Properties

Label 2106.2.e.bd
Level 21062106
Weight 22
Character orbit 2106.e
Analytic conductor 16.81616.816
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2106,2,Mod(703,2106)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2106, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2106.703");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2106=23413 2106 = 2 \cdot 3^{4} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2106.e (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 16.816494665716.8164946657
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 3 3
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β11)q2β1q4+(β2+β1)q5+(2β3+2β2+1)q7+q8+(β31)q10+(β3β2+4β14)q11++(4β3+6)q98+O(q100) q + (\beta_1 - 1) q^{2} - \beta_1 q^{4} + ( - \beta_{2} + \beta_1) q^{5} + ( - 2 \beta_{3} + 2 \beta_{2} + \cdots - 1) q^{7} + q^{8} + (\beta_{3} - 1) q^{10} + (\beta_{3} - \beta_{2} + 4 \beta_1 - 4) q^{11}+ \cdots + (4 \beta_{3} + 6) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q22q4+2q52q7+4q84q108q11+2q132q142q16+2q208q22+2q23+2q254q26+4q2816q298q312q32++24q98+O(q100) 4 q - 2 q^{2} - 2 q^{4} + 2 q^{5} - 2 q^{7} + 4 q^{8} - 4 q^{10} - 8 q^{11} + 2 q^{13} - 2 q^{14} - 2 q^{16} + 2 q^{20} - 8 q^{22} + 2 q^{23} + 2 q^{25} - 4 q^{26} + 4 q^{28} - 16 q^{29} - 8 q^{31} - 2 q^{32}+ \cdots + 24 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ122 \zeta_{12}^{2} Copy content Toggle raw display
β2\beta_{2}== ζ123+ζ12 \zeta_{12}^{3} + \zeta_{12} Copy content Toggle raw display
β3\beta_{3}== ζ123+2ζ12 -\zeta_{12}^{3} + 2\zeta_{12} Copy content Toggle raw display
ζ12\zeta_{12}== (β3+β2)/3 ( \beta_{3} + \beta_{2} ) / 3 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== β1 \beta_1 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== (β3+2β2)/3 ( -\beta_{3} + 2\beta_{2} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2106Z)×\left(\mathbb{Z}/2106\mathbb{Z}\right)^\times.

nn 13791379 17831783
χ(n)\chi(n) β1-\beta_{1} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
703.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.500000 + 0.866025i 0 −0.500000 0.866025i −0.366025 0.633975i 0 −2.23205 + 3.86603i 1.00000 0 0.732051
703.2 −0.500000 + 0.866025i 0 −0.500000 0.866025i 1.36603 + 2.36603i 0 1.23205 2.13397i 1.00000 0 −2.73205
1405.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i −0.366025 + 0.633975i 0 −2.23205 3.86603i 1.00000 0 0.732051
1405.2 −0.500000 0.866025i 0 −0.500000 + 0.866025i 1.36603 2.36603i 0 1.23205 + 2.13397i 1.00000 0 −2.73205
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2106.2.e.bd 4
3.b odd 2 1 2106.2.e.bf 4
9.c even 3 1 2106.2.a.n yes 2
9.c even 3 1 inner 2106.2.e.bd 4
9.d odd 6 1 2106.2.a.k 2
9.d odd 6 1 2106.2.e.bf 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2106.2.a.k 2 9.d odd 6 1
2106.2.a.n yes 2 9.c even 3 1
2106.2.e.bd 4 1.a even 1 1 trivial
2106.2.e.bd 4 9.c even 3 1 inner
2106.2.e.bf 4 3.b odd 2 1
2106.2.e.bf 4 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2106,[χ])S_{2}^{\mathrm{new}}(2106, [\chi]):

T542T53+6T52+4T5+4 T_{5}^{4} - 2T_{5}^{3} + 6T_{5}^{2} + 4T_{5} + 4 Copy content Toggle raw display
T74+2T73+15T7222T7+121 T_{7}^{4} + 2T_{7}^{3} + 15T_{7}^{2} - 22T_{7} + 121 Copy content Toggle raw display
T114+8T113+51T112+104T11+169 T_{11}^{4} + 8T_{11}^{3} + 51T_{11}^{2} + 104T_{11} + 169 Copy content Toggle raw display
T1923 T_{19}^{2} - 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T42T3++4 T^{4} - 2 T^{3} + \cdots + 4 Copy content Toggle raw display
77 T4+2T3++121 T^{4} + 2 T^{3} + \cdots + 121 Copy content Toggle raw display
1111 T4+8T3++169 T^{4} + 8 T^{3} + \cdots + 169 Copy content Toggle raw display
1313 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
1717 (T248)2 (T^{2} - 48)^{2} Copy content Toggle raw display
1919 (T23)2 (T^{2} - 3)^{2} Copy content Toggle raw display
2323 T42T3++676 T^{4} - 2 T^{3} + \cdots + 676 Copy content Toggle raw display
2929 T4+16T3++3721 T^{4} + 16 T^{3} + \cdots + 3721 Copy content Toggle raw display
3131 T4+8T3++16 T^{4} + 8 T^{3} + \cdots + 16 Copy content Toggle raw display
3737 (T2+12T+24)2 (T^{2} + 12 T + 24)^{2} Copy content Toggle raw display
4141 T4+6T3++36 T^{4} + 6 T^{3} + \cdots + 36 Copy content Toggle raw display
4343 T44T3++1936 T^{4} - 4 T^{3} + \cdots + 1936 Copy content Toggle raw display
4747 T4+8T3++16 T^{4} + 8 T^{3} + \cdots + 16 Copy content Toggle raw display
5353 (T275)2 (T^{2} - 75)^{2} Copy content Toggle raw display
5959 T4+4T3++20449 T^{4} + 4 T^{3} + \cdots + 20449 Copy content Toggle raw display
6161 T44T3++529 T^{4} - 4 T^{3} + \cdots + 529 Copy content Toggle raw display
6767 T44T3++10816 T^{4} - 4 T^{3} + \cdots + 10816 Copy content Toggle raw display
7171 (T214T+37)2 (T^{2} - 14 T + 37)^{2} Copy content Toggle raw display
7373 (T2+20T+88)2 (T^{2} + 20 T + 88)^{2} Copy content Toggle raw display
7979 T4+22T3++8836 T^{4} + 22 T^{3} + \cdots + 8836 Copy content Toggle raw display
8383 T4+12T3++1521 T^{4} + 12 T^{3} + \cdots + 1521 Copy content Toggle raw display
8989 (T2+18T+54)2 (T^{2} + 18 T + 54)^{2} Copy content Toggle raw display
9797 T4+22T3++13924 T^{4} + 22 T^{3} + \cdots + 13924 Copy content Toggle raw display
show more
show less