L(s) = 1 | + 5·9-s − 14·11-s + 8·19-s − 5·25-s + 6·29-s + 20·31-s + 36·41-s − 3·49-s + 12·59-s − 48·61-s + 8·71-s − 34·79-s + 14·81-s − 70·99-s + 8·101-s + 10·109-s + 65·121-s + 8·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 5/3·9-s − 4.22·11-s + 1.83·19-s − 25-s + 1.11·29-s + 3.59·31-s + 5.62·41-s − 3/7·49-s + 1.56·59-s − 6.14·61-s + 0.949·71-s − 3.82·79-s + 14/9·81-s − 7.03·99-s + 0.796·101-s + 0.957·109-s + 5.90·121-s + 0.715·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=((236⋅56⋅76)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((236⋅56⋅76)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.144377363 |
L(21) |
≈ |
1.144377363 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+pT2−8T3+p2T4+p3T6 |
| 7 | (1+T2)3 |
good | 3 | 1−5T2+11T4−26T6+11p2T8−5p4T10+p6T12 |
| 11 | (1+7T+41T2+146T3+41pT4+7p2T5+p3T6)2 |
| 13 | 1−9T2+491T4−2882T6+491p2T8−9p4T10+p6T12 |
| 17 | 1−53T2+1539T4−31118T6+1539p2T8−53p4T10+p6T12 |
| 19 | (1−4T+43T2−160T3+43pT4−4p2T5+p3T6)2 |
| 23 | 1−2pT2+1887T4−43972T6+1887p2T8−2p5T10+p6T12 |
| 29 | (1−3T+15T2−66T3+15pT4−3p2T5+p3T6)2 |
| 31 | (1−10T+101T2−540T3+101pT4−10p2T5+p3T6)2 |
| 37 | (1−38T2+p2T4)3 |
| 41 | (1−18T+191T2−1388T3+191pT4−18p2T5+p3T6)2 |
| 43 | 1−178T2+15575T4−836124T6+15575p2T8−178p4T10+p6T12 |
| 47 | 1−105T2+6339T4−285798T6+6339p2T8−105p4T10+p6T12 |
| 53 | 1−130T2+13655T4−792060T6+13655p2T8−130p4T10+p6T12 |
| 59 | (1−6T+99T2−752T3+99pT4−6p2T5+p3T6)2 |
| 61 | (1+24T+365T2+3368T3+365pT4+24p2T5+p3T6)2 |
| 67 | 1−174T2+20567T4−1533188T6+20567p2T8−174p4T10+p6T12 |
| 71 | (1−4T+193T2−504T3+193pT4−4p2T5+p3T6)2 |
| 73 | 1−346T2+55487T4−5172972T6+55487p2T8−346p4T10+p6T12 |
| 79 | (1+17T+205T2+2138T3+205pT4+17p2T5+p3T6)2 |
| 83 | 1−70T2+1179T4+304148T6+1179p2T8−70p4T10+p6T12 |
| 89 | (1+95T2+464T3+95pT4+p3T6)2 |
| 97 | 1−469T2+98339T4−12075534T6+98339p2T8−469p4T10+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.69815035448418291999517402964, −4.51098445734869472639692642442, −4.37997368707955189165282506806, −4.36723065633882974752625138575, −4.23762783412656626156825203807, −4.10487345572472373686447857700, −3.78121504769123861144496794781, −3.72886529994956842613722420228, −3.29741240262584375005363382817, −3.14617134104138740823008942077, −3.00332364357698378627119875471, −2.90955795261554342058630492544, −2.89715030398171804771310048878, −2.63535842161519751676928039204, −2.60194272619800707753019422572, −2.35222366684003505636232296208, −2.10350572550630194825112209802, −2.08956047455687522791673897413, −1.69937272077775759384195679956, −1.29342535865369396081798939881, −1.27035579803350239097332096092, −1.11383796772185616752951366813, −0.71964500885534532917531131402, −0.64255595511844002602397299692, −0.12339308480590164766582464196,
0.12339308480590164766582464196, 0.64255595511844002602397299692, 0.71964500885534532917531131402, 1.11383796772185616752951366813, 1.27035579803350239097332096092, 1.29342535865369396081798939881, 1.69937272077775759384195679956, 2.08956047455687522791673897413, 2.10350572550630194825112209802, 2.35222366684003505636232296208, 2.60194272619800707753019422572, 2.63535842161519751676928039204, 2.89715030398171804771310048878, 2.90955795261554342058630492544, 3.00332364357698378627119875471, 3.14617134104138740823008942077, 3.29741240262584375005363382817, 3.72886529994956842613722420228, 3.78121504769123861144496794781, 4.10487345572472373686447857700, 4.23762783412656626156825203807, 4.36723065633882974752625138575, 4.37997368707955189165282506806, 4.51098445734869472639692642442, 4.69815035448418291999517402964
Plot not available for L-functions of degree greater than 10.