Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2106,2,Mod(703,2106)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2106, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2106.703");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2106.e (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
703.1 |
|
−0.500000 | + | 0.866025i | 0 | −0.500000 | − | 0.866025i | −0.366025 | − | 0.633975i | 0 | −2.23205 | + | 3.86603i | 1.00000 | 0 | 0.732051 | ||||||||||||||||||||||
703.2 | −0.500000 | + | 0.866025i | 0 | −0.500000 | − | 0.866025i | 1.36603 | + | 2.36603i | 0 | 1.23205 | − | 2.13397i | 1.00000 | 0 | −2.73205 | |||||||||||||||||||||||
1405.1 | −0.500000 | − | 0.866025i | 0 | −0.500000 | + | 0.866025i | −0.366025 | + | 0.633975i | 0 | −2.23205 | − | 3.86603i | 1.00000 | 0 | 0.732051 | |||||||||||||||||||||||
1405.2 | −0.500000 | − | 0.866025i | 0 | −0.500000 | + | 0.866025i | 1.36603 | − | 2.36603i | 0 | 1.23205 | + | 2.13397i | 1.00000 | 0 | −2.73205 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2106.2.e.bd | 4 | |
3.b | odd | 2 | 1 | 2106.2.e.bf | 4 | ||
9.c | even | 3 | 1 | 2106.2.a.n | yes | 2 | |
9.c | even | 3 | 1 | inner | 2106.2.e.bd | 4 | |
9.d | odd | 6 | 1 | 2106.2.a.k | ✓ | 2 | |
9.d | odd | 6 | 1 | 2106.2.e.bf | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
2106.2.a.k | ✓ | 2 | 9.d | odd | 6 | 1 | |
2106.2.a.n | yes | 2 | 9.c | even | 3 | 1 | |
2106.2.e.bd | 4 | 1.a | even | 1 | 1 | trivial | |
2106.2.e.bd | 4 | 9.c | even | 3 | 1 | inner | |
2106.2.e.bf | 4 | 3.b | odd | 2 | 1 | ||
2106.2.e.bf | 4 | 9.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|