L(s) = 1 | + 4·2-s − 3·3-s + 12·4-s − 10·5-s − 12·6-s + 32·8-s − 29·9-s − 40·10-s − 12·11-s − 36·12-s + 51·13-s + 30·15-s + 80·16-s + 66·17-s − 116·18-s + 16·19-s − 120·20-s − 48·22-s + 46·23-s − 96·24-s − 102·25-s + 204·26-s + 120·27-s − 57·29-s + 120·30-s + 17·31-s + 192·32-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.577·3-s + 3/2·4-s − 0.894·5-s − 0.816·6-s + 1.41·8-s − 1.07·9-s − 1.26·10-s − 0.328·11-s − 0.866·12-s + 1.08·13-s + 0.516·15-s + 5/4·16-s + 0.941·17-s − 1.51·18-s + 0.193·19-s − 1.34·20-s − 0.465·22-s + 0.417·23-s − 0.816·24-s − 0.815·25-s + 1.53·26-s + 0.855·27-s − 0.364·29-s + 0.730·30-s + 0.0984·31-s + 1.06·32-s + ⋯ |
Λ(s)=(=(5080516s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(5080516s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
5080516
= 22⋅74⋅232
|
Sign: |
1
|
Analytic conductor: |
17686.4 |
Root analytic conductor: |
11.5321 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 5080516, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−pT)2 |
| 7 | | 1 |
| 23 | C1 | (1−pT)2 |
good | 3 | D4 | 1+pT+38T2+p4T3+p6T4 |
| 5 | D4 | 1+2pT+202T2+2p4T3+p6T4 |
| 11 | C2 | (1+6T+p3T2)2 |
| 13 | D4 | 1−51T+2836T2−51p3T3+p6T4 |
| 17 | D4 | 1−66T+10258T2−66p3T3+p6T4 |
| 19 | D4 | 1−16T+6482T2−16p3T3+p6T4 |
| 29 | D4 | 1+57T+29716T2+57p3T3+p6T4 |
| 31 | D4 | 1−17T−27234T2−17p3T3+p6T4 |
| 37 | D4 | 1−206T+85562T2−206p3T3+p6T4 |
| 41 | D4 | 1+373T+3836pT2+373p3T3+p6T4 |
| 43 | D4 | 1−314T+60950T2−314p3T3+p6T4 |
| 47 | D4 | 1+859T+380710T2+859p3T3+p6T4 |
| 53 | D4 | 1−50T+272026T2−50p3T3+p6T4 |
| 59 | D4 | 1+612T+438694T2+612p3T3+p6T4 |
| 61 | D4 | 1−1062T+674530T2−1062p3T3+p6T4 |
| 67 | D4 | 1+844T+722378T2+844p3T3+p6T4 |
| 71 | D4 | 1−399T+747574T2−399p3T3+p6T4 |
| 73 | D4 | 1−1277T+1185552T2−1277p3T3+p6T4 |
| 79 | D4 | 1−122T+977462T2−122p3T3+p6T4 |
| 83 | D4 | 1+1802T+1946542T2+1802p3T3+p6T4 |
| 89 | D4 | 1+2046T+2450554T2+2046p3T3+p6T4 |
| 97 | D4 | 1−910T+662234T2−910p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.162889009552602294181453330613, −8.090536348939550719534202170578, −7.76188840686237989086919319308, −7.23751385200936398460061222504, −6.59626593570861254644306540182, −6.57579829511820589130392500583, −5.97672561447676353025157537566, −5.54919293971300598348733980328, −5.44465835973939616448873339390, −4.96798745089323424220283297200, −4.45672545316847206766154441900, −3.98215591874131931031467672338, −3.48453480355801118441674635196, −3.41980830657220066875069720155, −2.69906245147283147191011501672, −2.40673171734908573687266624004, −1.36458130653509153350932514836, −1.21576741934918205902719968133, 0, 0,
1.21576741934918205902719968133, 1.36458130653509153350932514836, 2.40673171734908573687266624004, 2.69906245147283147191011501672, 3.41980830657220066875069720155, 3.48453480355801118441674635196, 3.98215591874131931031467672338, 4.45672545316847206766154441900, 4.96798745089323424220283297200, 5.44465835973939616448873339390, 5.54919293971300598348733980328, 5.97672561447676353025157537566, 6.57579829511820589130392500583, 6.59626593570861254644306540182, 7.23751385200936398460061222504, 7.76188840686237989086919319308, 8.090536348939550719534202170578, 8.162889009552602294181453330613