Properties

Label 2304.3.g.i
Level $2304$
Weight $3$
Character orbit 2304.g
Analytic conductor $62.779$
Analytic rank $0$
Dimension $2$
CM discriminant -24
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2304,3,Mod(1279,2304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2304.1279");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2304.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.7794529086\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1152)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{-6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{5} - \beta q^{7} + 2 \beta q^{11} - 21 q^{25} + 50 q^{29} - 5 \beta q^{31} + 2 \beta q^{35} - 47 q^{49} - 94 q^{53} - 4 \beta q^{55} - 12 \beta q^{59} - 50 q^{73} + 192 q^{77} + 15 \beta q^{79} + \cdots - 190 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{5} - 42 q^{25} + 100 q^{29} - 94 q^{49} - 188 q^{53} - 100 q^{73} + 384 q^{77} - 380 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times\).

\(n\) \(1279\) \(1793\) \(2053\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1279.1
2.44949i
2.44949i
0 0 0 −2.00000 0 9.79796i 0 0 0
1279.2 0 0 0 −2.00000 0 9.79796i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by \(\Q(\sqrt{-6}) \)
4.b odd 2 1 inner
24.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2304.3.g.i 2
3.b odd 2 1 2304.3.g.l 2
4.b odd 2 1 inner 2304.3.g.i 2
8.b even 2 1 2304.3.g.l 2
8.d odd 2 1 2304.3.g.l 2
12.b even 2 1 2304.3.g.l 2
16.e even 4 2 1152.3.b.f 4
16.f odd 4 2 1152.3.b.f 4
24.f even 2 1 inner 2304.3.g.i 2
24.h odd 2 1 CM 2304.3.g.i 2
48.i odd 4 2 1152.3.b.f 4
48.k even 4 2 1152.3.b.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1152.3.b.f 4 16.e even 4 2
1152.3.b.f 4 16.f odd 4 2
1152.3.b.f 4 48.i odd 4 2
1152.3.b.f 4 48.k even 4 2
2304.3.g.i 2 1.a even 1 1 trivial
2304.3.g.i 2 4.b odd 2 1 inner
2304.3.g.i 2 24.f even 2 1 inner
2304.3.g.i 2 24.h odd 2 1 CM
2304.3.g.l 2 3.b odd 2 1
2304.3.g.l 2 8.b even 2 1
2304.3.g.l 2 8.d odd 2 1
2304.3.g.l 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(2304, [\chi])\):

\( T_{5} + 2 \) Copy content Toggle raw display
\( T_{7}^{2} + 96 \) Copy content Toggle raw display
\( T_{11}^{2} + 384 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 2)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 96 \) Copy content Toggle raw display
$11$ \( T^{2} + 384 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T - 50)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 2400 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( (T + 94)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 13824 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T + 50)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 21600 \) Copy content Toggle raw display
$83$ \( T^{2} + 9600 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( (T + 190)^{2} \) Copy content Toggle raw display
show more
show less