Properties

Label 1152.3.b.f
Level 11521152
Weight 33
Character orbit 1152.b
Analytic conductor 31.39031.390
Analytic rank 00
Dimension 44
CM discriminant -24
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,3,Mod(703,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.703");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 1152=2732 1152 = 2^{7} \cdot 3^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 1152.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 31.389726454331.3897264543
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,6)\Q(i, \sqrt{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9 x^{4} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 27 2^{7}
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q5+β2q7+β3q11+21q25+25β1q295β2q31β3q3547q49+47β1q53+4β2q556β3q59+190q97+O(q100) q + \beta_1 q^{5} + \beta_{2} q^{7} + \beta_{3} q^{11} + 21 q^{25} + 25 \beta_1 q^{29} - 5 \beta_{2} q^{31} - \beta_{3} q^{35} - 47 q^{49} + 47 \beta_1 q^{53} + 4 \beta_{2} q^{55} - 6 \beta_{3} q^{59}+ \cdots - 190 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+84q25188q49+200q73760q97+O(q100) 4 q + 84 q^{25} - 188 q^{49} + 200 q^{73} - 760 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+9 x^{4} + 9 : Copy content Toggle raw display

β1\beta_{1}== (2ν2)/3 ( 2\nu^{2} ) / 3 Copy content Toggle raw display
β2\beta_{2}== (4ν3+12ν)/3 ( 4\nu^{3} + 12\nu ) / 3 Copy content Toggle raw display
β3\beta_{3}== (8ν3+24ν)/3 ( -8\nu^{3} + 24\nu ) / 3 Copy content Toggle raw display
ν\nu== (β3+2β2)/16 ( \beta_{3} + 2\beta_{2} ) / 16 Copy content Toggle raw display
ν2\nu^{2}== (3β1)/2 ( 3\beta_1 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (3β3+6β2)/16 ( -3\beta_{3} + 6\beta_{2} ) / 16 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1152Z)×\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times.

nn 127127 641641 901901
χ(n)\chi(n) 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
703.1
1.22474 1.22474i
−1.22474 + 1.22474i
−1.22474 1.22474i
1.22474 + 1.22474i
0 0 0 2.00000i 0 9.79796i 0 0 0
703.2 0 0 0 2.00000i 0 9.79796i 0 0 0
703.3 0 0 0 2.00000i 0 9.79796i 0 0 0
703.4 0 0 0 2.00000i 0 9.79796i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by Q(6)\Q(\sqrt{-6})
3.b odd 2 1 inner
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
12.b even 2 1 inner
24.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.3.b.f 4
3.b odd 2 1 inner 1152.3.b.f 4
4.b odd 2 1 inner 1152.3.b.f 4
8.b even 2 1 inner 1152.3.b.f 4
8.d odd 2 1 inner 1152.3.b.f 4
12.b even 2 1 inner 1152.3.b.f 4
16.e even 4 1 2304.3.g.i 2
16.e even 4 1 2304.3.g.l 2
16.f odd 4 1 2304.3.g.i 2
16.f odd 4 1 2304.3.g.l 2
24.f even 2 1 inner 1152.3.b.f 4
24.h odd 2 1 CM 1152.3.b.f 4
48.i odd 4 1 2304.3.g.i 2
48.i odd 4 1 2304.3.g.l 2
48.k even 4 1 2304.3.g.i 2
48.k even 4 1 2304.3.g.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1152.3.b.f 4 1.a even 1 1 trivial
1152.3.b.f 4 3.b odd 2 1 inner
1152.3.b.f 4 4.b odd 2 1 inner
1152.3.b.f 4 8.b even 2 1 inner
1152.3.b.f 4 8.d odd 2 1 inner
1152.3.b.f 4 12.b even 2 1 inner
1152.3.b.f 4 24.f even 2 1 inner
1152.3.b.f 4 24.h odd 2 1 CM
2304.3.g.i 2 16.e even 4 1
2304.3.g.i 2 16.f odd 4 1
2304.3.g.i 2 48.i odd 4 1
2304.3.g.i 2 48.k even 4 1
2304.3.g.l 2 16.e even 4 1
2304.3.g.l 2 16.f odd 4 1
2304.3.g.l 2 48.i odd 4 1
2304.3.g.l 2 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(1152,[χ])S_{3}^{\mathrm{new}}(1152, [\chi]):

T52+4 T_{5}^{2} + 4 Copy content Toggle raw display
T72+96 T_{7}^{2} + 96 Copy content Toggle raw display
T17 T_{17} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
77 (T2+96)2 (T^{2} + 96)^{2} Copy content Toggle raw display
1111 (T2384)2 (T^{2} - 384)^{2} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 (T2+2500)2 (T^{2} + 2500)^{2} Copy content Toggle raw display
3131 (T2+2400)2 (T^{2} + 2400)^{2} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 (T2+8836)2 (T^{2} + 8836)^{2} Copy content Toggle raw display
5959 (T213824)2 (T^{2} - 13824)^{2} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 (T50)4 (T - 50)^{4} Copy content Toggle raw display
7979 (T2+21600)2 (T^{2} + 21600)^{2} Copy content Toggle raw display
8383 (T29600)2 (T^{2} - 9600)^{2} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 (T+190)4 (T + 190)^{4} Copy content Toggle raw display
show more
show less