Properties

Label 2240.2.g.l.449.1
Level $2240$
Weight $2$
Character 2240.449
Analytic conductor $17.886$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,2,Mod(449,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2240.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.8864900528\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5161984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 4x^{3} + 25x^{2} - 20x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.1
Root \(1.32001 + 1.32001i\) of defining polynomial
Character \(\chi\) \(=\) 2240.449
Dual form 2240.2.g.l.449.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.12489i q^{3} +(-1.32001 - 1.80487i) q^{5} +1.00000i q^{7} -6.76491 q^{9} +O(q^{10})\) \(q-3.12489i q^{3} +(-1.32001 - 1.80487i) q^{5} +1.00000i q^{7} -6.76491 q^{9} -2.48486 q^{11} +4.15516i q^{13} +(-5.64002 + 4.12489i) q^{15} -5.76491i q^{17} -1.60975 q^{19} +3.12489 q^{21} +7.28005i q^{23} +(-1.51514 + 4.76491i) q^{25} +11.7649i q^{27} +1.45459 q^{29} -2.24977 q^{31} +7.76491i q^{33} +(1.80487 - 1.32001i) q^{35} -6.00000i q^{37} +12.9844 q^{39} +11.2800 q^{41} +5.28005i q^{43} +(8.92976 + 12.2098i) q^{45} -3.45459i q^{47} -1.00000 q^{49} -18.0147 q^{51} +9.21949i q^{53} +(3.28005 + 4.48486i) q^{55} +5.03028i q^{57} -5.92007 q^{59} -5.35998 q^{61} -6.76491i q^{63} +(7.49954 - 5.48486i) q^{65} -7.52982i q^{67} +22.7493 q^{69} -4.24977 q^{71} +7.28005i q^{73} +(14.8898 + 4.73463i) q^{75} -2.48486i q^{77} -16.9844 q^{79} +16.4693 q^{81} +10.1093i q^{83} +(-10.4049 + 7.60975i) q^{85} -4.54541i q^{87} +11.4693 q^{89} -4.15516 q^{91} +7.03028i q^{93} +(2.12489 + 2.90539i) q^{95} +2.73463i q^{97} +16.8099 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 8 q^{9} - 14 q^{11} - 18 q^{15} + 8 q^{19} + 2 q^{21} - 10 q^{25} + 6 q^{29} + 20 q^{31} + 2 q^{35} + 10 q^{39} + 36 q^{41} + 28 q^{45} - 6 q^{49} - 42 q^{51} - 12 q^{55} + 12 q^{59} - 48 q^{61} - 22 q^{65} + 36 q^{69} + 8 q^{71} + 40 q^{75} - 34 q^{79} + 30 q^{81} - 14 q^{85} - 10 q^{91} - 4 q^{95} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2240\mathbb{Z}\right)^\times\).

\(n\) \(897\) \(1471\) \(1541\) \(1921\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.12489i 1.80415i −0.431576 0.902077i \(-0.642042\pi\)
0.431576 0.902077i \(-0.357958\pi\)
\(4\) 0 0
\(5\) −1.32001 1.80487i −0.590327 0.807164i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −6.76491 −2.25497
\(10\) 0 0
\(11\) −2.48486 −0.749214 −0.374607 0.927184i \(-0.622222\pi\)
−0.374607 + 0.927184i \(0.622222\pi\)
\(12\) 0 0
\(13\) 4.15516i 1.15243i 0.817297 + 0.576217i \(0.195472\pi\)
−0.817297 + 0.576217i \(0.804528\pi\)
\(14\) 0 0
\(15\) −5.64002 + 4.12489i −1.45625 + 1.06504i
\(16\) 0 0
\(17\) 5.76491i 1.39820i −0.715026 0.699098i \(-0.753585\pi\)
0.715026 0.699098i \(-0.246415\pi\)
\(18\) 0 0
\(19\) −1.60975 −0.369301 −0.184651 0.982804i \(-0.559115\pi\)
−0.184651 + 0.982804i \(0.559115\pi\)
\(20\) 0 0
\(21\) 3.12489 0.681906
\(22\) 0 0
\(23\) 7.28005i 1.51799i 0.651094 + 0.758997i \(0.274310\pi\)
−0.651094 + 0.758997i \(0.725690\pi\)
\(24\) 0 0
\(25\) −1.51514 + 4.76491i −0.303028 + 0.952982i
\(26\) 0 0
\(27\) 11.7649i 2.26416i
\(28\) 0 0
\(29\) 1.45459 0.270110 0.135055 0.990838i \(-0.456879\pi\)
0.135055 + 0.990838i \(0.456879\pi\)
\(30\) 0 0
\(31\) −2.24977 −0.404071 −0.202035 0.979378i \(-0.564756\pi\)
−0.202035 + 0.979378i \(0.564756\pi\)
\(32\) 0 0
\(33\) 7.76491i 1.35170i
\(34\) 0 0
\(35\) 1.80487 1.32001i 0.305079 0.223123i
\(36\) 0 0
\(37\) 6.00000i 0.986394i −0.869918 0.493197i \(-0.835828\pi\)
0.869918 0.493197i \(-0.164172\pi\)
\(38\) 0 0
\(39\) 12.9844 2.07917
\(40\) 0 0
\(41\) 11.2800 1.76165 0.880824 0.473444i \(-0.156990\pi\)
0.880824 + 0.473444i \(0.156990\pi\)
\(42\) 0 0
\(43\) 5.28005i 0.805200i 0.915376 + 0.402600i \(0.131893\pi\)
−0.915376 + 0.402600i \(0.868107\pi\)
\(44\) 0 0
\(45\) 8.92976 + 12.2098i 1.33117 + 1.82013i
\(46\) 0 0
\(47\) 3.45459i 0.503903i −0.967740 0.251952i \(-0.918928\pi\)
0.967740 0.251952i \(-0.0810724\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −18.0147 −2.52256
\(52\) 0 0
\(53\) 9.21949i 1.26639i 0.773990 + 0.633197i \(0.218258\pi\)
−0.773990 + 0.633197i \(0.781742\pi\)
\(54\) 0 0
\(55\) 3.28005 + 4.48486i 0.442281 + 0.604739i
\(56\) 0 0
\(57\) 5.03028i 0.666276i
\(58\) 0 0
\(59\) −5.92007 −0.770728 −0.385364 0.922765i \(-0.625924\pi\)
−0.385364 + 0.922765i \(0.625924\pi\)
\(60\) 0 0
\(61\) −5.35998 −0.686275 −0.343137 0.939285i \(-0.611490\pi\)
−0.343137 + 0.939285i \(0.611490\pi\)
\(62\) 0 0
\(63\) 6.76491i 0.852298i
\(64\) 0 0
\(65\) 7.49954 5.48486i 0.930204 0.680313i
\(66\) 0 0
\(67\) 7.52982i 0.919914i −0.887941 0.459957i \(-0.847865\pi\)
0.887941 0.459957i \(-0.152135\pi\)
\(68\) 0 0
\(69\) 22.7493 2.73870
\(70\) 0 0
\(71\) −4.24977 −0.504355 −0.252178 0.967681i \(-0.581147\pi\)
−0.252178 + 0.967681i \(0.581147\pi\)
\(72\) 0 0
\(73\) 7.28005i 0.852065i 0.904708 + 0.426033i \(0.140089\pi\)
−0.904708 + 0.426033i \(0.859911\pi\)
\(74\) 0 0
\(75\) 14.8898 + 4.73463i 1.71933 + 0.546708i
\(76\) 0 0
\(77\) 2.48486i 0.283176i
\(78\) 0 0
\(79\) −16.9844 −1.91089 −0.955447 0.295162i \(-0.904627\pi\)
−0.955447 + 0.295162i \(0.904627\pi\)
\(80\) 0 0
\(81\) 16.4693 1.82992
\(82\) 0 0
\(83\) 10.1093i 1.10964i 0.831971 + 0.554819i \(0.187213\pi\)
−0.831971 + 0.554819i \(0.812787\pi\)
\(84\) 0 0
\(85\) −10.4049 + 7.60975i −1.12857 + 0.825393i
\(86\) 0 0
\(87\) 4.54541i 0.487320i
\(88\) 0 0
\(89\) 11.4693 1.21574 0.607870 0.794037i \(-0.292024\pi\)
0.607870 + 0.794037i \(0.292024\pi\)
\(90\) 0 0
\(91\) −4.15516 −0.435579
\(92\) 0 0
\(93\) 7.03028i 0.729006i
\(94\) 0 0
\(95\) 2.12489 + 2.90539i 0.218009 + 0.298087i
\(96\) 0 0
\(97\) 2.73463i 0.277660i 0.990316 + 0.138830i \(0.0443341\pi\)
−0.990316 + 0.138830i \(0.955666\pi\)
\(98\) 0 0
\(99\) 16.8099 1.68945
\(100\) 0 0
\(101\) 4.57947 0.455674 0.227837 0.973699i \(-0.426835\pi\)
0.227837 + 0.973699i \(0.426835\pi\)
\(102\) 0 0
\(103\) 2.48486i 0.244841i −0.992478 0.122420i \(-0.960934\pi\)
0.992478 0.122420i \(-0.0390656\pi\)
\(104\) 0 0
\(105\) −4.12489 5.64002i −0.402548 0.550410i
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) −9.95413 −0.953433 −0.476716 0.879057i \(-0.658173\pi\)
−0.476716 + 0.879057i \(0.658173\pi\)
\(110\) 0 0
\(111\) −18.7493 −1.77961
\(112\) 0 0
\(113\) 18.4995i 1.74029i −0.492795 0.870145i \(-0.664025\pi\)
0.492795 0.870145i \(-0.335975\pi\)
\(114\) 0 0
\(115\) 13.1396 9.60975i 1.22527 0.896114i
\(116\) 0 0
\(117\) 28.1093i 2.59870i
\(118\) 0 0
\(119\) 5.76491 0.528468
\(120\) 0 0
\(121\) −4.82546 −0.438678
\(122\) 0 0
\(123\) 35.2489i 3.17828i
\(124\) 0 0
\(125\) 10.6001 3.55510i 0.948098 0.317978i
\(126\) 0 0
\(127\) 7.15894i 0.635253i 0.948216 + 0.317627i \(0.102886\pi\)
−0.948216 + 0.317627i \(0.897114\pi\)
\(128\) 0 0
\(129\) 16.4995 1.45270
\(130\) 0 0
\(131\) −7.85952 −0.686689 −0.343345 0.939209i \(-0.611560\pi\)
−0.343345 + 0.939209i \(0.611560\pi\)
\(132\) 0 0
\(133\) 1.60975i 0.139583i
\(134\) 0 0
\(135\) 21.2342 15.5298i 1.82755 1.33659i
\(136\) 0 0
\(137\) 10.5601i 0.902210i 0.892471 + 0.451105i \(0.148970\pi\)
−0.892471 + 0.451105i \(0.851030\pi\)
\(138\) 0 0
\(139\) 9.79897 0.831137 0.415569 0.909562i \(-0.363583\pi\)
0.415569 + 0.909562i \(0.363583\pi\)
\(140\) 0 0
\(141\) −10.7952 −0.909119
\(142\) 0 0
\(143\) 10.3250i 0.863420i
\(144\) 0 0
\(145\) −1.92007 2.62534i −0.159453 0.218023i
\(146\) 0 0
\(147\) 3.12489i 0.257736i
\(148\) 0 0
\(149\) 2.49954 0.204770 0.102385 0.994745i \(-0.467353\pi\)
0.102385 + 0.994745i \(0.467353\pi\)
\(150\) 0 0
\(151\) −3.76491 −0.306384 −0.153192 0.988196i \(-0.548955\pi\)
−0.153192 + 0.988196i \(0.548955\pi\)
\(152\) 0 0
\(153\) 38.9991i 3.15289i
\(154\) 0 0
\(155\) 2.96972 + 4.06055i 0.238534 + 0.326151i
\(156\) 0 0
\(157\) 5.67030i 0.452539i −0.974065 0.226270i \(-0.927347\pi\)
0.974065 0.226270i \(-0.0726530\pi\)
\(158\) 0 0
\(159\) 28.8099 2.28477
\(160\) 0 0
\(161\) −7.28005 −0.573748
\(162\) 0 0
\(163\) 10.2498i 0.802824i 0.915898 + 0.401412i \(0.131480\pi\)
−0.915898 + 0.401412i \(0.868520\pi\)
\(164\) 0 0
\(165\) 14.0147 10.2498i 1.09104 0.797944i
\(166\) 0 0
\(167\) 2.95504i 0.228668i −0.993442 0.114334i \(-0.963527\pi\)
0.993442 0.114334i \(-0.0364734\pi\)
\(168\) 0 0
\(169\) −4.26537 −0.328105
\(170\) 0 0
\(171\) 10.8898 0.832763
\(172\) 0 0
\(173\) 22.4049i 1.70342i 0.524017 + 0.851708i \(0.324433\pi\)
−0.524017 + 0.851708i \(0.675567\pi\)
\(174\) 0 0
\(175\) −4.76491 1.51514i −0.360193 0.114534i
\(176\) 0 0
\(177\) 18.4995i 1.39051i
\(178\) 0 0
\(179\) 14.5601 1.08827 0.544136 0.838997i \(-0.316857\pi\)
0.544136 + 0.838997i \(0.316857\pi\)
\(180\) 0 0
\(181\) 9.67030 0.718788 0.359394 0.933186i \(-0.382983\pi\)
0.359394 + 0.933186i \(0.382983\pi\)
\(182\) 0 0
\(183\) 16.7493i 1.23814i
\(184\) 0 0
\(185\) −10.8292 + 7.92007i −0.796182 + 0.582295i
\(186\) 0 0
\(187\) 14.3250i 1.04755i
\(188\) 0 0
\(189\) −11.7649 −0.855771
\(190\) 0 0
\(191\) 8.01468 0.579922 0.289961 0.957038i \(-0.406358\pi\)
0.289961 + 0.957038i \(0.406358\pi\)
\(192\) 0 0
\(193\) 3.46927i 0.249723i −0.992174 0.124862i \(-0.960151\pi\)
0.992174 0.124862i \(-0.0398487\pi\)
\(194\) 0 0
\(195\) −17.1396 23.4352i −1.22739 1.67823i
\(196\) 0 0
\(197\) 16.2791i 1.15984i 0.814673 + 0.579920i \(0.196916\pi\)
−0.814673 + 0.579920i \(0.803084\pi\)
\(198\) 0 0
\(199\) −26.8704 −1.90479 −0.952397 0.304862i \(-0.901390\pi\)
−0.952397 + 0.304862i \(0.901390\pi\)
\(200\) 0 0
\(201\) −23.5298 −1.65967
\(202\) 0 0
\(203\) 1.45459i 0.102092i
\(204\) 0 0
\(205\) −14.8898 20.3591i −1.03995 1.42194i
\(206\) 0 0
\(207\) 49.2489i 3.42303i
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −17.2342 −1.18645 −0.593225 0.805037i \(-0.702145\pi\)
−0.593225 + 0.805037i \(0.702145\pi\)
\(212\) 0 0
\(213\) 13.2800i 0.909934i
\(214\) 0 0
\(215\) 9.52982 6.96972i 0.649928 0.475331i
\(216\) 0 0
\(217\) 2.24977i 0.152724i
\(218\) 0 0
\(219\) 22.7493 1.53726
\(220\) 0 0
\(221\) 23.9541 1.61133
\(222\) 0 0
\(223\) 0.235091i 0.0157429i 0.999969 + 0.00787143i \(0.00250558\pi\)
−0.999969 + 0.00787143i \(0.997494\pi\)
\(224\) 0 0
\(225\) 10.2498 32.2342i 0.683318 2.14894i
\(226\) 0 0
\(227\) 0.564792i 0.0374865i 0.999824 + 0.0187433i \(0.00596652\pi\)
−0.999824 + 0.0187433i \(0.994033\pi\)
\(228\) 0 0
\(229\) 7.11021 0.469856 0.234928 0.972013i \(-0.424515\pi\)
0.234928 + 0.972013i \(0.424515\pi\)
\(230\) 0 0
\(231\) −7.76491 −0.510893
\(232\) 0 0
\(233\) 8.49954i 0.556823i −0.960462 0.278412i \(-0.910192\pi\)
0.960462 0.278412i \(-0.0898080\pi\)
\(234\) 0 0
\(235\) −6.23509 + 4.56009i −0.406732 + 0.297468i
\(236\) 0 0
\(237\) 53.0743i 3.44755i
\(238\) 0 0
\(239\) 7.26537 0.469958 0.234979 0.972001i \(-0.424498\pi\)
0.234979 + 0.972001i \(0.424498\pi\)
\(240\) 0 0
\(241\) 7.28005 0.468949 0.234475 0.972122i \(-0.424663\pi\)
0.234475 + 0.972122i \(0.424663\pi\)
\(242\) 0 0
\(243\) 16.1698i 1.03730i
\(244\) 0 0
\(245\) 1.32001 + 1.80487i 0.0843325 + 0.115309i
\(246\) 0 0
\(247\) 6.68876i 0.425596i
\(248\) 0 0
\(249\) 31.5904 2.00196
\(250\) 0 0
\(251\) −22.9192 −1.44664 −0.723322 0.690511i \(-0.757386\pi\)
−0.723322 + 0.690511i \(0.757386\pi\)
\(252\) 0 0
\(253\) 18.0899i 1.13730i
\(254\) 0 0
\(255\) 23.7796 + 32.5142i 1.48914 + 2.03612i
\(256\) 0 0
\(257\) 0.719953i 0.0449094i 0.999748 + 0.0224547i \(0.00714816\pi\)
−0.999748 + 0.0224547i \(0.992852\pi\)
\(258\) 0 0
\(259\) 6.00000 0.372822
\(260\) 0 0
\(261\) −9.84014 −0.609089
\(262\) 0 0
\(263\) 18.5601i 1.14446i 0.820092 + 0.572232i \(0.193922\pi\)
−0.820092 + 0.572232i \(0.806078\pi\)
\(264\) 0 0
\(265\) 16.6400 12.1698i 1.02219 0.747587i
\(266\) 0 0
\(267\) 35.8401i 2.19338i
\(268\) 0 0
\(269\) −22.1698 −1.35172 −0.675860 0.737030i \(-0.736227\pi\)
−0.675860 + 0.737030i \(0.736227\pi\)
\(270\) 0 0
\(271\) −7.87890 −0.478609 −0.239304 0.970945i \(-0.576919\pi\)
−0.239304 + 0.970945i \(0.576919\pi\)
\(272\) 0 0
\(273\) 12.9844i 0.785852i
\(274\) 0 0
\(275\) 3.76491 11.8401i 0.227033 0.713987i
\(276\) 0 0
\(277\) 2.78051i 0.167064i 0.996505 + 0.0835322i \(0.0266201\pi\)
−0.996505 + 0.0835322i \(0.973380\pi\)
\(278\) 0 0
\(279\) 15.2195 0.911167
\(280\) 0 0
\(281\) −23.7044 −1.41408 −0.707042 0.707172i \(-0.749971\pi\)
−0.707042 + 0.707172i \(0.749971\pi\)
\(282\) 0 0
\(283\) 26.8439i 1.59571i 0.602852 + 0.797853i \(0.294031\pi\)
−0.602852 + 0.797853i \(0.705969\pi\)
\(284\) 0 0
\(285\) 9.07901 6.64002i 0.537794 0.393321i
\(286\) 0 0
\(287\) 11.2800i 0.665840i
\(288\) 0 0
\(289\) −16.2342 −0.954951
\(290\) 0 0
\(291\) 8.54541 0.500941
\(292\) 0 0
\(293\) 9.93475i 0.580394i −0.956967 0.290197i \(-0.906279\pi\)
0.956967 0.290197i \(-0.0937209\pi\)
\(294\) 0 0
\(295\) 7.81456 + 10.6850i 0.454981 + 0.622104i
\(296\) 0 0
\(297\) 29.2342i 1.69634i
\(298\) 0 0
\(299\) −30.2498 −1.74939
\(300\) 0 0
\(301\) −5.28005 −0.304337
\(302\) 0 0
\(303\) 14.3103i 0.822107i
\(304\) 0 0
\(305\) 7.07523 + 9.67408i 0.405127 + 0.553936i
\(306\) 0 0
\(307\) 32.0946i 1.83174i 0.401479 + 0.915868i \(0.368496\pi\)
−0.401479 + 0.915868i \(0.631504\pi\)
\(308\) 0 0
\(309\) −7.76491 −0.441730
\(310\) 0 0
\(311\) −10.0606 −0.570482 −0.285241 0.958456i \(-0.592074\pi\)
−0.285241 + 0.958456i \(0.592074\pi\)
\(312\) 0 0
\(313\) 20.8245i 1.17707i −0.808471 0.588536i \(-0.799704\pi\)
0.808471 0.588536i \(-0.200296\pi\)
\(314\) 0 0
\(315\) −12.2098 + 8.92976i −0.687945 + 0.503135i
\(316\) 0 0
\(317\) 15.7502i 0.884621i −0.896862 0.442311i \(-0.854159\pi\)
0.896862 0.442311i \(-0.145841\pi\)
\(318\) 0 0
\(319\) −3.61445 −0.202370
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.28005i 0.516356i
\(324\) 0 0
\(325\) −19.7990 6.29564i −1.09825 0.349219i
\(326\) 0 0
\(327\) 31.1055i 1.72014i
\(328\) 0 0
\(329\) 3.45459 0.190457
\(330\) 0 0
\(331\) 25.7796 1.41697 0.708487 0.705724i \(-0.249378\pi\)
0.708487 + 0.705724i \(0.249378\pi\)
\(332\) 0 0
\(333\) 40.5895i 2.22429i
\(334\) 0 0
\(335\) −13.5904 + 9.93945i −0.742521 + 0.543050i
\(336\) 0 0
\(337\) 0.0605522i 0.00329849i 0.999999 + 0.00164924i \(0.000524971\pi\)
−0.999999 + 0.00164924i \(0.999475\pi\)
\(338\) 0 0
\(339\) −57.8089 −3.13975
\(340\) 0 0
\(341\) 5.59037 0.302736
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) −30.0294 41.0596i −1.61673 2.21058i
\(346\) 0 0
\(347\) 20.9310i 1.12363i 0.827262 + 0.561817i \(0.189897\pi\)
−0.827262 + 0.561817i \(0.810103\pi\)
\(348\) 0 0
\(349\) 5.48108 0.293396 0.146698 0.989181i \(-0.453136\pi\)
0.146698 + 0.989181i \(0.453136\pi\)
\(350\) 0 0
\(351\) −48.8851 −2.60929
\(352\) 0 0
\(353\) 26.9239i 1.43301i 0.697581 + 0.716506i \(0.254260\pi\)
−0.697581 + 0.716506i \(0.745740\pi\)
\(354\) 0 0
\(355\) 5.60975 + 7.67030i 0.297734 + 0.407097i
\(356\) 0 0
\(357\) 18.0147i 0.953438i
\(358\) 0 0
\(359\) −6.06055 −0.319864 −0.159932 0.987128i \(-0.551127\pi\)
−0.159932 + 0.987128i \(0.551127\pi\)
\(360\) 0 0
\(361\) −16.4087 −0.863616
\(362\) 0 0
\(363\) 15.0790i 0.791443i
\(364\) 0 0
\(365\) 13.1396 9.60975i 0.687756 0.502997i
\(366\) 0 0
\(367\) 30.7034i 1.60271i 0.598191 + 0.801353i \(0.295886\pi\)
−0.598191 + 0.801353i \(0.704114\pi\)
\(368\) 0 0
\(369\) −76.3085 −3.97246
\(370\) 0 0
\(371\) −9.21949 −0.478652
\(372\) 0 0
\(373\) 10.8099i 0.559714i −0.960042 0.279857i \(-0.909713\pi\)
0.960042 0.279857i \(-0.0902870\pi\)
\(374\) 0 0
\(375\) −11.1093 33.1240i −0.573681 1.71051i
\(376\) 0 0
\(377\) 6.04404i 0.311284i
\(378\) 0 0
\(379\) −9.28005 −0.476684 −0.238342 0.971181i \(-0.576604\pi\)
−0.238342 + 0.971181i \(0.576604\pi\)
\(380\) 0 0
\(381\) 22.3709 1.14609
\(382\) 0 0
\(383\) 5.28005i 0.269798i 0.990859 + 0.134899i \(0.0430710\pi\)
−0.990859 + 0.134899i \(0.956929\pi\)
\(384\) 0 0
\(385\) −4.48486 + 3.28005i −0.228570 + 0.167167i
\(386\) 0 0
\(387\) 35.7190i 1.81570i
\(388\) 0 0
\(389\) 5.48395 0.278047 0.139024 0.990289i \(-0.455604\pi\)
0.139024 + 0.990289i \(0.455604\pi\)
\(390\) 0 0
\(391\) 41.9688 2.12245
\(392\) 0 0
\(393\) 24.5601i 1.23889i
\(394\) 0 0
\(395\) 22.4196 + 30.6547i 1.12805 + 1.54241i
\(396\) 0 0
\(397\) 6.40493i 0.321454i −0.986999 0.160727i \(-0.948616\pi\)
0.986999 0.160727i \(-0.0513839\pi\)
\(398\) 0 0
\(399\) −5.03028 −0.251829
\(400\) 0 0
\(401\) −1.20482 −0.0601656 −0.0300828 0.999547i \(-0.509577\pi\)
−0.0300828 + 0.999547i \(0.509577\pi\)
\(402\) 0 0
\(403\) 9.34816i 0.465665i
\(404\) 0 0
\(405\) −21.7396 29.7249i −1.08025 1.47704i
\(406\) 0 0
\(407\) 14.9092i 0.739020i
\(408\) 0 0
\(409\) 2.31032 0.114238 0.0571191 0.998367i \(-0.481809\pi\)
0.0571191 + 0.998367i \(0.481809\pi\)
\(410\) 0 0
\(411\) 32.9991 1.62772
\(412\) 0 0
\(413\) 5.92007i 0.291308i
\(414\) 0 0
\(415\) 18.2460 13.3444i 0.895660 0.655050i
\(416\) 0 0
\(417\) 30.6206i 1.49950i
\(418\) 0 0
\(419\) −19.7384 −0.964285 −0.482142 0.876093i \(-0.660141\pi\)
−0.482142 + 0.876093i \(0.660141\pi\)
\(420\) 0 0
\(421\) −30.1433 −1.46910 −0.734548 0.678556i \(-0.762606\pi\)
−0.734548 + 0.678556i \(0.762606\pi\)
\(422\) 0 0
\(423\) 23.3700i 1.13629i
\(424\) 0 0
\(425\) 27.4693 + 8.73463i 1.33246 + 0.423692i
\(426\) 0 0
\(427\) 5.35998i 0.259387i
\(428\) 0 0
\(429\) −32.2645 −1.55774
\(430\) 0 0
\(431\) −4.61353 −0.222226 −0.111113 0.993808i \(-0.535442\pi\)
−0.111113 + 0.993808i \(0.535442\pi\)
\(432\) 0 0
\(433\) 11.4399i 0.549767i 0.961478 + 0.274883i \(0.0886393\pi\)
−0.961478 + 0.274883i \(0.911361\pi\)
\(434\) 0 0
\(435\) −8.20390 + 6.00000i −0.393347 + 0.287678i
\(436\) 0 0
\(437\) 11.7190i 0.560598i
\(438\) 0 0
\(439\) −12.0294 −0.574130 −0.287065 0.957911i \(-0.592680\pi\)
−0.287065 + 0.957911i \(0.592680\pi\)
\(440\) 0 0
\(441\) 6.76491 0.322139
\(442\) 0 0
\(443\) 14.4390i 0.686017i −0.939332 0.343009i \(-0.888554\pi\)
0.939332 0.343009i \(-0.111446\pi\)
\(444\) 0 0
\(445\) −15.1396 20.7006i −0.717684 0.981301i
\(446\) 0 0
\(447\) 7.81078i 0.369437i
\(448\) 0 0
\(449\) −19.2342 −0.907717 −0.453858 0.891074i \(-0.649953\pi\)
−0.453858 + 0.891074i \(0.649953\pi\)
\(450\) 0 0
\(451\) −28.0294 −1.31985
\(452\) 0 0
\(453\) 11.7649i 0.552764i
\(454\) 0 0
\(455\) 5.48486 + 7.49954i 0.257134 + 0.351584i
\(456\) 0 0
\(457\) 34.8780i 1.63152i 0.578388 + 0.815762i \(0.303682\pi\)
−0.578388 + 0.815762i \(0.696318\pi\)
\(458\) 0 0
\(459\) 67.8236 3.16574
\(460\) 0 0
\(461\) 15.2607 0.710760 0.355380 0.934722i \(-0.384351\pi\)
0.355380 + 0.934722i \(0.384351\pi\)
\(462\) 0 0
\(463\) 24.9991i 1.16181i −0.813973 0.580903i \(-0.802700\pi\)
0.813973 0.580903i \(-0.197300\pi\)
\(464\) 0 0
\(465\) 12.6888 9.28005i 0.588427 0.430352i
\(466\) 0 0
\(467\) 5.06433i 0.234349i −0.993111 0.117175i \(-0.962616\pi\)
0.993111 0.117175i \(-0.0373837\pi\)
\(468\) 0 0
\(469\) 7.52982 0.347695
\(470\) 0 0
\(471\) −17.7190 −0.816450
\(472\) 0 0
\(473\) 13.1202i 0.603267i
\(474\) 0 0
\(475\) 2.43899 7.67030i 0.111909 0.351937i
\(476\) 0 0
\(477\) 62.3690i 2.85568i
\(478\) 0 0
\(479\) −41.8089 −1.91030 −0.955150 0.296123i \(-0.904306\pi\)
−0.955150 + 0.296123i \(0.904306\pi\)
\(480\) 0 0
\(481\) 24.9310 1.13675
\(482\) 0 0
\(483\) 22.7493i 1.03513i
\(484\) 0 0
\(485\) 4.93567 3.60975i 0.224117 0.163910i
\(486\) 0 0
\(487\) 21.3406i 0.967035i 0.875335 + 0.483517i \(0.160641\pi\)
−0.875335 + 0.483517i \(0.839359\pi\)
\(488\) 0 0
\(489\) 32.0294 1.44842
\(490\) 0 0
\(491\) −8.35620 −0.377110 −0.188555 0.982063i \(-0.560380\pi\)
−0.188555 + 0.982063i \(0.560380\pi\)
\(492\) 0 0
\(493\) 8.38555i 0.377666i
\(494\) 0 0
\(495\) −22.1892 30.3397i −0.997331 1.36367i
\(496\) 0 0
\(497\) 4.24977i 0.190628i
\(498\) 0 0
\(499\) −38.8539 −1.73934 −0.869670 0.493634i \(-0.835668\pi\)
−0.869670 + 0.493634i \(0.835668\pi\)
\(500\) 0 0
\(501\) −9.23417 −0.412552
\(502\) 0 0
\(503\) 17.7044i 0.789398i 0.918810 + 0.394699i \(0.129151\pi\)
−0.918810 + 0.394699i \(0.870849\pi\)
\(504\) 0 0
\(505\) −6.04496 8.26537i −0.268997 0.367804i
\(506\) 0 0
\(507\) 13.3288i 0.591952i
\(508\) 0 0
\(509\) 7.11021 0.315154 0.157577 0.987507i \(-0.449632\pi\)
0.157577 + 0.987507i \(0.449632\pi\)
\(510\) 0 0
\(511\) −7.28005 −0.322050
\(512\) 0 0
\(513\) 18.9385i 0.836157i
\(514\) 0 0
\(515\) −4.48486 + 3.28005i −0.197627 + 0.144536i
\(516\) 0 0
\(517\) 8.58417i 0.377531i
\(518\) 0 0
\(519\) 70.0128 3.07322
\(520\) 0 0
\(521\) 18.1892 0.796884 0.398442 0.917194i \(-0.369551\pi\)
0.398442 + 0.917194i \(0.369551\pi\)
\(522\) 0 0
\(523\) 13.9882i 0.611661i −0.952086 0.305830i \(-0.901066\pi\)
0.952086 0.305830i \(-0.0989340\pi\)
\(524\) 0 0
\(525\) −4.73463 + 14.8898i −0.206636 + 0.649844i
\(526\) 0 0
\(527\) 12.9697i 0.564970i
\(528\) 0 0
\(529\) −29.9991 −1.30431
\(530\) 0 0
\(531\) 40.0487 1.73797
\(532\) 0 0
\(533\) 46.8704i 2.03018i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 45.4986i 1.96341i
\(538\) 0 0
\(539\) 2.48486 0.107031
\(540\) 0 0
\(541\) 20.8245 0.895317 0.447659 0.894205i \(-0.352258\pi\)
0.447659 + 0.894205i \(0.352258\pi\)
\(542\) 0 0
\(543\) 30.2186i 1.29680i
\(544\) 0 0
\(545\) 13.1396 + 17.9659i 0.562837 + 0.769576i
\(546\) 0 0
\(547\) 3.09839i 0.132478i 0.997804 + 0.0662388i \(0.0210999\pi\)
−0.997804 + 0.0662388i \(0.978900\pi\)
\(548\) 0 0
\(549\) 36.2598 1.54753
\(550\) 0 0
\(551\) −2.34152 −0.0997519
\(552\) 0 0
\(553\) 16.9844i 0.722250i
\(554\) 0 0
\(555\) 24.7493 + 33.8401i 1.05055 + 1.43643i
\(556\) 0 0
\(557\) 18.8099i 0.797000i −0.917168 0.398500i \(-0.869531\pi\)
0.917168 0.398500i \(-0.130469\pi\)
\(558\) 0 0
\(559\) −21.9394 −0.927940
\(560\) 0 0
\(561\) 44.7640 1.88994
\(562\) 0 0
\(563\) 28.9503i 1.22011i −0.792358 0.610056i \(-0.791147\pi\)
0.792358 0.610056i \(-0.208853\pi\)
\(564\) 0 0
\(565\) −33.3893 + 24.4196i −1.40470 + 1.02734i
\(566\) 0 0
\(567\) 16.4693i 0.691644i
\(568\) 0 0
\(569\) 29.9688 1.25636 0.628179 0.778069i \(-0.283801\pi\)
0.628179 + 0.778069i \(0.283801\pi\)
\(570\) 0 0
\(571\) −0.280964 −0.0117580 −0.00587898 0.999983i \(-0.501871\pi\)
−0.00587898 + 0.999983i \(0.501871\pi\)
\(572\) 0 0
\(573\) 25.0450i 1.04627i
\(574\) 0 0
\(575\) −34.6888 11.0303i −1.44662 0.459994i
\(576\) 0 0
\(577\) 25.9541i 1.08048i −0.841510 0.540242i \(-0.818333\pi\)
0.841510 0.540242i \(-0.181667\pi\)
\(578\) 0 0
\(579\) −10.8411 −0.450539
\(580\) 0 0
\(581\) −10.1093 −0.419404
\(582\) 0 0
\(583\) 22.9092i 0.948801i
\(584\) 0 0
\(585\) −50.7337 + 37.1046i −2.09758 + 1.53409i
\(586\) 0 0
\(587\) 22.2304i 0.917547i −0.888553 0.458773i \(-0.848289\pi\)
0.888553 0.458773i \(-0.151711\pi\)
\(588\) 0 0
\(589\) 3.62156 0.149224
\(590\) 0 0
\(591\) 50.8704 2.09253
\(592\) 0 0
\(593\) 35.0743i 1.44033i 0.693803 + 0.720165i \(0.255934\pi\)
−0.693803 + 0.720165i \(0.744066\pi\)
\(594\) 0 0
\(595\) −7.60975 10.4049i −0.311969 0.426561i
\(596\) 0 0
\(597\) 83.9670i 3.43654i
\(598\) 0 0
\(599\) 21.7262 0.887707 0.443853 0.896099i \(-0.353611\pi\)
0.443853 + 0.896099i \(0.353611\pi\)
\(600\) 0 0
\(601\) −23.9688 −0.977708 −0.488854 0.872366i \(-0.662585\pi\)
−0.488854 + 0.872366i \(0.662585\pi\)
\(602\) 0 0
\(603\) 50.9385i 2.07438i
\(604\) 0 0
\(605\) 6.36967 + 8.70935i 0.258964 + 0.354085i
\(606\) 0 0
\(607\) 43.3241i 1.75847i −0.476388 0.879235i \(-0.658054\pi\)
0.476388 0.879235i \(-0.341946\pi\)
\(608\) 0 0
\(609\) 4.54541 0.184189
\(610\) 0 0
\(611\) 14.3544 0.580715
\(612\) 0 0
\(613\) 8.90917i 0.359838i 0.983681 + 0.179919i \(0.0575836\pi\)
−0.983681 + 0.179919i \(0.942416\pi\)
\(614\) 0 0
\(615\) −63.6197 + 46.5289i −2.56540 + 1.87623i
\(616\) 0 0
\(617\) 27.2413i 1.09669i −0.836251 0.548347i \(-0.815257\pi\)
0.836251 0.548347i \(-0.184743\pi\)
\(618\) 0 0
\(619\) 24.1405 0.970288 0.485144 0.874434i \(-0.338767\pi\)
0.485144 + 0.874434i \(0.338767\pi\)
\(620\) 0 0
\(621\) −85.6491 −3.43698
\(622\) 0 0
\(623\) 11.4693i 0.459506i
\(624\) 0 0
\(625\) −20.4087 14.4390i −0.816349 0.577560i
\(626\) 0 0
\(627\) 12.4995i 0.499184i
\(628\) 0 0
\(629\) −34.5895 −1.37917
\(630\) 0 0
\(631\) 8.01468 0.319059 0.159530 0.987193i \(-0.449002\pi\)
0.159530 + 0.987193i \(0.449002\pi\)
\(632\) 0 0
\(633\) 53.8548i 2.14054i
\(634\) 0 0
\(635\) 12.9210 9.44989i 0.512754 0.375007i
\(636\) 0 0
\(637\) 4.15516i 0.164633i
\(638\) 0 0
\(639\) 28.7493 1.13731
\(640\) 0 0
\(641\) −49.1495 −1.94129 −0.970645 0.240516i \(-0.922683\pi\)
−0.970645 + 0.240516i \(0.922683\pi\)
\(642\) 0 0
\(643\) 7.24599i 0.285754i −0.989740 0.142877i \(-0.954365\pi\)
0.989740 0.142877i \(-0.0456353\pi\)
\(644\) 0 0
\(645\) −21.7796 29.7796i −0.857570 1.17257i
\(646\) 0 0
\(647\) 30.2791i 1.19040i −0.803579 0.595198i \(-0.797074\pi\)
0.803579 0.595198i \(-0.202926\pi\)
\(648\) 0 0
\(649\) 14.7106 0.577440
\(650\) 0 0
\(651\) −7.03028 −0.275538
\(652\) 0 0
\(653\) 7.96881i 0.311844i −0.987769 0.155922i \(-0.950165\pi\)
0.987769 0.155922i \(-0.0498348\pi\)
\(654\) 0 0
\(655\) 10.3747 + 14.1854i 0.405371 + 0.554271i
\(656\) 0 0
\(657\) 49.2489i 1.92138i
\(658\) 0 0
\(659\) 20.9239 0.815078 0.407539 0.913188i \(-0.366387\pi\)
0.407539 + 0.913188i \(0.366387\pi\)
\(660\) 0 0
\(661\) −46.1992 −1.79694 −0.898470 0.439034i \(-0.855321\pi\)
−0.898470 + 0.439034i \(0.855321\pi\)
\(662\) 0 0
\(663\) 74.8539i 2.90708i
\(664\) 0 0
\(665\) −2.90539 + 2.12489i −0.112666 + 0.0823995i
\(666\) 0 0
\(667\) 10.5895i 0.410025i
\(668\) 0 0
\(669\) 0.734633 0.0284025
\(670\) 0 0
\(671\) 13.3188 0.514167
\(672\) 0 0
\(673\) 40.3784i 1.55647i 0.627970 + 0.778237i \(0.283886\pi\)
−0.627970 + 0.778237i \(0.716114\pi\)
\(674\) 0 0
\(675\) −56.0587 17.8255i −2.15770 0.686102i
\(676\) 0 0
\(677\) 44.3737i 1.70542i −0.522383 0.852711i \(-0.674957\pi\)
0.522383 0.852711i \(-0.325043\pi\)
\(678\) 0 0
\(679\) −2.73463 −0.104946
\(680\) 0 0
\(681\) 1.76491 0.0676315
\(682\) 0 0
\(683\) 17.9394i 0.686434i −0.939256 0.343217i \(-0.888483\pi\)
0.939256 0.343217i \(-0.111517\pi\)
\(684\) 0 0
\(685\) 19.0596 13.9394i 0.728231 0.532599i
\(686\) 0 0
\(687\) 22.2186i 0.847692i
\(688\) 0 0
\(689\) −38.3085 −1.45944
\(690\) 0 0
\(691\) 12.7905 0.486573 0.243287 0.969954i \(-0.421774\pi\)
0.243287 + 0.969954i \(0.421774\pi\)
\(692\) 0 0
\(693\) 16.8099i 0.638554i
\(694\) 0 0
\(695\) −12.9348 17.6859i −0.490643 0.670864i
\(696\) 0 0
\(697\) 65.0284i 2.46313i
\(698\) 0 0
\(699\) −26.5601 −1.00460
\(700\) 0 0
\(701\) 19.4234 0.733611 0.366806 0.930298i \(-0.380451\pi\)
0.366806 + 0.930298i \(0.380451\pi\)
\(702\) 0 0
\(703\) 9.65848i 0.364277i
\(704\) 0 0
\(705\) 14.2498 + 19.4839i 0.536677 + 0.733808i
\(706\) 0 0
\(707\) 4.57947i 0.172229i
\(708\) 0 0
\(709\) −13.4839 −0.506400 −0.253200 0.967414i \(-0.581483\pi\)
−0.253200 + 0.967414i \(0.581483\pi\)
\(710\) 0 0
\(711\) 114.898 4.30901
\(712\) 0 0
\(713\) 16.3784i 0.613377i
\(714\) 0 0
\(715\) −18.6353 + 13.6291i −0.696922 + 0.509700i
\(716\) 0 0
\(717\) 22.7034i 0.847876i
\(718\) 0 0
\(719\) −15.3700 −0.573203 −0.286601 0.958050i \(-0.592526\pi\)
−0.286601 + 0.958050i \(0.592526\pi\)
\(720\) 0 0
\(721\) 2.48486 0.0925411
\(722\) 0 0
\(723\) 22.7493i 0.846056i
\(724\) 0 0
\(725\) −2.20390 + 6.93097i −0.0818507 + 0.257410i
\(726\) 0 0
\(727\) 13.1589i 0.488038i 0.969770 + 0.244019i \(0.0784660\pi\)
−0.969770 + 0.244019i \(0.921534\pi\)
\(728\) 0 0
\(729\) −1.12110 −0.0415224
\(730\) 0 0
\(731\) 30.4390 1.12583
\(732\) 0 0
\(733\) 10.0265i 0.370337i −0.982707 0.185169i \(-0.940717\pi\)
0.982707 0.185169i \(-0.0592831\pi\)
\(734\) 0 0
\(735\) 5.64002 4.12489i 0.208035 0.152149i
\(736\) 0 0
\(737\) 18.7106i 0.689212i
\(738\) 0 0
\(739\) 19.2266 0.707262 0.353631 0.935385i \(-0.384947\pi\)
0.353631 + 0.935385i \(0.384947\pi\)
\(740\) 0 0
\(741\) −20.9016 −0.767840
\(742\) 0 0
\(743\) 5.21949i 0.191485i 0.995406 + 0.0957423i \(0.0305225\pi\)
−0.995406 + 0.0957423i \(0.969478\pi\)
\(744\) 0 0
\(745\) −3.29942 4.51136i −0.120882 0.165283i
\(746\) 0 0
\(747\) 68.3884i 2.50220i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 29.8548 1.08942 0.544709 0.838625i \(-0.316640\pi\)
0.544709 + 0.838625i \(0.316640\pi\)
\(752\) 0 0
\(753\) 71.6197i 2.60997i
\(754\) 0 0
\(755\) 4.96972 + 6.79518i 0.180867 + 0.247302i
\(756\) 0 0
\(757\) 18.0294i 0.655288i 0.944801 + 0.327644i \(0.106255\pi\)
−0.944801 + 0.327644i \(0.893745\pi\)
\(758\) 0 0
\(759\) −56.5289 −2.05187
\(760\) 0 0
\(761\) 8.22041 0.297990 0.148995 0.988838i \(-0.452396\pi\)
0.148995 + 0.988838i \(0.452396\pi\)
\(762\) 0 0
\(763\) 9.95413i 0.360364i
\(764\) 0 0
\(765\) 70.3884 51.4792i 2.54490 1.86124i
\(766\) 0 0
\(767\) 24.5988i 0.888213i
\(768\) 0 0
\(769\) −50.6888 −1.82788 −0.913942 0.405845i \(-0.866977\pi\)
−0.913942 + 0.405845i \(0.866977\pi\)
\(770\) 0 0
\(771\) 2.24977 0.0810235
\(772\) 0 0
\(773\) 6.99622i 0.251637i 0.992053 + 0.125818i \(0.0401556\pi\)
−0.992053 + 0.125818i \(0.959844\pi\)
\(774\) 0 0
\(775\) 3.40871 10.7200i 0.122445 0.385072i
\(776\) 0 0
\(777\) 18.7493i 0.672628i
\(778\) 0 0
\(779\) −18.1580 −0.650579
\(780\) 0 0
\(781\) 10.5601 0.377870
\(782\) 0 0
\(783\) 17.1131i 0.611571i
\(784\) 0 0
\(785\) −10.2342 + 7.48486i −0.365273 + 0.267146i
\(786\) 0 0
\(787\) 14.3444i 0.511322i 0.966767 + 0.255661i \(0.0822931\pi\)
−0.966767 + 0.255661i \(0.917707\pi\)
\(788\) 0 0
\(789\) 57.9982 2.06479
\(790\) 0 0
\(791\) 18.4995 0.657768
\(792\) 0 0
\(793\) 22.2716i 0.790887i
\(794\) 0 0
\(795\) −38.0294 51.9982i −1.34876 1.84418i
\(796\) 0 0
\(797\) 13.9348i 0.493594i 0.969067 + 0.246797i \(0.0793781\pi\)
−0.969067 + 0.246797i \(0.920622\pi\)
\(798\) 0 0
\(799\) −19.9154 −0.704555
\(800\) 0 0
\(801\) −77.5885 −2.74146
\(802\) 0 0
\(803\) 18.0899i 0.638379i
\(804\) 0 0
\(805\) 9.60975 + 13.1396i 0.338699 + 0.463109i
\(806\) 0 0
\(807\) 69.2782i 2.43871i
\(808\) 0 0
\(809\) 5.58325 0.196297 0.0981483 0.995172i \(-0.468708\pi\)
0.0981483 + 0.995172i \(0.468708\pi\)
\(810\) 0 0
\(811\) 6.57947 0.231036 0.115518 0.993305i \(-0.463147\pi\)
0.115518 + 0.993305i \(0.463147\pi\)
\(812\) 0 0
\(813\) 24.6206i 0.863484i
\(814\) 0 0
\(815\) 18.4995 13.5298i 0.648011 0.473929i
\(816\) 0 0
\(817\) 8.49954i 0.297361i
\(818\) 0 0
\(819\) 28.1093 0.982218
\(820\) 0 0
\(821\) −16.3250 −0.569747 −0.284873 0.958565i \(-0.591952\pi\)
−0.284873 + 0.958565i \(0.591952\pi\)
\(822\) 0 0
\(823\) 12.3491i 0.430462i −0.976563 0.215231i \(-0.930950\pi\)
0.976563 0.215231i \(-0.0690504\pi\)
\(824\) 0 0
\(825\) −36.9991 11.7649i −1.28814 0.409602i
\(826\) 0 0
\(827\) 6.40963i 0.222885i −0.993771 0.111442i \(-0.964453\pi\)
0.993771 0.111442i \(-0.0355470\pi\)
\(828\) 0 0
\(829\) −26.1698 −0.908916 −0.454458 0.890768i \(-0.650167\pi\)
−0.454458 + 0.890768i \(0.650167\pi\)
\(830\) 0 0
\(831\) 8.68876 0.301410
\(832\) 0 0
\(833\) 5.76491i 0.199742i
\(834\) 0 0
\(835\) −5.33348 + 3.90069i −0.184573 + 0.134989i
\(836\) 0 0
\(837\) 26.4683i 0.914880i
\(838\) 0 0
\(839\) 1.12958 0.0389975 0.0194988 0.999810i \(-0.493793\pi\)
0.0194988 + 0.999810i \(0.493793\pi\)
\(840\) 0 0
\(841\) −26.8842 −0.927041
\(842\) 0 0
\(843\) 74.0734i 2.55122i
\(844\) 0 0
\(845\) 5.63033 + 7.69845i 0.193689 + 0.264835i
\(846\) 0 0
\(847\) 4.82546i 0.165805i
\(848\) 0 0
\(849\) 83.8842 2.87890
\(850\) 0 0
\(851\) 43.6803 1.49734
\(852\) 0 0
\(853\) 6.29095i 0.215398i 0.994184 + 0.107699i \(0.0343483\pi\)
−0.994184 + 0.107699i \(0.965652\pi\)
\(854\) 0 0
\(855\) −14.3747 19.6547i −0.491603 0.672177i
\(856\) 0 0
\(857\) 25.0596i 0.856021i −0.903774 0.428010i \(-0.859215\pi\)
0.903774 0.428010i \(-0.140785\pi\)
\(858\) 0 0
\(859\) 53.7896 1.83528 0.917638 0.397417i \(-0.130093\pi\)
0.917638 + 0.397417i \(0.130093\pi\)
\(860\) 0 0
\(861\) 35.2489 1.20128
\(862\) 0 0
\(863\) 58.0899i 1.97740i 0.149896 + 0.988702i \(0.452106\pi\)
−0.149896 + 0.988702i \(0.547894\pi\)
\(864\) 0 0
\(865\) 40.4381 29.5748i 1.37494 1.00557i
\(866\) 0 0
\(867\) 50.7299i 1.72288i
\(868\) 0 0
\(869\) 42.2039 1.43167
\(870\) 0 0
\(871\) 31.2876 1.06014
\(872\) 0 0
\(873\) 18.4995i 0.626115i
\(874\) 0 0
\(875\) 3.55510 + 10.6001i 0.120184 + 0.358347i
\(876\) 0 0
\(877\) 24.0899i 0.813459i 0.913549 + 0.406729i \(0.133331\pi\)
−0.913549 + 0.406729i \(0.866669\pi\)
\(878\) 0 0
\(879\) −31.0450 −1.04712
\(880\) 0 0
\(881\) 40.9679 1.38024 0.690122 0.723693i \(-0.257557\pi\)
0.690122 + 0.723693i \(0.257557\pi\)
\(882\) 0 0
\(883\) 43.8014i 1.47403i −0.675874 0.737017i \(-0.736234\pi\)
0.675874 0.737017i \(-0.263766\pi\)
\(884\) 0 0
\(885\) 33.3893 24.4196i 1.12237 0.820856i
\(886\) 0 0
\(887\) 1.77959i 0.0597527i −0.999554 0.0298764i \(-0.990489\pi\)
0.999554 0.0298764i \(-0.00951136\pi\)
\(888\) 0 0
\(889\) −7.15894 −0.240103
\(890\) 0 0
\(891\) −40.9239 −1.37100
\(892\) 0 0
\(893\) 5.56101i 0.186092i
\(894\) 0 0
\(895\) −19.2195 26.2791i −0.642437 0.878414i
\(896\) 0 0
\(897\) 94.5271i 3.15617i
\(898\) 0 0
\(899\) −3.27248 −0.109143
\(900\) 0 0
\(901\) 53.1495 1.77067
\(902\) 0 0
\(903\) 16.4995i 0.549070i
\(904\) 0 0
\(905\) −12.7649 17.4537i −0.424320 0.580180i
\(906\) 0 0
\(907\) 53.0284i 1.76078i −0.474250 0.880390i \(-0.657281\pi\)
0.474250 0.880390i \(-0.342719\pi\)
\(908\) 0 0
\(909\) −30.9797 −1.02753
\(910\) 0 0
\(911\) 28.1798 0.933639 0.466820 0.884353i \(-0.345400\pi\)
0.466820 + 0.884353i \(0.345400\pi\)
\(912\) 0 0
\(913\) 25.1202i 0.831357i
\(914\) 0 0
\(915\) 30.2304 22.1093i 0.999386 0.730911i
\(916\) 0 0
\(917\) 7.85952i 0.259544i
\(918\) 0 0
\(919\) −38.4243 −1.26750 −0.633751 0.773538i \(-0.718485\pi\)
−0.633751 + 0.773538i \(0.718485\pi\)
\(920\) 0 0
\(921\) 100.292 3.30473
\(922\) 0 0
\(923\) 17.6585i 0.581236i
\(924\) 0 0
\(925\) 28.5895 + 9.09083i 0.940015 + 0.298905i
\(926\) 0 0
\(927\) 16.8099i 0.552108i
\(928\) 0 0
\(929\) 36.6576 1.20270 0.601348 0.798987i \(-0.294631\pi\)
0.601348 + 0.798987i \(0.294631\pi\)
\(930\) 0 0
\(931\) 1.60975 0.0527573
\(932\) 0 0
\(933\) 31.4381i 1.02924i
\(934\) 0 0
\(935\) 25.8548 18.9092i 0.845543 0.618396i
\(936\) 0 0
\(937\) 5.83302i 0.190557i 0.995451 + 0.0952783i \(0.0303741\pi\)
−0.995451 + 0.0952783i \(0.969626\pi\)
\(938\) 0 0
\(939\) −65.0743 −2.12362
\(940\) 0 0
\(941\) 2.23796 0.0729553 0.0364776 0.999334i \(-0.488386\pi\)
0.0364776 + 0.999334i \(0.488386\pi\)
\(942\) 0 0
\(943\) 82.1193i 2.67417i
\(944\) 0 0
\(945\) 15.5298 + 21.2342i 0.505185 + 0.690748i
\(946\) 0 0
\(947\) 17.7502i 0.576805i 0.957509 + 0.288402i \(0.0931241\pi\)
−0.957509 + 0.288402i \(0.906876\pi\)
\(948\) 0 0
\(949\) −30.2498 −0.981949
\(950\) 0 0
\(951\) −49.2177 −1.59599
\(952\) 0 0
\(953\) 32.0294i 1.03753i 0.854916 + 0.518766i \(0.173609\pi\)
−0.854916 + 0.518766i \(0.826391\pi\)
\(954\) 0 0
\(955\) −10.5795 14.4655i −0.342344 0.468092i
\(956\) 0 0
\(957\) 11.2947i 0.365107i
\(958\) 0 0
\(959\) −10.5601 −0.341003
\(960\) 0 0
\(961\) −25.9385 −0.836727
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −6.26159 + 4.57947i −0.201568 + 0.147418i
\(966\) 0 0
\(967\) 43.4305i 1.39663i 0.715790 + 0.698316i \(0.246067\pi\)
−0.715790 + 0.698316i \(0.753933\pi\)
\(968\) 0 0
\(969\) 28.9991 0.931585
\(970\) 0 0
\(971\) 1.79897 0.0577316 0.0288658 0.999583i \(-0.490810\pi\)
0.0288658 + 0.999583i \(0.490810\pi\)
\(972\) 0 0
\(973\) 9.79897i 0.314140i
\(974\) 0 0
\(975\) −19.6732 + 61.8695i −0.630045 + 1.98141i
\(976\) 0 0
\(977\) 22.4390i 0.717887i −0.933359 0.358943i \(-0.883137\pi\)
0.933359 0.358943i \(-0.116863\pi\)
\(978\) 0 0
\(979\) −28.4995 −0.910849
\(980\) 0 0
\(981\) 67.3388 2.14996
\(982\) 0 0
\(983\) 37.6950i 1.20228i −0.799143 0.601141i \(-0.794713\pi\)
0.799143 0.601141i \(-0.205287\pi\)
\(984\) 0 0
\(985\) 29.3818 21.4886i 0.936181 0.684685i
\(986\) 0 0
\(987\) 10.7952i 0.343615i
\(988\) 0 0
\(989\) −38.4390 −1.22229
\(990\) 0 0
\(991\) 13.5686 0.431020 0.215510 0.976502i \(-0.430859\pi\)
0.215510 + 0.976502i \(0.430859\pi\)
\(992\) 0 0
\(993\) 80.5583i 2.55644i
\(994\) 0 0
\(995\) 35.4693 + 48.4977i 1.12445 + 1.53748i
\(996\) 0 0
\(997\) 14.2838i 0.452373i −0.974084 0.226187i \(-0.927374\pi\)
0.974084 0.226187i \(-0.0726259\pi\)
\(998\) 0 0
\(999\) 70.5895 2.23335
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2240.2.g.l.449.1 6
4.3 odd 2 2240.2.g.m.449.6 6
5.4 even 2 inner 2240.2.g.l.449.6 6
8.3 odd 2 560.2.g.f.449.1 6
8.5 even 2 280.2.g.b.169.6 yes 6
20.19 odd 2 2240.2.g.m.449.1 6
24.5 odd 2 2520.2.t.g.1009.1 6
24.11 even 2 5040.2.t.y.1009.1 6
40.3 even 4 2800.2.a.br.1.3 3
40.13 odd 4 1400.2.a.s.1.1 3
40.19 odd 2 560.2.g.f.449.6 6
40.27 even 4 2800.2.a.bq.1.1 3
40.29 even 2 280.2.g.b.169.1 6
40.37 odd 4 1400.2.a.t.1.3 3
56.13 odd 2 1960.2.g.c.1569.1 6
120.29 odd 2 2520.2.t.g.1009.2 6
120.59 even 2 5040.2.t.y.1009.2 6
280.13 even 4 9800.2.a.cg.1.3 3
280.69 odd 2 1960.2.g.c.1569.6 6
280.237 even 4 9800.2.a.cd.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.g.b.169.1 6 40.29 even 2
280.2.g.b.169.6 yes 6 8.5 even 2
560.2.g.f.449.1 6 8.3 odd 2
560.2.g.f.449.6 6 40.19 odd 2
1400.2.a.s.1.1 3 40.13 odd 4
1400.2.a.t.1.3 3 40.37 odd 4
1960.2.g.c.1569.1 6 56.13 odd 2
1960.2.g.c.1569.6 6 280.69 odd 2
2240.2.g.l.449.1 6 1.1 even 1 trivial
2240.2.g.l.449.6 6 5.4 even 2 inner
2240.2.g.m.449.1 6 20.19 odd 2
2240.2.g.m.449.6 6 4.3 odd 2
2520.2.t.g.1009.1 6 24.5 odd 2
2520.2.t.g.1009.2 6 120.29 odd 2
2800.2.a.bq.1.1 3 40.27 even 4
2800.2.a.br.1.3 3 40.3 even 4
5040.2.t.y.1009.1 6 24.11 even 2
5040.2.t.y.1009.2 6 120.59 even 2
9800.2.a.cd.1.1 3 280.237 even 4
9800.2.a.cg.1.3 3 280.13 even 4