Properties

Label 2240.2.g.l
Level $2240$
Weight $2$
Character orbit 2240.g
Analytic conductor $17.886$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,2,Mod(449,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2240.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.8864900528\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5161984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 4x^{3} + 25x^{2} - 20x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{5} q^{3} + ( - \beta_{5} - \beta_{2}) q^{5} - \beta_{4} q^{7} + (\beta_{3} - \beta_{2} - \beta_1 - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{5} q^{3} + ( - \beta_{5} - \beta_{2}) q^{5} - \beta_{4} q^{7} + (\beta_{3} - \beta_{2} - \beta_1 - 1) q^{9} + (\beta_{3} + \beta_{2} + \beta_1 - 2) q^{11} + ( - \beta_{5} - 2 \beta_{4} + \cdots + 2 \beta_1) q^{13}+ \cdots + ( - 2 \beta_{3} + 4 \beta_{2} + 4 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 8 q^{9} - 14 q^{11} - 18 q^{15} + 8 q^{19} + 2 q^{21} - 10 q^{25} + 6 q^{29} + 20 q^{31} + 2 q^{35} + 10 q^{39} + 36 q^{41} + 28 q^{45} - 6 q^{49} - 42 q^{51} - 12 q^{55} + 12 q^{59} - 48 q^{61} - 22 q^{65} + 36 q^{69} + 8 q^{71} + 40 q^{75} - 34 q^{79} + 30 q^{81} - 14 q^{85} - 10 q^{91} - 4 q^{95} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 4x^{3} + 25x^{2} - 20x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{5} - 2\nu^{4} - 25\nu^{3} + 10\nu^{2} - 121\nu + 100 ) / 121 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 7\nu^{5} + 27\nu^{4} + 35\nu^{3} - 14\nu^{2} + 223 ) / 121 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -25\nu^{5} - 10\nu^{4} - 4\nu^{3} + 50\nu^{2} - 605\nu + 258 ) / 242 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -65\nu^{5} - 26\nu^{4} + 38\nu^{3} + 372\nu^{2} - 1331\nu + 574 ) / 242 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - 3\beta_{4} + \beta_{2} - \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{4} - 5\beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 5\beta_{3} + 7\beta_{2} + 7\beta _1 - 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{5} - 16\beta_{4} - 2\beta_{3} - 29\beta _1 + 16 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2240\mathbb{Z}\right)^\times\).

\(n\) \(897\) \(1471\) \(1541\) \(1921\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
449.1
1.32001 + 1.32001i
0.432320 0.432320i
−1.75233 + 1.75233i
−1.75233 1.75233i
0.432320 + 0.432320i
1.32001 1.32001i
0 3.12489i 0 −1.32001 1.80487i 0 1.00000i 0 −6.76491 0
449.2 0 1.76156i 0 −0.432320 2.19388i 0 1.00000i 0 −0.103084 0
449.3 0 0.363328i 0 1.75233 + 1.38900i 0 1.00000i 0 2.86799 0
449.4 0 0.363328i 0 1.75233 1.38900i 0 1.00000i 0 2.86799 0
449.5 0 1.76156i 0 −0.432320 + 2.19388i 0 1.00000i 0 −0.103084 0
449.6 0 3.12489i 0 −1.32001 + 1.80487i 0 1.00000i 0 −6.76491 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 449.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2240.2.g.l 6
4.b odd 2 1 2240.2.g.m 6
5.b even 2 1 inner 2240.2.g.l 6
8.b even 2 1 280.2.g.b 6
8.d odd 2 1 560.2.g.f 6
20.d odd 2 1 2240.2.g.m 6
24.f even 2 1 5040.2.t.y 6
24.h odd 2 1 2520.2.t.g 6
40.e odd 2 1 560.2.g.f 6
40.f even 2 1 280.2.g.b 6
40.i odd 4 1 1400.2.a.s 3
40.i odd 4 1 1400.2.a.t 3
40.k even 4 1 2800.2.a.bq 3
40.k even 4 1 2800.2.a.br 3
56.h odd 2 1 1960.2.g.c 6
120.i odd 2 1 2520.2.t.g 6
120.m even 2 1 5040.2.t.y 6
280.c odd 2 1 1960.2.g.c 6
280.s even 4 1 9800.2.a.cd 3
280.s even 4 1 9800.2.a.cg 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.g.b 6 8.b even 2 1
280.2.g.b 6 40.f even 2 1
560.2.g.f 6 8.d odd 2 1
560.2.g.f 6 40.e odd 2 1
1400.2.a.s 3 40.i odd 4 1
1400.2.a.t 3 40.i odd 4 1
1960.2.g.c 6 56.h odd 2 1
1960.2.g.c 6 280.c odd 2 1
2240.2.g.l 6 1.a even 1 1 trivial
2240.2.g.l 6 5.b even 2 1 inner
2240.2.g.m 6 4.b odd 2 1
2240.2.g.m 6 20.d odd 2 1
2520.2.t.g 6 24.h odd 2 1
2520.2.t.g 6 120.i odd 2 1
2800.2.a.bq 3 40.k even 4 1
2800.2.a.br 3 40.k even 4 1
5040.2.t.y 6 24.f even 2 1
5040.2.t.y 6 120.m even 2 1
9800.2.a.cd 3 280.s even 4 1
9800.2.a.cg 3 280.s even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2240, [\chi])\):

\( T_{3}^{6} + 13T_{3}^{4} + 32T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{11}^{3} + 7T_{11}^{2} + 8T_{11} - 8 \) Copy content Toggle raw display
\( T_{19}^{3} - 4T_{19}^{2} - 14T_{19} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 13 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( T^{6} + 5 T^{4} + \cdots + 125 \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$11$ \( (T^{3} + 7 T^{2} + 8 T - 8)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + 69 T^{4} + \cdots + 11236 \) Copy content Toggle raw display
$17$ \( T^{6} + 49 T^{4} + \cdots + 400 \) Copy content Toggle raw display
$19$ \( (T^{3} - 4 T^{2} - 14 T - 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 92 T^{4} + \cdots + 18496 \) Copy content Toggle raw display
$29$ \( (T^{3} - 3 T^{2} + \cdots + 108)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} - 10 T^{2} + \cdots + 80)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 36)^{3} \) Copy content Toggle raw display
$41$ \( (T^{3} - 18 T^{2} + \cdots + 88)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + 80 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$47$ \( T^{6} + 177 T^{4} + \cdots + 53824 \) Copy content Toggle raw display
$53$ \( T^{6} + 188 T^{4} + \cdots + 222784 \) Copy content Toggle raw display
$59$ \( (T^{3} - 6 T^{2} - 78 T - 44)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 24 T^{2} + \cdots + 440)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 228 T^{4} + \cdots + 262144 \) Copy content Toggle raw display
$71$ \( (T^{3} - 4 T^{2} - 20 T + 64)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 92 T^{4} + \cdots + 18496 \) Copy content Toggle raw display
$79$ \( (T^{3} + 17 T^{2} + \cdots - 548)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 428 T^{4} + \cdots + 678976 \) Copy content Toggle raw display
$89$ \( (T^{3} - 172 T + 464)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 113 T^{4} + \cdots + 1936 \) Copy content Toggle raw display
show more
show less