L(s) = 1 | + 2·2-s − 5.77·3-s + 4·4-s + 3.54·5-s − 11.5·6-s + 8·8-s + 6.31·9-s + 7.08·10-s − 6·11-s − 23.0·12-s − 21.4·13-s − 20.4·15-s + 16·16-s + 7.36·17-s + 12.6·18-s + 93.4·19-s + 14.1·20-s − 12·22-s + 23·23-s − 46.1·24-s − 112.·25-s − 42.9·26-s + 119.·27-s + 112.·29-s − 40.9·30-s − 286.·31-s + 32·32-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.11·3-s + 0.5·4-s + 0.316·5-s − 0.785·6-s + 0.353·8-s + 0.233·9-s + 0.224·10-s − 0.164·11-s − 0.555·12-s − 0.458·13-s − 0.352·15-s + 0.250·16-s + 0.105·17-s + 0.165·18-s + 1.12·19-s + 0.158·20-s − 0.116·22-s + 0.208·23-s − 0.392·24-s − 0.899·25-s − 0.324·26-s + 0.850·27-s + 0.720·29-s − 0.248·30-s − 1.65·31-s + 0.176·32-s + ⋯ |
Λ(s)=(=(2254s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(2254s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2T |
| 7 | 1 |
| 23 | 1−23T |
good | 3 | 1+5.77T+27T2 |
| 5 | 1−3.54T+125T2 |
| 11 | 1+6T+1.33e3T2 |
| 13 | 1+21.4T+2.19e3T2 |
| 17 | 1−7.36T+4.91e3T2 |
| 19 | 1−93.4T+6.85e3T2 |
| 29 | 1−112.T+2.43e4T2 |
| 31 | 1+286.T+2.97e4T2 |
| 37 | 1+59.3T+5.06e4T2 |
| 41 | 1+62.6T+6.89e4T2 |
| 43 | 1−507.T+7.95e4T2 |
| 47 | 1+536.T+1.03e5T2 |
| 53 | 1−187.T+1.48e5T2 |
| 59 | 1+49.6T+2.05e5T2 |
| 61 | 1−778.T+2.26e5T2 |
| 67 | 1+661.T+3.00e5T2 |
| 71 | 1−289.T+3.57e5T2 |
| 73 | 1−651.T+3.89e5T2 |
| 79 | 1+50.0T+4.93e5T2 |
| 83 | 1+807.T+5.71e5T2 |
| 89 | 1+946.T+7.04e5T2 |
| 97 | 1+715.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.090536348939550719534202170578, −7.23751385200936398460061222504, −6.57579829511820589130392500583, −5.54919293971300598348733980328, −5.44465835973939616448873339390, −4.45672545316847206766154441900, −3.41980830657220066875069720155, −2.40673171734908573687266624004, −1.21576741934918205902719968133, 0,
1.21576741934918205902719968133, 2.40673171734908573687266624004, 3.41980830657220066875069720155, 4.45672545316847206766154441900, 5.44465835973939616448873339390, 5.54919293971300598348733980328, 6.57579829511820589130392500583, 7.23751385200936398460061222504, 8.090536348939550719534202170578