\)
0.633048 + 0.774113i \(0.281804\pi\)
\(798\) 0 0
\(799\) 1.85641 + 3.21539i 0.0656749 + 0.113752i
\(800\) 2.46410 0.0871191
\(801\) 0 0
\(802\) −14.1962 −0.501284
\(803\) 38.5885 + 66.8372i 1.36176 + 2.35863i
\(804\) 0 0
\(805\) −14.1244 + 24.4641i −0.497818 + 0.862246i
\(806\) 3.73205 6.46410i 0.131456 0.227688i
\(807\) 0 0
\(808\) 4.06218 + 7.03590i 0.142907 + 0.247522i
\(809\) 29.7846 1.04717 0.523586 0.851973i \(-0.324594\pi\)
0.523586 + 0.851973i \(0.324594\pi\)
\(810\) 0 0
\(811\) −18.6603 −0.655250 −0.327625 0.944808i \(-0.606248\pi\)
−0.327625 + 0.944808i \(0.606248\pi\)
\(812\) 11.9904 + 20.7679i 0.420780 + 0.728812i
\(813\) 0 0
\(814\) 7.26795 12.5885i 0.254741 0.441225i
\(815\) −8.92820 + 15.4641i −0.312741 + 0.541684i
\(816\) 0 0
\(817\) −4.26795 7.39230i −0.149317 0.258624i
\(818\) −23.4641 −0.820403
\(819\) 0 0
\(820\) −3.46410 −0.120972
\(821\) −18.1962 31.5167i −0.635050 1.09994i −0.986505 0.163734i \(-0.947646\pi\)
0.351454 0.936205i \(-0.385687\pi\)
\(822\) 0 0
\(823\) −16.2679 + 28.1769i −0.567065 + 0.982185i 0.429789 + 0.902929i \(0.358588\pi\)
−0.996854 + 0.0792562i \(0.974745\pi\)
\(824\) −3.73205 + 6.46410i −0.130012 + 0.225188i
\(825\) 0 0
\(826\) 17.4019 + 30.1410i 0.605490 + 1.04874i
\(827\) −20.7846 −0.722752 −0.361376 0.932420i \(-0.617693\pi\)
−0.361376 + 0.932420i \(0.617693\pi\)
\(828\) 0 0
\(829\) 8.26795 0.287158 0.143579 0.989639i \(-0.454139\pi\)
0.143579 + 0.989639i \(0.454139\pi\)
\(830\) 20.0263 + 34.6865i 0.695122 + 1.20399i
\(831\) 0 0
\(832\) 0.500000 0.866025i 0.0173344 0.0300240i
\(833\) −3.21539 + 5.56922i −0.111407 + 0.192962i
\(834\) 0 0
\(835\) −10.0981 17.4904i −0.349458 0.605280i
\(836\) 9.92820 0.343374
\(837\) 0 0
\(838\) −17.6603 −0.610063
\(839\) 11.5885 + 20.0718i 0.400078 + 0.692955i 0.993735 0.111763i \(-0.0356497\pi\)
−0.593657 + 0.804718i \(0.702316\pi\)
\(840\) 0 0
\(841\) −32.8564 + 56.9090i −1.13298 + 1.96238i
\(842\) −17.7583 + 30.7583i −0.611992 + 1.06000i
\(843\) 0 0
\(844\) 9.56218 + 16.5622i 0.329144 + 0.570094i
\(845\) −2.73205 −0.0939854
\(846\) 0 0
\(847\) −53.8564 −1.85053
\(848\) −4.33013 7.50000i −0.148697 0.257551i
\(849\) 0 0
\(850\) 8.53590 14.7846i 0.292779 0.507108i
\(851\) 5.32051 9.21539i 0.182385 0.315900i
\(852\) 0 0
\(853\) −8.97372 15.5429i −0.307254 0.532180i 0.670506 0.741904i \(-0.266077\pi\)
−0.977761 + 0.209724i \(0.932744\pi\)
\(854\) −7.87564 −0.269499
\(855\) 0 0
\(856\) 6.73205 0.230097
\(857\) −1.89230 3.27757i −0.0646399 0.111960i 0.831894 0.554934i \(-0.187257\pi\)
−0.896534 + 0.442975i \(0.853923\pi\)
\(858\) 0 0
\(859\) −4.75833 + 8.24167i −0.162352 + 0.281202i −0.935712 0.352765i \(-0.885241\pi\)
0.773360 + 0.633968i \(0.218575\pi\)
\(860\) 6.73205 11.6603i 0.229561 0.397611i
\(861\) 0 0
\(862\) −18.2321 31.5788i −0.620986 1.07558i
\(863\) −41.4974 −1.41259 −0.706294 0.707918i \(-0.749634\pi\)
−0.706294 + 0.707918i \(0.749634\pi\)
\(864\) 0 0
\(865\) −19.6603 −0.668469
\(866\) −1.30385 2.25833i −0.0443065 0.0767412i
\(867\) 0 0
\(868\) 9.19615 15.9282i 0.312138 0.540638i
\(869\) −16.6340 + 28.8109i −0.564269 + 0.977342i
\(870\) 0 0
\(871\) −6.19615 10.7321i −0.209949 0.363642i
\(872\) 10.5885 0.358570
\(873\) 0 0
\(874\) 7.26795 0.245842
\(875\) 8.53590 + 14.7846i 0.288566 + 0.499811i
\(876\) 0 0
\(877\) −0.294229 + 0.509619i −0.00993540 + 0.0172086i −0.870950 0.491371i \(-0.836496\pi\)
0.861015 + 0.508580i \(0.169829\pi\)
\(878\) 14.0000 24.2487i 0.472477 0.818354i
\(879\) 0 0
\(880\) 7.83013 + 13.5622i 0.263954 + 0.457181i
\(881\) −6.24871 −0.210524 −0.105262 0.994445i \(-0.533568\pi\)
−0.105262 + 0.994445i \(0.533568\pi\)
\(882\) 0 0
\(883\) −34.1962 −1.15079 −0.575396 0.817875i \(-0.695152\pi\)
−0.575396 + 0.817875i \(0.695152\pi\)
\(884\) −3.46410 6.00000i −0.116510 0.201802i
\(885\) 0 0
\(886\) 13.8564 24.0000i 0.465515 0.806296i
\(887\) 14.0981 24.4186i 0.473367 0.819896i −0.526168 0.850381i \(-0.676372\pi\)
0.999535 + 0.0304847i \(0.00970509\pi\)
\(888\) 0 0
\(889\) −5.58846 9.67949i −0.187431 0.324640i
\(890\) 38.7846 1.30006
\(891\) 0 0
\(892\) 11.7846 0.394578
\(893\) −0.464102 0.803848i −0.0155306 0.0268997i
\(894\) 0 0
\(895\) 3.46410 6.00000i 0.115792 0.200558i
\(896\) 1.23205 2.13397i 0.0411599 0.0712911i
\(897\) 0 0
\(898\) 4.00000 + 6.92820i 0.133482 + 0.231197i
\(899\) 72.6410 2.42271
\(900\) 0 0
\(901\) −60.0000 −1.99889
\(902\) −3.63397 6.29423i −0.120998 0.209575i
\(903\) 0 0
\(904\) 3.96410 6.86603i 0.131844 0.228361i
\(905\) −13.0981 + 22.6865i −0.435395 + 0.754126i
\(906\) 0 0
\(907\) 6.46410 + 11.1962i 0.214637 + 0.371762i 0.953160 0.302466i \(-0.0978098\pi\)
−0.738523 + 0.674228i \(0.764476\pi\)
\(908\) 14.6603 0.486518
\(909\) 0 0
\(910\) −6.73205 −0.223165
\(911\) 17.3205 + 30.0000i 0.573854 + 0.993944i 0.996165 + 0.0874934i \(0.0278857\pi\)
−0.422311 + 0.906451i \(0.638781\pi\)
\(912\) 0 0
\(913\) −42.0167 + 72.7750i −1.39055 + 2.40850i
\(914\) −11.1699 + 19.3468i −0.369467 + 0.639935i
\(915\) 0 0
\(916\) 6.46410 + 11.1962i 0.213580 + 0.369931i
\(917\) −22.0000 −0.726504
\(918\) 0 0
\(919\) 32.1051 1.05905 0.529525 0.848294i \(-0.322370\pi\)
0.529525 + 0.848294i \(0.322370\pi\)
\(920\) 5.73205 + 9.92820i 0.188980 + 0.327323i
\(921\) 0 0
\(922\) −19.0981 + 33.0788i −0.628962 + 1.08939i
\(923\) 5.23205 9.06218i 0.172215 0.298285i
\(924\) 0 0
\(925\) 3.12436 + 5.41154i 0.102728 + 0.177930i
\(926\) 0.320508 0.0105325
\(927\) 0 0
\(928\) 9.73205 0.319470
\(929\) 6.12436 + 10.6077i 0.200934 + 0.348027i 0.948829 0.315789i \(-0.102269\pi\)
−0.747896 + 0.663816i \(0.768936\pi\)
\(930\) 0 0
\(931\) 0.803848 1.39230i 0.0263450 0.0456309i
\(932\) 1.69615 2.93782i 0.0555593 0.0962316i
\(933\) 0 0
\(934\) 0.437822 + 0.758330i 0.0143260 + 0.0248133i
\(935\) 108.497 3.54825
\(936\) 0 0
\(937\) 19.6077 0.640555 0.320278 0.947324i \(-0.396224\pi\)
0.320278 + 0.947324i \(0.396224\pi\)
\(938\) −15.2679 26.4449i −0.498516 0.863455i
\(939\) 0 0
\(940\) 0.732051 1.26795i 0.0238769 0.0413559i
\(941\) 17.0526 29.5359i 0.555898 0.962843i −0.441936 0.897047i \(-0.645708\pi\)
0.997833 0.0657960i \(-0.0209586\pi\)
\(942\) 0 0
\(943\) −2.66025 4.60770i −0.0866298 0.150047i
\(944\) 14.1244 0.459709
\(945\) 0 0
\(946\) 28.2487 0.918445
\(947\) 6.58846 + 11.4115i 0.214096 + 0.370825i 0.952993 0.302994i \(-0.0979861\pi\)
−0.738896 + 0.673819i \(0.764653\pi\)
\(948\) 0 0
\(949\) −6.73205 + 11.6603i −0.218532 + 0.378508i
\(950\) −2.13397 + 3.69615i −0.0692353 + 0.119919i
\(951\) 0 0
\(952\) −8.53590 14.7846i −0.276650 0.479172i
\(953\) 57.4256 1.86020 0.930099 0.367308i \(-0.119721\pi\)
0.930099 + 0.367308i \(0.119721\pi\)
\(954\) 0 0
\(955\) 24.3923 0.789316
\(956\) 1.03590 + 1.79423i 0.0335033 + 0.0580295i
\(957\) 0 0
\(958\) −13.6244 + 23.5981i −0.440183 + 0.762419i
\(959\) 1.14359 1.98076i 0.0369286 0.0639621i
\(960\) 0 0
\(961\) −12.3564 21.4019i −0.398594 0.690385i
\(962\) 2.53590 0.0817606
\(963\) 0 0
\(964\) −7.26795 −0.234085
\(965\) 5.73205 + 9.92820i 0.184521 + 0.319600i
\(966\) 0 0
\(967\) −0.303848 + 0.526279i −0.00977108 + 0.0169240i −0.870870 0.491514i \(-0.836444\pi\)
0.861099 + 0.508438i \(0.169777\pi\)
\(968\) −10.9282 + 18.9282i −0.351246 + 0.608375i
\(969\) 0 0
\(970\) 12.6603 + 21.9282i 0.406496 + 0.704072i
\(971\) −25.5167 −0.818869 −0.409434 0.912340i \(-0.634274\pi\)
−0.409434 + 0.912340i \(0.634274\pi\)
\(972\) 0 0
\(973\) 25.1244 0.805450
\(974\) −0.303848 0.526279i −0.00973590 0.0168631i
\(975\) 0 0
\(976\) −1.59808 + 2.76795i −0.0511532 + 0.0885999i
\(977\) −12.6340 + 21.8827i −0.404197 + 0.700089i −0.994228 0.107291i \(-0.965782\pi\)
0.590031 + 0.807381i \(0.299116\pi\)
\(978\) 0 0
\(979\) 40.6865 + 70.4711i 1.30035 + 2.25227i
\(980\) 2.53590 0.0810063
\(981\) 0 0
\(982\) −31.3205 −0.999478
\(983\) 4.08846 + 7.08142i 0.130402 + 0.225862i 0.923831 0.382800i \(-0.125040\pi\)
−0.793430 + 0.608662i \(0.791707\pi\)
\(984\) 0 0
\(985\) −36.5885 + 63.3731i −1.16581 + 2.01923i
\(986\) 33.7128 58.3923i 1.07363 1.85959i
\(987\) 0 0
\(988\) 0.866025 + 1.50000i 0.0275519 + 0.0477214i
\(989\) 20.6795 0.657570
\(990\) 0 0
\(991\) 12.5885 0.399886 0.199943 0.979808i \(-0.435924\pi\)
0.199943 + 0.979808i \(0.435924\pi\)
\(992\) −3.73205 6.46410i −0.118493 0.205235i
\(993\) 0 0
\(994\) 12.8923 22.3301i 0.408919 0.708269i
\(995\) −5.46410 + 9.46410i −0.173224 + 0.300032i
\(996\) 0 0
\(997\) −19.5263 33.8205i −0.618403 1.07111i −0.989777 0.142623i \(-0.954446\pi\)
0.371374 0.928484i \(-0.378887\pi\)
\(998\) 3.19615 0.101172
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2106.2.e.bd.1405.2 4
3.2 odd 2 2106.2.e.bf.1405.1 4
9.2 odd 6 2106.2.e.bf.703.1 4
9.4 even 3 2106.2.a.n.1.1 yes 2
9.5 odd 6 2106.2.a.k.1.2 2
9.7 even 3 inner 2106.2.e.bd.703.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2106.2.a.k.1.2 2 9.5 odd 6
2106.2.a.n.1.1 yes 2 9.4 even 3
2106.2.e.bd.703.2 4 9.7 even 3 inner
2106.2.e.bd.1405.2 4 1.1 even 1 trivial
2106.2.e.bf.703.1 4 9.2 odd 6
2106.2.e.bf.1405.1 4 3.2 odd 2