L(s) = 1 | − 2·5-s − 9.79i·7-s + 19.5i·11-s − 21·25-s + 50·29-s − 48.9i·31-s + 19.5i·35-s − 46.9·49-s − 94·53-s − 39.1i·55-s − 117. i·59-s − 50·73-s + 191.·77-s + 146. i·79-s − 97.9i·83-s + ⋯ |
L(s) = 1 | − 0.400·5-s − 1.39i·7-s + 1.78i·11-s − 0.839·25-s + 1.72·29-s − 1.58i·31-s + 0.559i·35-s − 0.959·49-s − 1.77·53-s − 0.712i·55-s − 1.99i·59-s − 0.684·73-s + 2.49·77-s + 1.86i·79-s − 1.18i·83-s + ⋯ |
Λ(s)=(=(2304s/2ΓC(s)L(s)−Λ(3−s)
Λ(s)=(=(2304s/2ΓC(s+1)L(s)−Λ(1−s)
Degree: |
2 |
Conductor: |
2304
= 28⋅32
|
Sign: |
−1
|
Analytic conductor: |
62.7794 |
Root analytic conductor: |
7.92334 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2304(1279,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2304, ( :1), −1)
|
Particular Values
L(23) |
≈ |
0.2229946984 |
L(21) |
≈ |
0.2229946984 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+2T+25T2 |
| 7 | 1+9.79iT−49T2 |
| 11 | 1−19.5iT−121T2 |
| 13 | 1+169T2 |
| 17 | 1+289T2 |
| 19 | 1−361T2 |
| 23 | 1−529T2 |
| 29 | 1−50T+841T2 |
| 31 | 1+48.9iT−961T2 |
| 37 | 1+1.36e3T2 |
| 41 | 1+1.68e3T2 |
| 43 | 1−1.84e3T2 |
| 47 | 1−2.20e3T2 |
| 53 | 1+94T+2.80e3T2 |
| 59 | 1+117.iT−3.48e3T2 |
| 61 | 1+3.72e3T2 |
| 67 | 1−4.48e3T2 |
| 71 | 1−5.04e3T2 |
| 73 | 1+50T+5.32e3T2 |
| 79 | 1−146.iT−6.24e3T2 |
| 83 | 1+97.9iT−6.88e3T2 |
| 89 | 1+7.92e3T2 |
| 97 | 1+190T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.126977724082118074478874345826, −7.70263637832272259513588172499, −6.97251431510453506260068885846, −6.34395569068220927675544227725, −4.98565696473563310666780974391, −4.34798836266470013911298588525, −3.74754893144402749709364964754, −2.43995065001743789552614979359, −1.31733389704277170242792104640, −0.05661955552560939533794860658,
1.33400402215906214233691604269, 2.74696020645240628597123045673, 3.24359822542426417566104448901, 4.44004974852518002104619470631, 5.45018670817730035360500465058, 5.98103537922693228558033589354, 6.75661426319547008065893387123, 7.933623973047014331030603543449, 8.551321426911397041503909628457, 8.902445189812925091754232267700