Properties

Label 2254.4.a.f
Level $2254$
Weight $4$
Character orbit 2254.a
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{73}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{73})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + ( - \beta - 1) q^{3} + 4 q^{4} + (2 \beta - 6) q^{5} + ( - 2 \beta - 2) q^{6} + 8 q^{8} + (3 \beta - 8) q^{9} + (4 \beta - 12) q^{10} - 6 q^{11} + ( - 4 \beta - 4) q^{12} + ( - 11 \beta + 31) q^{13}+ \cdots + ( - 18 \beta + 48) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 3 q^{3} + 8 q^{4} - 10 q^{5} - 6 q^{6} + 16 q^{8} - 13 q^{9} - 20 q^{10} - 12 q^{11} - 12 q^{12} + 51 q^{13} - 58 q^{15} + 32 q^{16} + 66 q^{17} - 26 q^{18} + 16 q^{19} - 40 q^{20} - 24 q^{22}+ \cdots + 78 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.77200
−3.77200
2.00000 −5.77200 4.00000 3.54400 −11.5440 0 8.00000 6.31601 7.08801
1.2 2.00000 2.77200 4.00000 −13.5440 5.54400 0 8.00000 −19.3160 −27.0880
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2254.4.a.f 2
7.b odd 2 1 46.4.a.d 2
21.c even 2 1 414.4.a.f 2
28.d even 2 1 368.4.a.f 2
35.c odd 2 1 1150.4.a.j 2
35.f even 4 2 1150.4.b.j 4
56.e even 2 1 1472.4.a.n 2
56.h odd 2 1 1472.4.a.k 2
161.c even 2 1 1058.4.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
46.4.a.d 2 7.b odd 2 1
368.4.a.f 2 28.d even 2 1
414.4.a.f 2 21.c even 2 1
1058.4.a.j 2 161.c even 2 1
1150.4.a.j 2 35.c odd 2 1
1150.4.b.j 4 35.f even 4 2
1472.4.a.k 2 56.h odd 2 1
1472.4.a.n 2 56.e even 2 1
2254.4.a.f 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 3T_{3} - 16 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2254))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3T - 16 \) Copy content Toggle raw display
$5$ \( T^{2} + 10T - 48 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T + 6)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 51T - 1558 \) Copy content Toggle raw display
$17$ \( T^{2} - 66T + 432 \) Copy content Toggle raw display
$19$ \( T^{2} - 16T - 7236 \) Copy content Toggle raw display
$23$ \( (T - 23)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 57T - 19062 \) Copy content Toggle raw display
$31$ \( T^{2} - 17T - 86816 \) Copy content Toggle raw display
$37$ \( T^{2} - 206T - 15744 \) Copy content Toggle raw display
$41$ \( T^{2} + 373T + 19434 \) Copy content Toggle raw display
$43$ \( T^{2} - 314T - 98064 \) Copy content Toggle raw display
$47$ \( T^{2} + 859T + 173064 \) Copy content Toggle raw display
$53$ \( T^{2} - 50T - 25728 \) Copy content Toggle raw display
$59$ \( T^{2} + 612T + 27936 \) Copy content Toggle raw display
$61$ \( T^{2} - 1062 T + 220568 \) Copy content Toggle raw display
$67$ \( T^{2} + 844T + 120852 \) Copy content Toggle raw display
$71$ \( T^{2} - 399T + 31752 \) Copy content Toggle raw display
$73$ \( T^{2} - 1277 T + 407518 \) Copy content Toggle raw display
$79$ \( T^{2} - 122T - 8616 \) Copy content Toggle raw display
$83$ \( T^{2} + 1802 T + 802968 \) Copy content Toggle raw display
$89$ \( T^{2} + 2046 T + 1040616 \) Copy content Toggle raw display
$97$ \( T^{2} - 910 T - 1163112 \) Copy content Toggle raw display
show more
show less