Properties

Label 2254.4.a.f.1.1
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{73}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.77200\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -5.77200 q^{3} +4.00000 q^{4} +3.54400 q^{5} -11.5440 q^{6} +8.00000 q^{8} +6.31601 q^{9} +7.08801 q^{10} -6.00000 q^{11} -23.0880 q^{12} -21.4920 q^{13} -20.4560 q^{15} +16.0000 q^{16} +7.36799 q^{17} +12.6320 q^{18} +93.4400 q^{19} +14.1760 q^{20} -12.0000 q^{22} +23.0000 q^{23} -46.1760 q^{24} -112.440 q^{25} -42.9840 q^{26} +119.388 q^{27} +112.476 q^{29} -40.9120 q^{30} -286.268 q^{31} +32.0000 q^{32} +34.6320 q^{33} +14.7360 q^{34} +25.2640 q^{36} -59.3361 q^{37} +186.880 q^{38} +124.052 q^{39} +28.3520 q^{40} -62.6119 q^{41} +507.304 q^{43} -24.0000 q^{44} +22.3839 q^{45} +46.0000 q^{46} -536.300 q^{47} -92.3520 q^{48} -224.880 q^{50} -42.5280 q^{51} -85.9681 q^{52} +187.336 q^{53} +238.776 q^{54} -21.2640 q^{55} -539.336 q^{57} +224.952 q^{58} -49.6799 q^{59} -81.8240 q^{60} +778.776 q^{61} -572.536 q^{62} +64.0000 q^{64} -76.1678 q^{65} +69.2640 q^{66} -661.232 q^{67} +29.4720 q^{68} -132.756 q^{69} +289.212 q^{71} +50.5280 q^{72} +651.316 q^{73} -118.672 q^{74} +649.004 q^{75} +373.760 q^{76} +248.104 q^{78} -50.0720 q^{79} +56.7041 q^{80} -859.640 q^{81} -125.224 q^{82} -807.016 q^{83} +26.1122 q^{85} +1014.61 q^{86} -649.212 q^{87} -48.0000 q^{88} -946.104 q^{89} +44.7679 q^{90} +92.0000 q^{92} +1652.34 q^{93} -1072.60 q^{94} +331.152 q^{95} -184.704 q^{96} -715.529 q^{97} -37.8960 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 3 q^{3} + 8 q^{4} - 10 q^{5} - 6 q^{6} + 16 q^{8} - 13 q^{9} - 20 q^{10} - 12 q^{11} - 12 q^{12} + 51 q^{13} - 58 q^{15} + 32 q^{16} + 66 q^{17} - 26 q^{18} + 16 q^{19} - 40 q^{20} - 24 q^{22}+ \cdots + 78 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −5.77200 −1.11082 −0.555411 0.831576i \(-0.687439\pi\)
−0.555411 + 0.831576i \(0.687439\pi\)
\(4\) 4.00000 0.500000
\(5\) 3.54400 0.316985 0.158493 0.987360i \(-0.449337\pi\)
0.158493 + 0.987360i \(0.449337\pi\)
\(6\) −11.5440 −0.785470
\(7\) 0 0
\(8\) 8.00000 0.353553
\(9\) 6.31601 0.233926
\(10\) 7.08801 0.224142
\(11\) −6.00000 −0.164461 −0.0822304 0.996613i \(-0.526204\pi\)
−0.0822304 + 0.996613i \(0.526204\pi\)
\(12\) −23.0880 −0.555411
\(13\) −21.4920 −0.458524 −0.229262 0.973365i \(-0.573631\pi\)
−0.229262 + 0.973365i \(0.573631\pi\)
\(14\) 0 0
\(15\) −20.4560 −0.352114
\(16\) 16.0000 0.250000
\(17\) 7.36799 0.105118 0.0525588 0.998618i \(-0.483262\pi\)
0.0525588 + 0.998618i \(0.483262\pi\)
\(18\) 12.6320 0.165411
\(19\) 93.4400 1.12824 0.564121 0.825692i \(-0.309215\pi\)
0.564121 + 0.825692i \(0.309215\pi\)
\(20\) 14.1760 0.158493
\(21\) 0 0
\(22\) −12.0000 −0.116291
\(23\) 23.0000 0.208514
\(24\) −46.1760 −0.392735
\(25\) −112.440 −0.899520
\(26\) −42.9840 −0.324226
\(27\) 119.388 0.850972
\(28\) 0 0
\(29\) 112.476 0.720217 0.360108 0.932911i \(-0.382740\pi\)
0.360108 + 0.932911i \(0.382740\pi\)
\(30\) −40.9120 −0.248982
\(31\) −286.268 −1.65856 −0.829279 0.558835i \(-0.811248\pi\)
−0.829279 + 0.558835i \(0.811248\pi\)
\(32\) 32.0000 0.176777
\(33\) 34.6320 0.182687
\(34\) 14.7360 0.0743294
\(35\) 0 0
\(36\) 25.2640 0.116963
\(37\) −59.3361 −0.263643 −0.131821 0.991273i \(-0.542083\pi\)
−0.131821 + 0.991273i \(0.542083\pi\)
\(38\) 186.880 0.797788
\(39\) 124.052 0.509339
\(40\) 28.3520 0.112071
\(41\) −62.6119 −0.238496 −0.119248 0.992864i \(-0.538048\pi\)
−0.119248 + 0.992864i \(0.538048\pi\)
\(42\) 0 0
\(43\) 507.304 1.79914 0.899572 0.436773i \(-0.143879\pi\)
0.899572 + 0.436773i \(0.143879\pi\)
\(44\) −24.0000 −0.0822304
\(45\) 22.3839 0.0741512
\(46\) 46.0000 0.147442
\(47\) −536.300 −1.66441 −0.832206 0.554466i \(-0.812923\pi\)
−0.832206 + 0.554466i \(0.812923\pi\)
\(48\) −92.3520 −0.277706
\(49\) 0 0
\(50\) −224.880 −0.636057
\(51\) −42.5280 −0.116767
\(52\) −85.9681 −0.229262
\(53\) 187.336 0.485521 0.242760 0.970086i \(-0.421947\pi\)
0.242760 + 0.970086i \(0.421947\pi\)
\(54\) 238.776 0.601728
\(55\) −21.2640 −0.0521316
\(56\) 0 0
\(57\) −539.336 −1.25328
\(58\) 224.952 0.509270
\(59\) −49.6799 −0.109623 −0.0548116 0.998497i \(-0.517456\pi\)
−0.0548116 + 0.998497i \(0.517456\pi\)
\(60\) −81.8240 −0.176057
\(61\) 778.776 1.63462 0.817312 0.576195i \(-0.195463\pi\)
0.817312 + 0.576195i \(0.195463\pi\)
\(62\) −572.536 −1.17278
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −76.1678 −0.145345
\(66\) 69.2640 0.129179
\(67\) −661.232 −1.20571 −0.602853 0.797852i \(-0.705970\pi\)
−0.602853 + 0.797852i \(0.705970\pi\)
\(68\) 29.4720 0.0525588
\(69\) −132.756 −0.231622
\(70\) 0 0
\(71\) 289.212 0.483425 0.241712 0.970348i \(-0.422291\pi\)
0.241712 + 0.970348i \(0.422291\pi\)
\(72\) 50.5280 0.0827054
\(73\) 651.316 1.04426 0.522129 0.852867i \(-0.325138\pi\)
0.522129 + 0.852867i \(0.325138\pi\)
\(74\) −118.672 −0.186424
\(75\) 649.004 0.999207
\(76\) 373.760 0.564121
\(77\) 0 0
\(78\) 248.104 0.360157
\(79\) −50.0720 −0.0713107 −0.0356554 0.999364i \(-0.511352\pi\)
−0.0356554 + 0.999364i \(0.511352\pi\)
\(80\) 56.7041 0.0792463
\(81\) −859.640 −1.17920
\(82\) −125.224 −0.168642
\(83\) −807.016 −1.06725 −0.533624 0.845722i \(-0.679170\pi\)
−0.533624 + 0.845722i \(0.679170\pi\)
\(84\) 0 0
\(85\) 26.1122 0.0333207
\(86\) 1014.61 1.27219
\(87\) −649.212 −0.800033
\(88\) −48.0000 −0.0581456
\(89\) −946.104 −1.12682 −0.563409 0.826178i \(-0.690510\pi\)
−0.563409 + 0.826178i \(0.690510\pi\)
\(90\) 44.7679 0.0524328
\(91\) 0 0
\(92\) 92.0000 0.104257
\(93\) 1652.34 1.84236
\(94\) −1072.60 −1.17692
\(95\) 331.152 0.357636
\(96\) −184.704 −0.196367
\(97\) −715.529 −0.748978 −0.374489 0.927231i \(-0.622182\pi\)
−0.374489 + 0.927231i \(0.622182\pi\)
\(98\) 0 0
\(99\) −37.8960 −0.0384717
\(100\) −449.760 −0.449760
\(101\) 272.544 0.268507 0.134253 0.990947i \(-0.457136\pi\)
0.134253 + 0.990947i \(0.457136\pi\)
\(102\) −85.0561 −0.0825667
\(103\) 609.904 0.583453 0.291726 0.956502i \(-0.405770\pi\)
0.291726 + 0.956502i \(0.405770\pi\)
\(104\) −171.936 −0.162113
\(105\) 0 0
\(106\) 374.672 0.343315
\(107\) −212.240 −0.191757 −0.0958785 0.995393i \(-0.530566\pi\)
−0.0958785 + 0.995393i \(0.530566\pi\)
\(108\) 477.552 0.425486
\(109\) −1287.18 −1.13110 −0.565550 0.824714i \(-0.691336\pi\)
−0.565550 + 0.824714i \(0.691336\pi\)
\(110\) −42.5280 −0.0368626
\(111\) 342.488 0.292860
\(112\) 0 0
\(113\) −313.336 −0.260851 −0.130426 0.991458i \(-0.541634\pi\)
−0.130426 + 0.991458i \(0.541634\pi\)
\(114\) −1078.67 −0.886201
\(115\) 81.5121 0.0660960
\(116\) 449.904 0.360108
\(117\) −135.744 −0.107261
\(118\) −99.3598 −0.0775153
\(119\) 0 0
\(120\) −163.648 −0.124491
\(121\) −1295.00 −0.972953
\(122\) 1557.55 1.15585
\(123\) 361.396 0.264927
\(124\) −1145.07 −0.829279
\(125\) −841.488 −0.602120
\(126\) 0 0
\(127\) −1152.43 −0.805208 −0.402604 0.915374i \(-0.631895\pi\)
−0.402604 + 0.915374i \(0.631895\pi\)
\(128\) 128.000 0.0883883
\(129\) −2928.16 −1.99853
\(130\) −152.336 −0.102775
\(131\) 2368.37 1.57959 0.789793 0.613374i \(-0.210188\pi\)
0.789793 + 0.613374i \(0.210188\pi\)
\(132\) 138.528 0.0913433
\(133\) 0 0
\(134\) −1322.46 −0.852563
\(135\) 423.112 0.269746
\(136\) 58.9439 0.0371647
\(137\) −2872.44 −1.79131 −0.895654 0.444752i \(-0.853292\pi\)
−0.895654 + 0.444752i \(0.853292\pi\)
\(138\) −265.512 −0.163782
\(139\) −1637.24 −0.999054 −0.499527 0.866298i \(-0.666493\pi\)
−0.499527 + 0.866298i \(0.666493\pi\)
\(140\) 0 0
\(141\) 3095.52 1.84887
\(142\) 578.424 0.341833
\(143\) 128.952 0.0754092
\(144\) 101.056 0.0584815
\(145\) 398.616 0.228298
\(146\) 1302.63 0.738401
\(147\) 0 0
\(148\) −237.344 −0.131821
\(149\) 3125.40 1.71841 0.859204 0.511633i \(-0.170959\pi\)
0.859204 + 0.511633i \(0.170959\pi\)
\(150\) 1298.01 0.706546
\(151\) −370.436 −0.199640 −0.0998200 0.995006i \(-0.531827\pi\)
−0.0998200 + 0.995006i \(0.531827\pi\)
\(152\) 747.520 0.398894
\(153\) 46.5363 0.0245898
\(154\) 0 0
\(155\) −1014.54 −0.525738
\(156\) 496.208 0.254669
\(157\) 1993.44 1.01334 0.506669 0.862141i \(-0.330877\pi\)
0.506669 + 0.862141i \(0.330877\pi\)
\(158\) −100.144 −0.0504243
\(159\) −1081.30 −0.539327
\(160\) 113.408 0.0560356
\(161\) 0 0
\(162\) −1719.28 −0.833824
\(163\) 1722.10 0.827517 0.413759 0.910387i \(-0.364216\pi\)
0.413759 + 0.910387i \(0.364216\pi\)
\(164\) −250.448 −0.119248
\(165\) 122.736 0.0579090
\(166\) −1614.03 −0.754658
\(167\) 1870.88 0.866904 0.433452 0.901177i \(-0.357295\pi\)
0.433452 + 0.901177i \(0.357295\pi\)
\(168\) 0 0
\(169\) −1735.09 −0.789756
\(170\) 52.2244 0.0235613
\(171\) 590.168 0.263925
\(172\) 2029.22 0.899572
\(173\) 700.512 0.307855 0.153927 0.988082i \(-0.450808\pi\)
0.153927 + 0.988082i \(0.450808\pi\)
\(174\) −1298.42 −0.565708
\(175\) 0 0
\(176\) −96.0000 −0.0411152
\(177\) 286.752 0.121772
\(178\) −1892.21 −0.796781
\(179\) 3804.58 1.58865 0.794323 0.607495i \(-0.207826\pi\)
0.794323 + 0.607495i \(0.207826\pi\)
\(180\) 89.5358 0.0370756
\(181\) −3660.10 −1.50306 −0.751529 0.659700i \(-0.770683\pi\)
−0.751529 + 0.659700i \(0.770683\pi\)
\(182\) 0 0
\(183\) −4495.10 −1.81578
\(184\) 184.000 0.0737210
\(185\) −210.287 −0.0835710
\(186\) 3304.68 1.30275
\(187\) −44.2079 −0.0172877
\(188\) −2145.20 −0.832206
\(189\) 0 0
\(190\) 662.304 0.252887
\(191\) −1999.46 −0.757467 −0.378733 0.925506i \(-0.623640\pi\)
−0.378733 + 0.925506i \(0.623640\pi\)
\(192\) −369.408 −0.138853
\(193\) 879.885 0.328163 0.164082 0.986447i \(-0.447534\pi\)
0.164082 + 0.986447i \(0.447534\pi\)
\(194\) −1431.06 −0.529608
\(195\) 439.641 0.161453
\(196\) 0 0
\(197\) −2760.80 −0.998473 −0.499236 0.866466i \(-0.666386\pi\)
−0.499236 + 0.866466i \(0.666386\pi\)
\(198\) −75.7921 −0.0272036
\(199\) −3377.19 −1.20303 −0.601515 0.798862i \(-0.705436\pi\)
−0.601515 + 0.798862i \(0.705436\pi\)
\(200\) −899.520 −0.318028
\(201\) 3816.63 1.33933
\(202\) 545.089 0.189863
\(203\) 0 0
\(204\) −170.112 −0.0583835
\(205\) −221.897 −0.0755998
\(206\) 1219.81 0.412564
\(207\) 145.268 0.0487770
\(208\) −343.872 −0.114631
\(209\) −560.640 −0.185552
\(210\) 0 0
\(211\) −1072.19 −0.349823 −0.174912 0.984584i \(-0.555964\pi\)
−0.174912 + 0.984584i \(0.555964\pi\)
\(212\) 749.344 0.242760
\(213\) −1669.33 −0.536999
\(214\) −424.480 −0.135593
\(215\) 1797.89 0.570302
\(216\) 955.104 0.300864
\(217\) 0 0
\(218\) −2574.37 −0.799809
\(219\) −3759.40 −1.15998
\(220\) −85.0561 −0.0260658
\(221\) −158.353 −0.0481990
\(222\) 684.976 0.207084
\(223\) −1494.88 −0.448899 −0.224450 0.974486i \(-0.572058\pi\)
−0.224450 + 0.974486i \(0.572058\pi\)
\(224\) 0 0
\(225\) −710.172 −0.210421
\(226\) −626.672 −0.184450
\(227\) −2714.01 −0.793547 −0.396773 0.917917i \(-0.629870\pi\)
−0.396773 + 0.917917i \(0.629870\pi\)
\(228\) −2157.34 −0.626639
\(229\) −2512.00 −0.724881 −0.362441 0.932007i \(-0.618056\pi\)
−0.362441 + 0.932007i \(0.618056\pi\)
\(230\) 163.024 0.0467369
\(231\) 0 0
\(232\) 899.808 0.254635
\(233\) −1728.36 −0.485961 −0.242981 0.970031i \(-0.578125\pi\)
−0.242981 + 0.970031i \(0.578125\pi\)
\(234\) −271.487 −0.0758448
\(235\) −1900.65 −0.527594
\(236\) −198.720 −0.0548116
\(237\) 289.016 0.0792135
\(238\) 0 0
\(239\) −1689.48 −0.457252 −0.228626 0.973514i \(-0.573423\pi\)
−0.228626 + 0.973514i \(0.573423\pi\)
\(240\) −327.296 −0.0880286
\(241\) −3155.01 −0.843286 −0.421643 0.906762i \(-0.638546\pi\)
−0.421643 + 0.906762i \(0.638546\pi\)
\(242\) −2590.00 −0.687981
\(243\) 1738.37 0.458915
\(244\) 3115.10 0.817312
\(245\) 0 0
\(246\) 722.793 0.187332
\(247\) −2008.22 −0.517327
\(248\) −2290.15 −0.586389
\(249\) 4658.10 1.18552
\(250\) −1682.98 −0.425763
\(251\) −6341.93 −1.59482 −0.797408 0.603440i \(-0.793796\pi\)
−0.797408 + 0.603440i \(0.793796\pi\)
\(252\) 0 0
\(253\) −138.000 −0.0342924
\(254\) −2304.86 −0.569368
\(255\) −150.720 −0.0370134
\(256\) 256.000 0.0625000
\(257\) 5956.53 1.44575 0.722875 0.690979i \(-0.242820\pi\)
0.722875 + 0.690979i \(0.242820\pi\)
\(258\) −5856.32 −1.41317
\(259\) 0 0
\(260\) −304.671 −0.0726727
\(261\) 710.399 0.168477
\(262\) 4736.75 1.11694
\(263\) −7147.68 −1.67583 −0.837917 0.545797i \(-0.816227\pi\)
−0.837917 + 0.545797i \(0.816227\pi\)
\(264\) 277.056 0.0645895
\(265\) 663.920 0.153903
\(266\) 0 0
\(267\) 5460.91 1.25169
\(268\) −2644.93 −0.602853
\(269\) −7432.72 −1.68469 −0.842343 0.538941i \(-0.818824\pi\)
−0.842343 + 0.538941i \(0.818824\pi\)
\(270\) 846.223 0.190739
\(271\) −3236.06 −0.725376 −0.362688 0.931911i \(-0.618141\pi\)
−0.362688 + 0.931911i \(0.618141\pi\)
\(272\) 117.888 0.0262794
\(273\) 0 0
\(274\) −5744.88 −1.26665
\(275\) 674.640 0.147936
\(276\) −531.024 −0.115811
\(277\) 5437.77 1.17951 0.589755 0.807582i \(-0.299224\pi\)
0.589755 + 0.807582i \(0.299224\pi\)
\(278\) −3274.47 −0.706438
\(279\) −1808.07 −0.387980
\(280\) 0 0
\(281\) 244.617 0.0519312 0.0259656 0.999663i \(-0.491734\pi\)
0.0259656 + 0.999663i \(0.491734\pi\)
\(282\) 6191.05 1.30735
\(283\) 1050.75 0.220710 0.110355 0.993892i \(-0.464801\pi\)
0.110355 + 0.993892i \(0.464801\pi\)
\(284\) 1156.85 0.241712
\(285\) −1911.41 −0.397271
\(286\) 257.904 0.0533224
\(287\) 0 0
\(288\) 202.112 0.0413527
\(289\) −4858.71 −0.988950
\(290\) 797.231 0.161431
\(291\) 4130.03 0.831982
\(292\) 2605.26 0.522129
\(293\) −5643.46 −1.12524 −0.562618 0.826717i \(-0.690206\pi\)
−0.562618 + 0.826717i \(0.690206\pi\)
\(294\) 0 0
\(295\) −176.066 −0.0347490
\(296\) −474.689 −0.0932119
\(297\) −716.328 −0.139951
\(298\) 6250.80 1.21510
\(299\) −494.316 −0.0956089
\(300\) 2596.02 0.499604
\(301\) 0 0
\(302\) −740.872 −0.141167
\(303\) −1573.13 −0.298263
\(304\) 1495.04 0.282061
\(305\) 2759.99 0.518152
\(306\) 93.0725 0.0173876
\(307\) −5876.55 −1.09248 −0.546241 0.837628i \(-0.683942\pi\)
−0.546241 + 0.837628i \(0.683942\pi\)
\(308\) 0 0
\(309\) −3520.37 −0.648113
\(310\) −2029.07 −0.371753
\(311\) −8748.00 −1.59503 −0.797514 0.603301i \(-0.793852\pi\)
−0.797514 + 0.603301i \(0.793852\pi\)
\(312\) 992.416 0.180078
\(313\) 5029.42 0.908241 0.454120 0.890940i \(-0.349954\pi\)
0.454120 + 0.890940i \(0.349954\pi\)
\(314\) 3986.88 0.716537
\(315\) 0 0
\(316\) −200.288 −0.0356554
\(317\) −7199.63 −1.27562 −0.637810 0.770193i \(-0.720160\pi\)
−0.637810 + 0.770193i \(0.720160\pi\)
\(318\) −2162.61 −0.381362
\(319\) −674.856 −0.118447
\(320\) 226.816 0.0396232
\(321\) 1225.05 0.213008
\(322\) 0 0
\(323\) 688.465 0.118598
\(324\) −3438.56 −0.589602
\(325\) 2416.56 0.412452
\(326\) 3444.20 0.585143
\(327\) 7429.63 1.25645
\(328\) −500.896 −0.0843211
\(329\) 0 0
\(330\) 245.472 0.0409478
\(331\) −772.092 −0.128212 −0.0641058 0.997943i \(-0.520420\pi\)
−0.0641058 + 0.997943i \(0.520420\pi\)
\(332\) −3228.06 −0.533624
\(333\) −374.767 −0.0616730
\(334\) 3741.76 0.612994
\(335\) −2343.41 −0.382191
\(336\) 0 0
\(337\) −11069.6 −1.78932 −0.894659 0.446750i \(-0.852581\pi\)
−0.894659 + 0.446750i \(0.852581\pi\)
\(338\) −3470.19 −0.558442
\(339\) 1808.58 0.289759
\(340\) 104.449 0.0166604
\(341\) 1717.61 0.272768
\(342\) 1180.34 0.186624
\(343\) 0 0
\(344\) 4058.43 0.636093
\(345\) −470.488 −0.0734209
\(346\) 1401.02 0.217686
\(347\) −1202.99 −0.186109 −0.0930547 0.995661i \(-0.529663\pi\)
−0.0930547 + 0.995661i \(0.529663\pi\)
\(348\) −2596.85 −0.400016
\(349\) 4573.69 0.701501 0.350750 0.936469i \(-0.385927\pi\)
0.350750 + 0.936469i \(0.385927\pi\)
\(350\) 0 0
\(351\) −2565.89 −0.390191
\(352\) −192.000 −0.0290728
\(353\) 974.740 0.146969 0.0734846 0.997296i \(-0.476588\pi\)
0.0734846 + 0.997296i \(0.476588\pi\)
\(354\) 573.505 0.0861058
\(355\) 1024.97 0.153239
\(356\) −3784.42 −0.563409
\(357\) 0 0
\(358\) 7609.16 1.12334
\(359\) −4872.46 −0.716319 −0.358160 0.933660i \(-0.616596\pi\)
−0.358160 + 0.933660i \(0.616596\pi\)
\(360\) 179.072 0.0262164
\(361\) 1872.04 0.272932
\(362\) −7320.21 −1.06282
\(363\) 7474.74 1.08078
\(364\) 0 0
\(365\) 2308.27 0.331014
\(366\) −8990.19 −1.28395
\(367\) −11508.8 −1.63693 −0.818464 0.574557i \(-0.805174\pi\)
−0.818464 + 0.574557i \(0.805174\pi\)
\(368\) 368.000 0.0521286
\(369\) −395.457 −0.0557905
\(370\) −420.575 −0.0590936
\(371\) 0 0
\(372\) 6609.36 0.921181
\(373\) −3989.01 −0.553735 −0.276868 0.960908i \(-0.589296\pi\)
−0.276868 + 0.960908i \(0.589296\pi\)
\(374\) −88.4159 −0.0122243
\(375\) 4857.07 0.668848
\(376\) −4290.40 −0.588459
\(377\) −2417.34 −0.330237
\(378\) 0 0
\(379\) 2191.96 0.297080 0.148540 0.988906i \(-0.452543\pi\)
0.148540 + 0.988906i \(0.452543\pi\)
\(380\) 1324.61 0.178818
\(381\) 6651.81 0.894443
\(382\) −3998.93 −0.535610
\(383\) −10659.4 −1.42212 −0.711060 0.703131i \(-0.751785\pi\)
−0.711060 + 0.703131i \(0.751785\pi\)
\(384\) −738.816 −0.0981837
\(385\) 0 0
\(386\) 1759.77 0.232046
\(387\) 3204.14 0.420867
\(388\) −2862.11 −0.374489
\(389\) 8828.21 1.15066 0.575332 0.817920i \(-0.304873\pi\)
0.575332 + 0.817920i \(0.304873\pi\)
\(390\) 879.281 0.114164
\(391\) 169.464 0.0219185
\(392\) 0 0
\(393\) −13670.3 −1.75464
\(394\) −5521.61 −0.706027
\(395\) −177.456 −0.0226044
\(396\) −151.584 −0.0192358
\(397\) 4309.68 0.544828 0.272414 0.962180i \(-0.412178\pi\)
0.272414 + 0.962180i \(0.412178\pi\)
\(398\) −6754.39 −0.850670
\(399\) 0 0
\(400\) −1799.04 −0.224880
\(401\) 10650.5 1.32634 0.663169 0.748470i \(-0.269211\pi\)
0.663169 + 0.748470i \(0.269211\pi\)
\(402\) 7633.27 0.947047
\(403\) 6152.48 0.760489
\(404\) 1090.18 0.134253
\(405\) −3046.57 −0.373791
\(406\) 0 0
\(407\) 356.016 0.0433589
\(408\) −340.224 −0.0412834
\(409\) 299.234 0.0361764 0.0180882 0.999836i \(-0.494242\pi\)
0.0180882 + 0.999836i \(0.494242\pi\)
\(410\) −443.794 −0.0534571
\(411\) 16579.7 1.98982
\(412\) 2439.62 0.291726
\(413\) 0 0
\(414\) 290.536 0.0344905
\(415\) −2860.07 −0.338302
\(416\) −687.745 −0.0810564
\(417\) 9450.13 1.10977
\(418\) −1121.28 −0.131205
\(419\) 9596.39 1.11889 0.559445 0.828868i \(-0.311014\pi\)
0.559445 + 0.828868i \(0.311014\pi\)
\(420\) 0 0
\(421\) 14049.2 1.62641 0.813203 0.581980i \(-0.197722\pi\)
0.813203 + 0.581980i \(0.197722\pi\)
\(422\) −2144.38 −0.247362
\(423\) −3387.27 −0.389350
\(424\) 1498.69 0.171657
\(425\) −828.457 −0.0945554
\(426\) −3338.66 −0.379716
\(427\) 0 0
\(428\) −848.959 −0.0958785
\(429\) −744.312 −0.0837662
\(430\) 3595.78 0.403264
\(431\) −5348.79 −0.597777 −0.298889 0.954288i \(-0.596616\pi\)
−0.298889 + 0.954288i \(0.596616\pi\)
\(432\) 1910.21 0.212743
\(433\) −10727.2 −1.19057 −0.595284 0.803516i \(-0.702960\pi\)
−0.595284 + 0.803516i \(0.702960\pi\)
\(434\) 0 0
\(435\) −2300.81 −0.253599
\(436\) −5148.74 −0.565550
\(437\) 2149.12 0.235255
\(438\) −7518.79 −0.820233
\(439\) 1425.53 0.154981 0.0774907 0.996993i \(-0.475309\pi\)
0.0774907 + 0.996993i \(0.475309\pi\)
\(440\) −170.112 −0.0184313
\(441\) 0 0
\(442\) −316.706 −0.0340818
\(443\) −13585.6 −1.45705 −0.728524 0.685020i \(-0.759793\pi\)
−0.728524 + 0.685020i \(0.759793\pi\)
\(444\) 1369.95 0.146430
\(445\) −3353.00 −0.357185
\(446\) −2989.76 −0.317420
\(447\) −18039.8 −1.90885
\(448\) 0 0
\(449\) 16471.6 1.73128 0.865638 0.500670i \(-0.166913\pi\)
0.865638 + 0.500670i \(0.166913\pi\)
\(450\) −1420.34 −0.148790
\(451\) 375.672 0.0392233
\(452\) −1253.34 −0.130426
\(453\) 2138.16 0.221765
\(454\) −5428.02 −0.561122
\(455\) 0 0
\(456\) −4314.69 −0.443100
\(457\) 1032.87 0.105724 0.0528619 0.998602i \(-0.483166\pi\)
0.0528619 + 0.998602i \(0.483166\pi\)
\(458\) −5024.00 −0.512568
\(459\) 879.650 0.0894522
\(460\) 326.048 0.0330480
\(461\) −239.436 −0.0241902 −0.0120951 0.999927i \(-0.503850\pi\)
−0.0120951 + 0.999927i \(0.503850\pi\)
\(462\) 0 0
\(463\) −16596.4 −1.66587 −0.832935 0.553370i \(-0.813341\pi\)
−0.832935 + 0.553370i \(0.813341\pi\)
\(464\) 1799.62 0.180054
\(465\) 5855.90 0.584002
\(466\) −3456.73 −0.343626
\(467\) −10251.7 −1.01583 −0.507917 0.861406i \(-0.669584\pi\)
−0.507917 + 0.861406i \(0.669584\pi\)
\(468\) −542.975 −0.0536304
\(469\) 0 0
\(470\) −3801.30 −0.373066
\(471\) −11506.1 −1.12564
\(472\) −397.439 −0.0387577
\(473\) −3043.82 −0.295888
\(474\) 578.032 0.0560124
\(475\) −10506.4 −1.01488
\(476\) 0 0
\(477\) 1183.22 0.113576
\(478\) −3378.95 −0.323326
\(479\) 4030.99 0.384511 0.192256 0.981345i \(-0.438420\pi\)
0.192256 + 0.981345i \(0.438420\pi\)
\(480\) −654.592 −0.0622456
\(481\) 1275.25 0.120887
\(482\) −6310.02 −0.596293
\(483\) 0 0
\(484\) −5180.00 −0.486476
\(485\) −2535.84 −0.237415
\(486\) 3476.74 0.324502
\(487\) 6054.93 0.563399 0.281699 0.959503i \(-0.409102\pi\)
0.281699 + 0.959503i \(0.409102\pi\)
\(488\) 6230.21 0.577927
\(489\) −9939.97 −0.919225
\(490\) 0 0
\(491\) −19864.4 −1.82580 −0.912902 0.408178i \(-0.866164\pi\)
−0.912902 + 0.408178i \(0.866164\pi\)
\(492\) 1445.59 0.132463
\(493\) 828.722 0.0757075
\(494\) −4016.43 −0.365805
\(495\) −134.304 −0.0121950
\(496\) −4580.29 −0.414639
\(497\) 0 0
\(498\) 9316.20 0.838291
\(499\) −12128.9 −1.08811 −0.544053 0.839051i \(-0.683111\pi\)
−0.544053 + 0.839051i \(0.683111\pi\)
\(500\) −3365.95 −0.301060
\(501\) −10798.7 −0.962977
\(502\) −12683.9 −1.12771
\(503\) 18351.3 1.62673 0.813363 0.581756i \(-0.197634\pi\)
0.813363 + 0.581756i \(0.197634\pi\)
\(504\) 0 0
\(505\) 965.899 0.0851127
\(506\) −276.000 −0.0242484
\(507\) 10015.0 0.877278
\(508\) −4609.71 −0.402604
\(509\) 10876.1 0.947106 0.473553 0.880765i \(-0.342971\pi\)
0.473553 + 0.880765i \(0.342971\pi\)
\(510\) −301.439 −0.0261724
\(511\) 0 0
\(512\) 512.000 0.0441942
\(513\) 11155.6 0.960103
\(514\) 11913.1 1.02230
\(515\) 2161.50 0.184946
\(516\) −11712.6 −0.999264
\(517\) 3217.80 0.273731
\(518\) 0 0
\(519\) −4043.35 −0.341972
\(520\) −609.342 −0.0513874
\(521\) −4317.61 −0.363067 −0.181533 0.983385i \(-0.558106\pi\)
−0.181533 + 0.983385i \(0.558106\pi\)
\(522\) 1420.80 0.119132
\(523\) 11789.9 0.985733 0.492866 0.870105i \(-0.335949\pi\)
0.492866 + 0.870105i \(0.335949\pi\)
\(524\) 9473.49 0.789793
\(525\) 0 0
\(526\) −14295.4 −1.18499
\(527\) −2109.22 −0.174344
\(528\) 554.112 0.0456717
\(529\) 529.000 0.0434783
\(530\) 1327.84 0.108826
\(531\) −313.778 −0.0256437
\(532\) 0 0
\(533\) 1345.66 0.109356
\(534\) 10921.8 0.885082
\(535\) −752.179 −0.0607842
\(536\) −5289.86 −0.426282
\(537\) −21960.0 −1.76470
\(538\) −14865.4 −1.19125
\(539\) 0 0
\(540\) 1692.45 0.134873
\(541\) 8944.99 0.710860 0.355430 0.934703i \(-0.384334\pi\)
0.355430 + 0.934703i \(0.384334\pi\)
\(542\) −6472.13 −0.512918
\(543\) 21126.1 1.66963
\(544\) 235.776 0.0185823
\(545\) −4561.79 −0.358542
\(546\) 0 0
\(547\) 16376.3 1.28007 0.640036 0.768345i \(-0.278919\pi\)
0.640036 + 0.768345i \(0.278919\pi\)
\(548\) −11489.8 −0.895654
\(549\) 4918.75 0.382381
\(550\) 1349.28 0.104606
\(551\) 10509.8 0.812579
\(552\) −1062.05 −0.0818909
\(553\) 0 0
\(554\) 10875.5 0.834039
\(555\) 1213.78 0.0928325
\(556\) −6548.94 −0.499527
\(557\) 18239.2 1.38747 0.693736 0.720230i \(-0.255964\pi\)
0.693736 + 0.720230i \(0.255964\pi\)
\(558\) −3616.14 −0.274343
\(559\) −10903.0 −0.824951
\(560\) 0 0
\(561\) 255.168 0.0192036
\(562\) 489.235 0.0367209
\(563\) 286.757 0.0214660 0.0107330 0.999942i \(-0.496584\pi\)
0.0107330 + 0.999942i \(0.496584\pi\)
\(564\) 12382.1 0.924433
\(565\) −1110.46 −0.0826860
\(566\) 2101.51 0.156065
\(567\) 0 0
\(568\) 2313.70 0.170916
\(569\) 13951.6 1.02791 0.513955 0.857817i \(-0.328180\pi\)
0.513955 + 0.857817i \(0.328180\pi\)
\(570\) −3822.82 −0.280913
\(571\) −2020.68 −0.148096 −0.0740481 0.997255i \(-0.523592\pi\)
−0.0740481 + 0.997255i \(0.523592\pi\)
\(572\) 515.808 0.0377046
\(573\) 11540.9 0.841411
\(574\) 0 0
\(575\) −2586.12 −0.187563
\(576\) 404.224 0.0292408
\(577\) 21630.4 1.56064 0.780318 0.625383i \(-0.215057\pi\)
0.780318 + 0.625383i \(0.215057\pi\)
\(578\) −9717.43 −0.699293
\(579\) −5078.70 −0.364531
\(580\) 1594.46 0.114149
\(581\) 0 0
\(582\) 8260.06 0.588300
\(583\) −1124.02 −0.0798491
\(584\) 5210.53 0.369201
\(585\) −481.076 −0.0340001
\(586\) −11286.9 −0.795663
\(587\) −1510.94 −0.106240 −0.0531202 0.998588i \(-0.516917\pi\)
−0.0531202 + 0.998588i \(0.516917\pi\)
\(588\) 0 0
\(589\) −26748.9 −1.87126
\(590\) −352.131 −0.0245712
\(591\) 15935.4 1.10913
\(592\) −949.377 −0.0659107
\(593\) 19464.5 1.34791 0.673957 0.738771i \(-0.264593\pi\)
0.673957 + 0.738771i \(0.264593\pi\)
\(594\) −1432.66 −0.0989606
\(595\) 0 0
\(596\) 12501.6 0.859204
\(597\) 19493.2 1.33635
\(598\) −988.633 −0.0676057
\(599\) −11515.5 −0.785497 −0.392748 0.919646i \(-0.628476\pi\)
−0.392748 + 0.919646i \(0.628476\pi\)
\(600\) 5192.03 0.353273
\(601\) −372.589 −0.0252882 −0.0126441 0.999920i \(-0.504025\pi\)
−0.0126441 + 0.999920i \(0.504025\pi\)
\(602\) 0 0
\(603\) −4176.35 −0.282046
\(604\) −1481.74 −0.0998200
\(605\) −4589.48 −0.308412
\(606\) −3146.25 −0.210904
\(607\) 19564.0 1.30820 0.654099 0.756409i \(-0.273048\pi\)
0.654099 + 0.756409i \(0.273048\pi\)
\(608\) 2990.08 0.199447
\(609\) 0 0
\(610\) 5519.97 0.366389
\(611\) 11526.2 0.763173
\(612\) 186.145 0.0122949
\(613\) −14060.7 −0.926435 −0.463217 0.886245i \(-0.653305\pi\)
−0.463217 + 0.886245i \(0.653305\pi\)
\(614\) −11753.1 −0.772502
\(615\) 1280.79 0.0839779
\(616\) 0 0
\(617\) −282.447 −0.0184293 −0.00921465 0.999958i \(-0.502933\pi\)
−0.00921465 + 0.999958i \(0.502933\pi\)
\(618\) −7040.74 −0.458285
\(619\) −6071.66 −0.394250 −0.197125 0.980378i \(-0.563160\pi\)
−0.197125 + 0.980378i \(0.563160\pi\)
\(620\) −4058.14 −0.262869
\(621\) 2745.93 0.177440
\(622\) −17496.0 −1.12785
\(623\) 0 0
\(624\) 1984.83 0.127335
\(625\) 11072.8 0.708657
\(626\) 10058.8 0.642223
\(627\) 3236.02 0.206115
\(628\) 7973.76 0.506669
\(629\) −437.188 −0.0277135
\(630\) 0 0
\(631\) 3977.43 0.250933 0.125467 0.992098i \(-0.459957\pi\)
0.125467 + 0.992098i \(0.459957\pi\)
\(632\) −400.576 −0.0252121
\(633\) 6188.69 0.388591
\(634\) −14399.3 −0.902000
\(635\) −4084.21 −0.255239
\(636\) −4325.22 −0.269664
\(637\) 0 0
\(638\) −1349.71 −0.0837549
\(639\) 1826.66 0.113086
\(640\) 453.632 0.0280178
\(641\) 18024.3 1.11064 0.555318 0.831638i \(-0.312597\pi\)
0.555318 + 0.831638i \(0.312597\pi\)
\(642\) 2450.10 0.150619
\(643\) −9926.77 −0.608824 −0.304412 0.952541i \(-0.598460\pi\)
−0.304412 + 0.952541i \(0.598460\pi\)
\(644\) 0 0
\(645\) −10377.4 −0.633504
\(646\) 1376.93 0.0838616
\(647\) −2274.51 −0.138207 −0.0691036 0.997609i \(-0.522014\pi\)
−0.0691036 + 0.997609i \(0.522014\pi\)
\(648\) −6877.12 −0.416912
\(649\) 298.079 0.0180287
\(650\) 4833.13 0.291647
\(651\) 0 0
\(652\) 6888.40 0.413759
\(653\) 1794.68 0.107552 0.0537758 0.998553i \(-0.482874\pi\)
0.0537758 + 0.998553i \(0.482874\pi\)
\(654\) 14859.3 0.888445
\(655\) 8393.52 0.500705
\(656\) −1001.79 −0.0596240
\(657\) 4113.72 0.244279
\(658\) 0 0
\(659\) 4081.99 0.241292 0.120646 0.992696i \(-0.461503\pi\)
0.120646 + 0.992696i \(0.461503\pi\)
\(660\) 490.944 0.0289545
\(661\) 15350.1 0.903253 0.451626 0.892207i \(-0.350844\pi\)
0.451626 + 0.892207i \(0.350844\pi\)
\(662\) −1544.18 −0.0906593
\(663\) 914.014 0.0535405
\(664\) −6456.13 −0.377329
\(665\) 0 0
\(666\) −749.534 −0.0436094
\(667\) 2586.95 0.150176
\(668\) 7483.52 0.433452
\(669\) 8628.45 0.498647
\(670\) −4686.82 −0.270250
\(671\) −4672.66 −0.268831
\(672\) 0 0
\(673\) 26310.5 1.50698 0.753488 0.657461i \(-0.228370\pi\)
0.753488 + 0.657461i \(0.228370\pi\)
\(674\) −22139.2 −1.26524
\(675\) −13424.0 −0.765467
\(676\) −6940.37 −0.394878
\(677\) 22299.1 1.26591 0.632957 0.774187i \(-0.281841\pi\)
0.632957 + 0.774187i \(0.281841\pi\)
\(678\) 3617.15 0.204891
\(679\) 0 0
\(680\) 208.897 0.0117807
\(681\) 15665.3 0.881489
\(682\) 3435.22 0.192876
\(683\) 24001.7 1.34466 0.672328 0.740253i \(-0.265294\pi\)
0.672328 + 0.740253i \(0.265294\pi\)
\(684\) 2360.67 0.131963
\(685\) −10179.9 −0.567818
\(686\) 0 0
\(687\) 14499.3 0.805214
\(688\) 8116.87 0.449786
\(689\) −4026.23 −0.222623
\(690\) −940.976 −0.0519164
\(691\) −9627.58 −0.530030 −0.265015 0.964244i \(-0.585377\pi\)
−0.265015 + 0.964244i \(0.585377\pi\)
\(692\) 2802.05 0.153927
\(693\) 0 0
\(694\) −2405.98 −0.131599
\(695\) −5802.37 −0.316686
\(696\) −5193.70 −0.282854
\(697\) −461.324 −0.0250702
\(698\) 9147.37 0.496036
\(699\) 9976.12 0.539816
\(700\) 0 0
\(701\) 11750.7 0.633121 0.316561 0.948572i \(-0.397472\pi\)
0.316561 + 0.948572i \(0.397472\pi\)
\(702\) −5131.78 −0.275907
\(703\) −5544.36 −0.297453
\(704\) −384.000 −0.0205576
\(705\) 10970.6 0.586064
\(706\) 1949.48 0.103923
\(707\) 0 0
\(708\) 1147.01 0.0608860
\(709\) 1045.77 0.0553946 0.0276973 0.999616i \(-0.491183\pi\)
0.0276973 + 0.999616i \(0.491183\pi\)
\(710\) 2049.94 0.108356
\(711\) −316.255 −0.0166814
\(712\) −7568.83 −0.398390
\(713\) −6584.17 −0.345833
\(714\) 0 0
\(715\) 457.007 0.0239036
\(716\) 15218.3 0.794323
\(717\) 9751.66 0.507925
\(718\) −9744.92 −0.506514
\(719\) −9367.97 −0.485906 −0.242953 0.970038i \(-0.578116\pi\)
−0.242953 + 0.970038i \(0.578116\pi\)
\(720\) 358.143 0.0185378
\(721\) 0 0
\(722\) 3744.08 0.192992
\(723\) 18210.7 0.936741
\(724\) −14640.4 −0.751529
\(725\) −12646.8 −0.647849
\(726\) 14949.5 0.764225
\(727\) 24447.9 1.24721 0.623605 0.781740i \(-0.285668\pi\)
0.623605 + 0.781740i \(0.285668\pi\)
\(728\) 0 0
\(729\) 13176.4 0.669432
\(730\) 4616.53 0.234062
\(731\) 3737.81 0.189122
\(732\) −17980.4 −0.907888
\(733\) −24144.2 −1.21662 −0.608312 0.793698i \(-0.708153\pi\)
−0.608312 + 0.793698i \(0.708153\pi\)
\(734\) −23017.5 −1.15748
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) 3967.39 0.198291
\(738\) −790.915 −0.0394498
\(739\) 10006.7 0.498108 0.249054 0.968490i \(-0.419880\pi\)
0.249054 + 0.968490i \(0.419880\pi\)
\(740\) −841.149 −0.0417855
\(741\) 11591.4 0.574658
\(742\) 0 0
\(743\) −7313.96 −0.361135 −0.180567 0.983563i \(-0.557793\pi\)
−0.180567 + 0.983563i \(0.557793\pi\)
\(744\) 13218.7 0.651373
\(745\) 11076.4 0.544710
\(746\) −7978.03 −0.391550
\(747\) −5097.12 −0.249657
\(748\) −176.832 −0.00864386
\(749\) 0 0
\(750\) 9714.15 0.472947
\(751\) −3297.61 −0.160228 −0.0801141 0.996786i \(-0.525528\pi\)
−0.0801141 + 0.996786i \(0.525528\pi\)
\(752\) −8580.80 −0.416103
\(753\) 36605.6 1.77156
\(754\) −4834.68 −0.233513
\(755\) −1312.83 −0.0632830
\(756\) 0 0
\(757\) −23745.7 −1.14009 −0.570047 0.821612i \(-0.693075\pi\)
−0.570047 + 0.821612i \(0.693075\pi\)
\(758\) 4383.92 0.210068
\(759\) 796.536 0.0380928
\(760\) 2649.21 0.126444
\(761\) −25723.6 −1.22533 −0.612666 0.790342i \(-0.709903\pi\)
−0.612666 + 0.790342i \(0.709903\pi\)
\(762\) 13303.6 0.632467
\(763\) 0 0
\(764\) −7997.85 −0.378733
\(765\) 164.925 0.00779459
\(766\) −21318.9 −1.00559
\(767\) 1067.72 0.0502649
\(768\) −1477.63 −0.0694264
\(769\) 36423.8 1.70803 0.854016 0.520246i \(-0.174160\pi\)
0.854016 + 0.520246i \(0.174160\pi\)
\(770\) 0 0
\(771\) −34381.1 −1.60597
\(772\) 3519.54 0.164082
\(773\) 20401.3 0.949265 0.474633 0.880184i \(-0.342581\pi\)
0.474633 + 0.880184i \(0.342581\pi\)
\(774\) 6408.27 0.297598
\(775\) 32188.0 1.49191
\(776\) −5724.23 −0.264804
\(777\) 0 0
\(778\) 17656.4 0.813642
\(779\) −5850.46 −0.269082
\(780\) 1758.56 0.0807265
\(781\) −1735.27 −0.0795044
\(782\) 338.927 0.0154987
\(783\) 13428.3 0.612884
\(784\) 0 0
\(785\) 7064.76 0.321213
\(786\) −27340.5 −1.24072
\(787\) −23639.8 −1.07073 −0.535367 0.844620i \(-0.679827\pi\)
−0.535367 + 0.844620i \(0.679827\pi\)
\(788\) −11043.2 −0.499236
\(789\) 41256.4 1.86155
\(790\) −354.911 −0.0159838
\(791\) 0 0
\(792\) −303.168 −0.0136018
\(793\) −16737.5 −0.749515
\(794\) 8619.36 0.385251
\(795\) −3832.15 −0.170959
\(796\) −13508.8 −0.601515
\(797\) 41015.8 1.82291 0.911453 0.411405i \(-0.134962\pi\)
0.911453 + 0.411405i \(0.134962\pi\)
\(798\) 0 0
\(799\) −3951.45 −0.174959
\(800\) −3598.08 −0.159014
\(801\) −5975.60 −0.263592
\(802\) 21301.0 0.937862
\(803\) −3907.90 −0.171739
\(804\) 15266.5 0.669663
\(805\) 0 0
\(806\) 12305.0 0.537747
\(807\) 42901.7 1.87139
\(808\) 2180.36 0.0949315
\(809\) −30619.8 −1.33070 −0.665349 0.746532i \(-0.731717\pi\)
−0.665349 + 0.746532i \(0.731717\pi\)
\(810\) −6093.14 −0.264310
\(811\) 7000.16 0.303093 0.151547 0.988450i \(-0.451575\pi\)
0.151547 + 0.988450i \(0.451575\pi\)
\(812\) 0 0
\(813\) 18678.6 0.805764
\(814\) 712.033 0.0306594
\(815\) 6103.13 0.262311
\(816\) −680.449 −0.0291918
\(817\) 47402.5 2.02987
\(818\) 598.468 0.0255806
\(819\) 0 0
\(820\) −887.588 −0.0377999
\(821\) 31972.1 1.35912 0.679558 0.733621i \(-0.262171\pi\)
0.679558 + 0.733621i \(0.262171\pi\)
\(822\) 33159.5 1.40702
\(823\) 6616.25 0.280228 0.140114 0.990135i \(-0.455253\pi\)
0.140114 + 0.990135i \(0.455253\pi\)
\(824\) 4879.23 0.206282
\(825\) −3894.02 −0.164330
\(826\) 0 0
\(827\) −18261.5 −0.767852 −0.383926 0.923364i \(-0.625428\pi\)
−0.383926 + 0.923364i \(0.625428\pi\)
\(828\) 581.073 0.0243885
\(829\) −16935.3 −0.709513 −0.354757 0.934959i \(-0.615436\pi\)
−0.354757 + 0.934959i \(0.615436\pi\)
\(830\) −5720.14 −0.239215
\(831\) −31386.8 −1.31023
\(832\) −1375.49 −0.0573155
\(833\) 0 0
\(834\) 18900.3 0.784727
\(835\) 6630.41 0.274796
\(836\) −2242.56 −0.0927758
\(837\) −34177.0 −1.41139
\(838\) 19192.8 0.791174
\(839\) −11971.2 −0.492598 −0.246299 0.969194i \(-0.579215\pi\)
−0.246299 + 0.969194i \(0.579215\pi\)
\(840\) 0 0
\(841\) −11738.1 −0.481288
\(842\) 28098.4 1.15004
\(843\) −1411.93 −0.0576863
\(844\) −4288.77 −0.174912
\(845\) −6149.18 −0.250341
\(846\) −6774.55 −0.275312
\(847\) 0 0
\(848\) 2997.38 0.121380
\(849\) −6064.95 −0.245169
\(850\) −1656.91 −0.0668608
\(851\) −1364.73 −0.0549734
\(852\) −6677.33 −0.268499
\(853\) −14844.9 −0.595872 −0.297936 0.954586i \(-0.596298\pi\)
−0.297936 + 0.954586i \(0.596298\pi\)
\(854\) 0 0
\(855\) 2091.56 0.0836605
\(856\) −1697.92 −0.0677963
\(857\) −45234.9 −1.80303 −0.901514 0.432751i \(-0.857543\pi\)
−0.901514 + 0.432751i \(0.857543\pi\)
\(858\) −1488.62 −0.0592317
\(859\) 43687.6 1.73528 0.867639 0.497195i \(-0.165637\pi\)
0.867639 + 0.497195i \(0.165637\pi\)
\(860\) 7191.55 0.285151
\(861\) 0 0
\(862\) −10697.6 −0.422692
\(863\) 22267.6 0.878331 0.439165 0.898406i \(-0.355274\pi\)
0.439165 + 0.898406i \(0.355274\pi\)
\(864\) 3820.42 0.150432
\(865\) 2482.62 0.0975855
\(866\) −21454.4 −0.841858
\(867\) 28044.5 1.09855
\(868\) 0 0
\(869\) 300.432 0.0117278
\(870\) −4601.62 −0.179321
\(871\) 14211.2 0.552846
\(872\) −10297.5 −0.399904
\(873\) −4519.28 −0.175206
\(874\) 4298.24 0.166350
\(875\) 0 0
\(876\) −15037.6 −0.579992
\(877\) −17550.1 −0.675743 −0.337871 0.941192i \(-0.609707\pi\)
−0.337871 + 0.941192i \(0.609707\pi\)
\(878\) 2851.06 0.109588
\(879\) 32574.1 1.24994
\(880\) −340.224 −0.0130329
\(881\) 28114.7 1.07515 0.537577 0.843215i \(-0.319340\pi\)
0.537577 + 0.843215i \(0.319340\pi\)
\(882\) 0 0
\(883\) 46811.6 1.78407 0.892036 0.451964i \(-0.149277\pi\)
0.892036 + 0.451964i \(0.149277\pi\)
\(884\) −633.412 −0.0240995
\(885\) 1016.25 0.0385999
\(886\) −27171.2 −1.03029
\(887\) −1604.14 −0.0607234 −0.0303617 0.999539i \(-0.509666\pi\)
−0.0303617 + 0.999539i \(0.509666\pi\)
\(888\) 2739.90 0.103542
\(889\) 0 0
\(890\) −6705.99 −0.252568
\(891\) 5157.84 0.193933
\(892\) −5979.52 −0.224450
\(893\) −50111.9 −1.87786
\(894\) −36079.6 −1.34976
\(895\) 13483.4 0.503578
\(896\) 0 0
\(897\) 2853.20 0.106204
\(898\) 32943.2 1.22420
\(899\) −32198.3 −1.19452
\(900\) −2840.69 −0.105211
\(901\) 1380.29 0.0510368
\(902\) 751.343 0.0277350
\(903\) 0 0
\(904\) −2506.69 −0.0922248
\(905\) −12971.4 −0.476447
\(906\) 4276.31 0.156811
\(907\) −1200.10 −0.0439345 −0.0219672 0.999759i \(-0.506993\pi\)
−0.0219672 + 0.999759i \(0.506993\pi\)
\(908\) −10856.0 −0.396773
\(909\) 1721.39 0.0628108
\(910\) 0 0
\(911\) 34847.5 1.26734 0.633672 0.773602i \(-0.281547\pi\)
0.633672 + 0.773602i \(0.281547\pi\)
\(912\) −8629.38 −0.313319
\(913\) 4842.10 0.175520
\(914\) 2065.75 0.0747580
\(915\) −15930.6 −0.575575
\(916\) −10048.0 −0.362441
\(917\) 0 0
\(918\) 1759.30 0.0632522
\(919\) −44895.1 −1.61148 −0.805741 0.592268i \(-0.798233\pi\)
−0.805741 + 0.592268i \(0.798233\pi\)
\(920\) 652.097 0.0233685
\(921\) 33919.4 1.21355
\(922\) −478.873 −0.0171050
\(923\) −6215.75 −0.221662
\(924\) 0 0
\(925\) 6671.75 0.237152
\(926\) −33192.7 −1.17795
\(927\) 3852.16 0.136485
\(928\) 3599.23 0.127318
\(929\) −17783.9 −0.628063 −0.314032 0.949413i \(-0.601680\pi\)
−0.314032 + 0.949413i \(0.601680\pi\)
\(930\) 11711.8 0.412952
\(931\) 0 0
\(932\) −6913.46 −0.242981
\(933\) 50493.5 1.77179
\(934\) −20503.5 −0.718303
\(935\) −156.673 −0.00547995
\(936\) −1085.95 −0.0379224
\(937\) 25058.9 0.873682 0.436841 0.899539i \(-0.356097\pi\)
0.436841 + 0.899539i \(0.356097\pi\)
\(938\) 0 0
\(939\) −29029.8 −1.00889
\(940\) −7602.60 −0.263797
\(941\) −29903.4 −1.03594 −0.517972 0.855398i \(-0.673313\pi\)
−0.517972 + 0.855398i \(0.673313\pi\)
\(942\) −23012.3 −0.795946
\(943\) −1440.07 −0.0497299
\(944\) −794.878 −0.0274058
\(945\) 0 0
\(946\) −6087.65 −0.209225
\(947\) 17921.2 0.614952 0.307476 0.951556i \(-0.400516\pi\)
0.307476 + 0.951556i \(0.400516\pi\)
\(948\) 1156.06 0.0396068
\(949\) −13998.1 −0.478817
\(950\) −21012.8 −0.717627
\(951\) 41556.3 1.41699
\(952\) 0 0
\(953\) 31122.3 1.05787 0.528935 0.848662i \(-0.322592\pi\)
0.528935 + 0.848662i \(0.322592\pi\)
\(954\) 2366.43 0.0803103
\(955\) −7086.11 −0.240106
\(956\) −6757.91 −0.228626
\(957\) 3895.27 0.131574
\(958\) 8061.99 0.271890
\(959\) 0 0
\(960\) −1309.18 −0.0440143
\(961\) 52158.4 1.75081
\(962\) 2550.50 0.0854798
\(963\) −1340.51 −0.0448570
\(964\) −12620.0 −0.421643
\(965\) 3118.32 0.104023
\(966\) 0 0
\(967\) 6627.78 0.220409 0.110204 0.993909i \(-0.464849\pi\)
0.110204 + 0.993909i \(0.464849\pi\)
\(968\) −10360.0 −0.343991
\(969\) −3973.82 −0.131742
\(970\) −5071.67 −0.167878
\(971\) −38645.1 −1.27722 −0.638609 0.769531i \(-0.720490\pi\)
−0.638609 + 0.769531i \(0.720490\pi\)
\(972\) 6953.47 0.229457
\(973\) 0 0
\(974\) 12109.9 0.398383
\(975\) −13948.4 −0.458161
\(976\) 12460.4 0.408656
\(977\) −14137.0 −0.462930 −0.231465 0.972843i \(-0.574352\pi\)
−0.231465 + 0.972843i \(0.574352\pi\)
\(978\) −19879.9 −0.649990
\(979\) 5676.62 0.185317
\(980\) 0 0
\(981\) −8129.87 −0.264594
\(982\) −39728.9 −1.29104
\(983\) −32966.5 −1.06965 −0.534825 0.844963i \(-0.679623\pi\)
−0.534825 + 0.844963i \(0.679623\pi\)
\(984\) 2891.17 0.0936658
\(985\) −9784.30 −0.316501
\(986\) 1657.44 0.0535333
\(987\) 0 0
\(988\) −8032.86 −0.258663
\(989\) 11668.0 0.375147
\(990\) −268.607 −0.00862313
\(991\) 47592.2 1.52555 0.762774 0.646666i \(-0.223837\pi\)
0.762774 + 0.646666i \(0.223837\pi\)
\(992\) −9160.58 −0.293194
\(993\) 4456.52 0.142420
\(994\) 0 0
\(995\) −11968.8 −0.381343
\(996\) 18632.4 0.592761
\(997\) −11153.1 −0.354285 −0.177142 0.984185i \(-0.556685\pi\)
−0.177142 + 0.984185i \(0.556685\pi\)
\(998\) −24257.8 −0.769407
\(999\) −7084.02 −0.224353
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.f.1.1 2
7.6 odd 2 46.4.a.d.1.2 2
21.20 even 2 414.4.a.f.1.2 2
28.27 even 2 368.4.a.f.1.1 2
35.13 even 4 1150.4.b.j.599.2 4
35.27 even 4 1150.4.b.j.599.3 4
35.34 odd 2 1150.4.a.j.1.1 2
56.13 odd 2 1472.4.a.k.1.1 2
56.27 even 2 1472.4.a.n.1.2 2
161.160 even 2 1058.4.a.j.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
46.4.a.d.1.2 2 7.6 odd 2
368.4.a.f.1.1 2 28.27 even 2
414.4.a.f.1.2 2 21.20 even 2
1058.4.a.j.1.2 2 161.160 even 2
1150.4.a.j.1.1 2 35.34 odd 2
1150.4.b.j.599.2 4 35.13 even 4
1150.4.b.j.599.3 4 35.27 even 4
1472.4.a.k.1.1 2 56.13 odd 2
1472.4.a.n.1.2 2 56.27 even 2
2254.4.a.f.1.1 2 1.1 even 1 trivial