Properties

Label 2304.3.g.i
Level 23042304
Weight 33
Character orbit 2304.g
Analytic conductor 62.77962.779
Analytic rank 00
Dimension 22
CM discriminant -24
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2304,3,Mod(1279,2304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2304.1279");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 2304=2832 2304 = 2^{8} \cdot 3^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 2304.g (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 62.779452908662.7794529086
Analytic rank: 00
Dimension: 22
Coefficient field: Q(6)\Q(\sqrt{-6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+6 x^{2} + 6 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 1152)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=46\beta = 4\sqrt{-6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2q5βq7+2βq1121q25+50q295βq31+2βq3547q4994q534βq5512βq5950q73+192q77+15βq79+190q97+O(q100) q - 2 q^{5} - \beta q^{7} + 2 \beta q^{11} - 21 q^{25} + 50 q^{29} - 5 \beta q^{31} + 2 \beta q^{35} - 47 q^{49} - 94 q^{53} - 4 \beta q^{55} - 12 \beta q^{59} - 50 q^{73} + 192 q^{77} + 15 \beta q^{79} + \cdots - 190 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q542q25+100q2994q49188q53100q73+384q77380q97+O(q100) 2 q - 4 q^{5} - 42 q^{25} + 100 q^{29} - 94 q^{49} - 188 q^{53} - 100 q^{73} + 384 q^{77} - 380 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2304Z)×\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times.

nn 12791279 17931793 20532053
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1279.1
2.44949i
2.44949i
0 0 0 −2.00000 0 9.79796i 0 0 0
1279.2 0 0 0 −2.00000 0 9.79796i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by Q(6)\Q(\sqrt{-6})
4.b odd 2 1 inner
24.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2304.3.g.i 2
3.b odd 2 1 2304.3.g.l 2
4.b odd 2 1 inner 2304.3.g.i 2
8.b even 2 1 2304.3.g.l 2
8.d odd 2 1 2304.3.g.l 2
12.b even 2 1 2304.3.g.l 2
16.e even 4 2 1152.3.b.f 4
16.f odd 4 2 1152.3.b.f 4
24.f even 2 1 inner 2304.3.g.i 2
24.h odd 2 1 CM 2304.3.g.i 2
48.i odd 4 2 1152.3.b.f 4
48.k even 4 2 1152.3.b.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1152.3.b.f 4 16.e even 4 2
1152.3.b.f 4 16.f odd 4 2
1152.3.b.f 4 48.i odd 4 2
1152.3.b.f 4 48.k even 4 2
2304.3.g.i 2 1.a even 1 1 trivial
2304.3.g.i 2 4.b odd 2 1 inner
2304.3.g.i 2 24.f even 2 1 inner
2304.3.g.i 2 24.h odd 2 1 CM
2304.3.g.l 2 3.b odd 2 1
2304.3.g.l 2 8.b even 2 1
2304.3.g.l 2 8.d odd 2 1
2304.3.g.l 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(2304,[χ])S_{3}^{\mathrm{new}}(2304, [\chi]):

T5+2 T_{5} + 2 Copy content Toggle raw display
T72+96 T_{7}^{2} + 96 Copy content Toggle raw display
T112+384 T_{11}^{2} + 384 Copy content Toggle raw display
T13 T_{13} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
77 T2+96 T^{2} + 96 Copy content Toggle raw display
1111 T2+384 T^{2} + 384 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T50)2 (T - 50)^{2} Copy content Toggle raw display
3131 T2+2400 T^{2} + 2400 Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 (T+94)2 (T + 94)^{2} Copy content Toggle raw display
5959 T2+13824 T^{2} + 13824 Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 (T+50)2 (T + 50)^{2} Copy content Toggle raw display
7979 T2+21600 T^{2} + 21600 Copy content Toggle raw display
8383 T2+9600 T^{2} + 9600 Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 (T+190)2 (T + 190)^{2} Copy content Toggle raw display
show more
show less