L(s) = 1 | + 5·9-s − 14·11-s + 8·19-s − 5·25-s + 6·29-s + 20·31-s + 36·41-s − 3·49-s + 12·59-s − 48·61-s + 8·71-s − 34·79-s + 14·81-s − 70·99-s + 8·101-s + 10·109-s + 65·121-s + 8·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 5/3·9-s − 4.22·11-s + 1.83·19-s − 25-s + 1.11·29-s + 3.59·31-s + 5.62·41-s − 3/7·49-s + 1.56·59-s − 6.14·61-s + 0.949·71-s − 3.82·79-s + 14/9·81-s − 7.03·99-s + 0.796·101-s + 0.957·109-s + 5.90·121-s + 0.715·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36} \cdot 5^{6} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36} \cdot 5^{6} \cdot 7^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.144377363\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.144377363\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + p T^{2} - 8 T^{3} + p^{2} T^{4} + p^{3} T^{6} \) |
| 7 | \( ( 1 + T^{2} )^{3} \) |
good | 3 | \( 1 - 5 T^{2} + 11 T^{4} - 26 T^{6} + 11 p^{2} T^{8} - 5 p^{4} T^{10} + p^{6} T^{12} \) |
| 11 | \( ( 1 + 7 T + 41 T^{2} + 146 T^{3} + 41 p T^{4} + 7 p^{2} T^{5} + p^{3} T^{6} )^{2} \) |
| 13 | \( 1 - 9 T^{2} + 491 T^{4} - 2882 T^{6} + 491 p^{2} T^{8} - 9 p^{4} T^{10} + p^{6} T^{12} \) |
| 17 | \( 1 - 53 T^{2} + 1539 T^{4} - 31118 T^{6} + 1539 p^{2} T^{8} - 53 p^{4} T^{10} + p^{6} T^{12} \) |
| 19 | \( ( 1 - 4 T + 43 T^{2} - 160 T^{3} + 43 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} )^{2} \) |
| 23 | \( 1 - 2 p T^{2} + 1887 T^{4} - 43972 T^{6} + 1887 p^{2} T^{8} - 2 p^{5} T^{10} + p^{6} T^{12} \) |
| 29 | \( ( 1 - 3 T + 15 T^{2} - 66 T^{3} + 15 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} )^{2} \) |
| 31 | \( ( 1 - 10 T + 101 T^{2} - 540 T^{3} + 101 p T^{4} - 10 p^{2} T^{5} + p^{3} T^{6} )^{2} \) |
| 37 | \( ( 1 - 38 T^{2} + p^{2} T^{4} )^{3} \) |
| 41 | \( ( 1 - 18 T + 191 T^{2} - 1388 T^{3} + 191 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} )^{2} \) |
| 43 | \( 1 - 178 T^{2} + 15575 T^{4} - 836124 T^{6} + 15575 p^{2} T^{8} - 178 p^{4} T^{10} + p^{6} T^{12} \) |
| 47 | \( 1 - 105 T^{2} + 6339 T^{4} - 285798 T^{6} + 6339 p^{2} T^{8} - 105 p^{4} T^{10} + p^{6} T^{12} \) |
| 53 | \( 1 - 130 T^{2} + 13655 T^{4} - 792060 T^{6} + 13655 p^{2} T^{8} - 130 p^{4} T^{10} + p^{6} T^{12} \) |
| 59 | \( ( 1 - 6 T + 99 T^{2} - 752 T^{3} + 99 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \) |
| 61 | \( ( 1 + 24 T + 365 T^{2} + 3368 T^{3} + 365 p T^{4} + 24 p^{2} T^{5} + p^{3} T^{6} )^{2} \) |
| 67 | \( 1 - 174 T^{2} + 20567 T^{4} - 1533188 T^{6} + 20567 p^{2} T^{8} - 174 p^{4} T^{10} + p^{6} T^{12} \) |
| 71 | \( ( 1 - 4 T + 193 T^{2} - 504 T^{3} + 193 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} )^{2} \) |
| 73 | \( 1 - 346 T^{2} + 55487 T^{4} - 5172972 T^{6} + 55487 p^{2} T^{8} - 346 p^{4} T^{10} + p^{6} T^{12} \) |
| 79 | \( ( 1 + 17 T + 205 T^{2} + 2138 T^{3} + 205 p T^{4} + 17 p^{2} T^{5} + p^{3} T^{6} )^{2} \) |
| 83 | \( 1 - 70 T^{2} + 1179 T^{4} + 304148 T^{6} + 1179 p^{2} T^{8} - 70 p^{4} T^{10} + p^{6} T^{12} \) |
| 89 | \( ( 1 + 95 T^{2} + 464 T^{3} + 95 p T^{4} + p^{3} T^{6} )^{2} \) |
| 97 | \( 1 - 469 T^{2} + 98339 T^{4} - 12075534 T^{6} + 98339 p^{2} T^{8} - 469 p^{4} T^{10} + p^{6} T^{12} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−4.69815035448418291999517402964, −4.51098445734869472639692642442, −4.37997368707955189165282506806, −4.36723065633882974752625138575, −4.23762783412656626156825203807, −4.10487345572472373686447857700, −3.78121504769123861144496794781, −3.72886529994956842613722420228, −3.29741240262584375005363382817, −3.14617134104138740823008942077, −3.00332364357698378627119875471, −2.90955795261554342058630492544, −2.89715030398171804771310048878, −2.63535842161519751676928039204, −2.60194272619800707753019422572, −2.35222366684003505636232296208, −2.10350572550630194825112209802, −2.08956047455687522791673897413, −1.69937272077775759384195679956, −1.29342535865369396081798939881, −1.27035579803350239097332096092, −1.11383796772185616752951366813, −0.71964500885534532917531131402, −0.64255595511844002602397299692, −0.12339308480590164766582464196,
0.12339308480590164766582464196, 0.64255595511844002602397299692, 0.71964500885534532917531131402, 1.11383796772185616752951366813, 1.27035579803350239097332096092, 1.29342535865369396081798939881, 1.69937272077775759384195679956, 2.08956047455687522791673897413, 2.10350572550630194825112209802, 2.35222366684003505636232296208, 2.60194272619800707753019422572, 2.63535842161519751676928039204, 2.89715030398171804771310048878, 2.90955795261554342058630492544, 3.00332364357698378627119875471, 3.14617134104138740823008942077, 3.29741240262584375005363382817, 3.72886529994956842613722420228, 3.78121504769123861144496794781, 4.10487345572472373686447857700, 4.23762783412656626156825203807, 4.36723065633882974752625138575, 4.37997368707955189165282506806, 4.51098445734869472639692642442, 4.69815035448418291999517402964
Plot not available for L-functions of degree greater than 10.