Properties

Label 2106.2.e.bd
Level $2106$
Weight $2$
Character orbit 2106.e
Analytic conductor $16.816$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2106,2,Mod(703,2106)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2106, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2106.703");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2106 = 2 \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2106.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8164946657\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} - \beta_1 q^{4} + ( - \beta_{2} + \beta_1) q^{5} + ( - 2 \beta_{3} + 2 \beta_{2} + \cdots - 1) q^{7} + q^{8} + (\beta_{3} - 1) q^{10} + (\beta_{3} - \beta_{2} + 4 \beta_1 - 4) q^{11}+ \cdots + (4 \beta_{3} + 6) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} + 2 q^{5} - 2 q^{7} + 4 q^{8} - 4 q^{10} - 8 q^{11} + 2 q^{13} - 2 q^{14} - 2 q^{16} + 2 q^{20} - 8 q^{22} + 2 q^{23} + 2 q^{25} - 4 q^{26} + 4 q^{28} - 16 q^{29} - 8 q^{31} - 2 q^{32}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{12}^{3} + \zeta_{12} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{12}^{3} + 2\zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( ( -\beta_{3} + 2\beta_{2} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2106\mathbb{Z}\right)^\times\).

\(n\) \(1379\) \(1783\)
\(\chi(n)\) \(-\beta_{1}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
703.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.500000 + 0.866025i 0 −0.500000 0.866025i −0.366025 0.633975i 0 −2.23205 + 3.86603i 1.00000 0 0.732051
703.2 −0.500000 + 0.866025i 0 −0.500000 0.866025i 1.36603 + 2.36603i 0 1.23205 2.13397i 1.00000 0 −2.73205
1405.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i −0.366025 + 0.633975i 0 −2.23205 3.86603i 1.00000 0 0.732051
1405.2 −0.500000 0.866025i 0 −0.500000 + 0.866025i 1.36603 2.36603i 0 1.23205 + 2.13397i 1.00000 0 −2.73205
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2106.2.e.bd 4
3.b odd 2 1 2106.2.e.bf 4
9.c even 3 1 2106.2.a.n yes 2
9.c even 3 1 inner 2106.2.e.bd 4
9.d odd 6 1 2106.2.a.k 2
9.d odd 6 1 2106.2.e.bf 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2106.2.a.k 2 9.d odd 6 1
2106.2.a.n yes 2 9.c even 3 1
2106.2.e.bd 4 1.a even 1 1 trivial
2106.2.e.bd 4 9.c even 3 1 inner
2106.2.e.bf 4 3.b odd 2 1
2106.2.e.bf 4 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2106, [\chi])\):

\( T_{5}^{4} - 2T_{5}^{3} + 6T_{5}^{2} + 4T_{5} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} + 2T_{7}^{3} + 15T_{7}^{2} - 22T_{7} + 121 \) Copy content Toggle raw display
\( T_{11}^{4} + 8T_{11}^{3} + 51T_{11}^{2} + 104T_{11} + 169 \) Copy content Toggle raw display
\( T_{19}^{2} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( T^{4} + 2 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$11$ \( T^{4} + 8 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$13$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 48)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 2 T^{3} + \cdots + 676 \) Copy content Toggle raw display
$29$ \( T^{4} + 16 T^{3} + \cdots + 3721 \) Copy content Toggle raw display
$31$ \( T^{4} + 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$37$ \( (T^{2} + 12 T + 24)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$43$ \( T^{4} - 4 T^{3} + \cdots + 1936 \) Copy content Toggle raw display
$47$ \( T^{4} + 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$53$ \( (T^{2} - 75)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 4 T^{3} + \cdots + 20449 \) Copy content Toggle raw display
$61$ \( T^{4} - 4 T^{3} + \cdots + 529 \) Copy content Toggle raw display
$67$ \( T^{4} - 4 T^{3} + \cdots + 10816 \) Copy content Toggle raw display
$71$ \( (T^{2} - 14 T + 37)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 20 T + 88)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 22 T^{3} + \cdots + 8836 \) Copy content Toggle raw display
$83$ \( T^{4} + 12 T^{3} + \cdots + 1521 \) Copy content Toggle raw display
$89$ \( (T^{2} + 18 T + 54)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 22 T^{3} + \cdots + 13924 \) Copy content Toggle raw display
show more
show less