Properties

Label 2304.3.g.i.1279.1
Level 23042304
Weight 33
Character 2304.1279
Analytic conductor 62.77962.779
Analytic rank 00
Dimension 22
CM discriminant -24
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2304,3,Mod(1279,2304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2304.1279");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 2304=2832 2304 = 2^{8} \cdot 3^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 2304.g (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 62.779452908662.7794529086
Analytic rank: 00
Dimension: 22
Coefficient field: Q(6)\Q(\sqrt{-6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+6 x^{2} + 6 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 1152)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 1279.1
Root 2.44949i2.44949i of defining polynomial
Character χ\chi == 2304.1279
Dual form 2304.3.g.i.1279.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.00000q59.79796iq7+19.5959iq1121.0000q25+50.0000q2948.9898iq31+19.5959iq3547.0000q4994.0000q5339.1918iq55117.576iq5950.0000q73+192.000q77+146.969iq7997.9796iq83190.000q97+O(q100)q-2.00000 q^{5} -9.79796i q^{7} +19.5959i q^{11} -21.0000 q^{25} +50.0000 q^{29} -48.9898i q^{31} +19.5959i q^{35} -47.0000 q^{49} -94.0000 q^{53} -39.1918i q^{55} -117.576i q^{59} -50.0000 q^{73} +192.000 q^{77} +146.969i q^{79} -97.9796i q^{83} -190.000 q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q542q25+100q2994q49188q53100q73+384q77380q97+O(q100) 2 q - 4 q^{5} - 42 q^{25} + 100 q^{29} - 94 q^{49} - 188 q^{53} - 100 q^{73} + 384 q^{77} - 380 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2304Z)×\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times.

nn 12791279 17931793 20532053
χ(n)\chi(n) 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0
44 0 0
55 −2.00000 −0.400000 −0.200000 0.979796i 0.564094π-0.564094\pi
−0.200000 + 0.979796i 0.564094π0.564094\pi
66 0 0
77 − 9.79796i − 1.39971i −0.714286 0.699854i 0.753248π-0.753248\pi
0.714286 0.699854i 0.246752π-0.246752\pi
88 0 0
99 0 0
1010 0 0
1111 19.5959i 1.78145i 0.454545 + 0.890724i 0.349802π0.349802\pi
−0.454545 + 0.890724i 0.650198π0.650198\pi
1212 0 0
1313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 0 0
1616 0 0
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000 00
−1.00000 π\pi
2424 0 0
2525 −21.0000 −0.840000
2626 0 0
2727 0 0
2828 0 0
2929 50.0000 1.72414 0.862069 0.506791i 0.169168π-0.169168\pi
0.862069 + 0.506791i 0.169168π0.169168\pi
3030 0 0
3131 − 48.9898i − 1.58032i −0.612903 0.790158i 0.709998π-0.709998\pi
0.612903 0.790158i 0.290002π-0.290002\pi
3232 0 0
3333 0 0
3434 0 0
3535 19.5959i 0.559883i
3636 0 0
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 −47.0000 −0.959184
5050 0 0
5151 0 0
5252 0 0
5353 −94.0000 −1.77358 −0.886792 0.462168i 0.847072π-0.847072\pi
−0.886792 + 0.462168i 0.847072π0.847072\pi
5454 0 0
5555 − 39.1918i − 0.712579i
5656 0 0
5757 0 0
5858 0 0
5959 − 117.576i − 1.99281i −0.0847458 0.996403i 0.527008π-0.527008\pi
0.0847458 0.996403i 0.472992π-0.472992\pi
6060 0 0
6161 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6262 0 0
6363 0 0
6464 0 0
6565 0 0
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 −50.0000 −0.684932 −0.342466 0.939530i 0.611262π-0.611262\pi
−0.342466 + 0.939530i 0.611262π0.611262\pi
7474 0 0
7575 0 0
7676 0 0
7777 192.000 2.49351
7878 0 0
7979 146.969i 1.86037i 0.367089 + 0.930186i 0.380355π0.380355\pi
−0.367089 + 0.930186i 0.619645π0.619645\pi
8080 0 0
8181 0 0
8282 0 0
8383 − 97.9796i − 1.18048i −0.807229 0.590238i 0.799034π-0.799034\pi
0.807229 0.590238i 0.200966π-0.200966\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −190.000 −1.95876 −0.979381 0.202020i 0.935249π-0.935249\pi
−0.979381 + 0.202020i 0.935249π0.935249\pi
9898 0 0
9999 0 0
100100 0 0
101101 −190.000 −1.88119 −0.940594 0.339533i 0.889731π-0.889731\pi
−0.940594 + 0.339533i 0.889731π0.889731\pi
102102 0 0
103103 205.757i 1.99764i 0.0485437 + 0.998821i 0.484542π0.484542\pi
−0.0485437 + 0.998821i 0.515458π0.515458\pi
104104 0 0
105105 0 0
106106 0 0
107107 195.959i 1.83139i 0.401869 + 0.915697i 0.368361π0.368361\pi
−0.401869 + 0.915697i 0.631639π0.631639\pi
108108 0 0
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −263.000 −2.17355
122122 0 0
123123 0 0
124124 0 0
125125 92.0000 0.736000
126126 0 0
127127 − 107.778i − 0.848642i −0.905512 0.424321i 0.860513π-0.860513\pi
0.905512 0.424321i 0.139487π-0.139487\pi
128128 0 0
129129 0 0
130130 0 0
131131 78.3837i 0.598349i 0.954198 + 0.299174i 0.0967112π0.0967112\pi
−0.954198 + 0.299174i 0.903289π0.903289\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 −100.000 −0.689655
146146 0 0
147147 0 0
148148 0 0
149149 −290.000 −1.94631 −0.973154 0.230153i 0.926077π-0.926077\pi
−0.973154 + 0.230153i 0.926077π0.926077\pi
150150 0 0
151151 − 48.9898i − 0.324436i −0.986755 0.162218i 0.948135π-0.948135\pi
0.986755 0.162218i 0.0518647π-0.0518647\pi
152152 0 0
153153 0 0
154154 0 0
155155 97.9796i 0.632126i
156156 0 0
157157 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 −169.000 −1.00000
170170 0 0
171171 0 0
172172 0 0
173173 46.0000 0.265896 0.132948 0.991123i 0.457556π-0.457556\pi
0.132948 + 0.991123i 0.457556π0.457556\pi
174174 0 0
175175 205.757i 1.17576i
176176 0 0
177177 0 0
178178 0 0
179179 274.343i 1.53264i 0.642458 + 0.766321i 0.277915π0.277915\pi
−0.642458 + 0.766321i 0.722085π0.722085\pi
180180 0 0
181181 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 −290.000 −1.50259 −0.751295 0.659966i 0.770571π-0.770571\pi
−0.751295 + 0.659966i 0.770571π0.770571\pi
194194 0 0
195195 0 0
196196 0 0
197197 194.000 0.984772 0.492386 0.870377i 0.336125π-0.336125\pi
0.492386 + 0.870377i 0.336125π0.336125\pi
198198 0 0
199199 − 342.929i − 1.72326i −0.507538 0.861630i 0.669444π-0.669444\pi
0.507538 0.861630i 0.330556π-0.330556\pi
200200 0 0
201201 0 0
202202 0 0
203203 − 489.898i − 2.41329i
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 −480.000 −2.21198
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 − 382.120i − 1.71354i −0.515695 0.856772i 0.672466π-0.672466\pi
0.515695 0.856772i 0.327534π-0.327534\pi
224224 0 0
225225 0 0
226226 0 0
227227 − 293.939i − 1.29488i −0.762115 0.647442i 0.775839π-0.775839\pi
0.762115 0.647442i 0.224161π-0.224161\pi
228228 0 0
229229 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 −382.000 −1.58506 −0.792531 0.609831i 0.791237π-0.791237\pi
−0.792531 + 0.609831i 0.791237π0.791237\pi
242242 0 0
243243 0 0
244244 0 0
245245 94.0000 0.383673
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 176.363i 0.702642i 0.936255 + 0.351321i 0.114267π0.114267\pi
−0.936255 + 0.351321i 0.885733π0.885733\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 188.000 0.709434
266266 0 0
267267 0 0
268268 0 0
269269 −430.000 −1.59851 −0.799257 0.600990i 0.794773π-0.794773\pi
−0.799257 + 0.600990i 0.794773π0.794773\pi
270270 0 0
271271 − 538.888i − 1.98852i −0.107011 0.994258i 0.534128π-0.534128\pi
0.107011 0.994258i 0.465872π-0.465872\pi
272272 0 0
273273 0 0
274274 0 0
275275 − 411.514i − 1.49642i
276276 0 0
277277 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −289.000 −1.00000
290290 0 0
291291 0 0
292292 0 0
293293 386.000 1.31741 0.658703 0.752403i 0.271105π-0.271105\pi
0.658703 + 0.752403i 0.271105π0.271105\pi
294294 0 0
295295 235.151i 0.797122i
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 −530.000 −1.69329 −0.846645 0.532158i 0.821381π-0.821381\pi
−0.846645 + 0.532158i 0.821381π0.821381\pi
314314 0 0
315315 0 0
316316 0 0
317317 −334.000 −1.05363 −0.526814 0.849981i 0.676614π-0.676614\pi
−0.526814 + 0.849981i 0.676614π0.676614\pi
318318 0 0
319319 979.796i 3.07146i
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 190.000 0.563798 0.281899 0.959444i 0.409036π-0.409036\pi
0.281899 + 0.959444i 0.409036π0.409036\pi
338338 0 0
339339 0 0
340340 0 0
341341 960.000 2.81525
342342 0 0
343343 − 19.5959i − 0.0571310i
344344 0 0
345345 0 0
346346 0 0
347347 685.857i 1.97653i 0.152738 + 0.988267i 0.451191π0.451191\pi
−0.152738 + 0.988267i 0.548809π0.548809\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 361.000 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 100.000 0.273973
366366 0 0
367367 186.161i 0.507251i 0.967302 + 0.253626i 0.0816231π0.0816231\pi
−0.967302 + 0.253626i 0.918377π0.918377\pi
368368 0 0
369369 0 0
370370 0 0
371371 921.008i 2.48250i
372372 0 0
373373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 −384.000 −0.997403
386386 0 0
387387 0 0
388388 0 0
389389 190.000 0.488432 0.244216 0.969721i 0.421469π-0.421469\pi
0.244216 + 0.969721i 0.421469π0.421469\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 − 293.939i − 0.744149i
396396 0 0
397397 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
398398 0 0
399399 0 0
400400 0 0
401401 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 −718.000 −1.75550 −0.877751 0.479118i 0.840957π-0.840957\pi
−0.877751 + 0.479118i 0.840957π0.840957\pi
410410 0 0
411411 0 0
412412 0 0
413413 −1152.00 −2.78935
414414 0 0
415415 195.959i 0.472191i
416416 0 0
417417 0 0
418418 0 0
419419 411.514i 0.982134i 0.871122 + 0.491067i 0.163393π0.163393\pi
−0.871122 + 0.491067i 0.836607π0.836607\pi
420420 0 0
421421 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 670.000 1.54734 0.773672 0.633586i 0.218418π-0.218418\pi
0.773672 + 0.633586i 0.218418π0.218418\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 832.827i 1.89710i 0.316629 + 0.948550i 0.397449π0.397449\pi
−0.316629 + 0.948550i 0.602551π0.602551\pi
440440 0 0
441441 0 0
442442 0 0
443443 − 881.816i − 1.99056i −0.0970655 0.995278i 0.530946π-0.530946\pi
0.0970655 0.995278i 0.469054π-0.469054\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 530.000 1.15974 0.579869 0.814710i 0.303104π-0.303104\pi
0.579869 + 0.814710i 0.303104π0.303104\pi
458458 0 0
459459 0 0
460460 0 0
461461 −530.000 −1.14967 −0.574837 0.818268i 0.694935π-0.694935\pi
−0.574837 + 0.818268i 0.694935π0.694935\pi
462462 0 0
463463 − 891.614i − 1.92573i −0.269978 0.962866i 0.587017π-0.587017\pi
0.269978 0.962866i 0.412983π-0.412983\pi
464464 0 0
465465 0 0
466466 0 0
467467 − 685.857i − 1.46864i −0.678801 0.734322i 0.737500π-0.737500\pi
0.678801 0.734322i 0.262500π-0.262500\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 380.000 0.783505
486486 0 0
487487 − 88.1816i − 0.181071i −0.995893 0.0905356i 0.971142π-0.971142\pi
0.995893 0.0905356i 0.0288579π-0.0288579\pi
488488 0 0
489489 0 0
490490 0 0
491491 862.220i 1.75605i 0.478615 + 0.878025i 0.341139π0.341139\pi
−0.478615 + 0.878025i 0.658861π0.658861\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 380.000 0.752475
506506 0 0
507507 0 0
508508 0 0
509509 1010.00 1.98428 0.992141 0.125121i 0.0399320π-0.0399320\pi
0.992141 + 0.125121i 0.0399320π0.0399320\pi
510510 0 0
511511 489.898i 0.958704i
512512 0 0
513513 0 0
514514 0 0
515515 − 411.514i − 0.799057i
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 529.000 1.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 − 391.918i − 0.732558i
536536 0 0
537537 0 0
538538 0 0
539539 − 921.008i − 1.70873i
540540 0 0
541541 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 1440.00 2.60398
554554 0 0
555555 0 0
556556 0 0
557557 −914.000 −1.64093 −0.820467 0.571694i 0.806286π-0.806286\pi
−0.820467 + 0.571694i 0.806286π0.806286\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 − 1077.78i − 1.91434i −0.289520 0.957172i 0.593496π-0.593496\pi
0.289520 0.957172i 0.406504π-0.406504\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 290.000 0.502600 0.251300 0.967909i 0.419142π-0.419142\pi
0.251300 + 0.967909i 0.419142π0.419142\pi
578578 0 0
579579 0 0
580580 0 0
581581 −960.000 −1.65232
582582 0 0
583583 − 1842.02i − 3.15955i
584584 0 0
585585 0 0
586586 0 0
587587 783.837i 1.33533i 0.744463 + 0.667663i 0.232705π0.232705\pi
−0.744463 + 0.667663i 0.767295π0.767295\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 −1198.00 −1.99334 −0.996672 0.0815138i 0.974025π-0.974025\pi
−0.996672 + 0.0815138i 0.974025π0.974025\pi
602602 0 0
603603 0 0
604604 0 0
605605 526.000 0.869421
606606 0 0
607607 − 969.998i − 1.59802i −0.601318 0.799010i 0.705357π-0.705357\pi
0.601318 0.799010i 0.294643π-0.294643\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 341.000 0.545600
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 − 244.949i − 0.388192i −0.980983 0.194096i 0.937823π-0.937823\pi
0.980983 0.194096i 0.0621773π-0.0621773\pi
632632 0 0
633633 0 0
634634 0 0
635635 215.555i 0.339457i
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0 0
649649 2304.00 3.55008
650650 0 0
651651 0 0
652652 0 0
653653 1006.00 1.54058 0.770291 0.637693i 0.220111π-0.220111\pi
0.770291 + 0.637693i 0.220111π0.220111\pi
654654 0 0
655655 − 156.767i − 0.239339i
656656 0 0
657657 0 0
658658 0 0
659659 1097.37i 1.66521i 0.553869 + 0.832603i 0.313151π0.313151\pi
−0.553869 + 0.832603i 0.686849π0.686849\pi
660660 0 0
661661 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 190.000 0.282318 0.141159 0.989987i 0.454917π-0.454917\pi
0.141159 + 0.989987i 0.454917π0.454917\pi
674674 0 0
675675 0 0
676676 0 0
677677 −1346.00 −1.98818 −0.994092 0.108545i 0.965381π-0.965381\pi
−0.994092 + 0.108545i 0.965381π0.965381\pi
678678 0 0
679679 1861.61i 2.74170i
680680 0 0
681681 0 0
682682 0 0
683683 − 293.939i − 0.430364i −0.976574 0.215182i 0.930965π-0.930965\pi
0.976574 0.215182i 0.0690345π-0.0690345\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 1.00000 00
−1.00000 π\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 50.0000 0.0713267 0.0356633 0.999364i 0.488646π-0.488646\pi
0.0356633 + 0.999364i 0.488646π0.488646\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 1861.61i 2.63311i
708708 0 0
709709 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 2016.00 2.79612
722722 0 0
723723 0 0
724724 0 0
725725 −1050.00 −1.44828
726726 0 0
727727 107.778i 0.148250i 0.997249 + 0.0741249i 0.0236163π0.0236163\pi
−0.997249 + 0.0741249i 0.976384π0.976384\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 580.000 0.778523
746746 0 0
747747 0 0
748748 0 0
749749 1920.00 2.56342
750750 0 0
751751 538.888i 0.717560i 0.933422 + 0.358780i 0.116807π0.116807\pi
−0.933422 + 0.358780i 0.883193π0.883193\pi
752752 0 0
753753 0 0
754754 0 0
755755 97.9796i 0.129774i
756756 0 0
757757 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 862.000 1.12094 0.560468 0.828176i 0.310621π-0.310621\pi
0.560468 + 0.828176i 0.310621π0.310621\pi
770770 0 0
771771 0 0
772772 0 0
773773 1154.00 1.49288 0.746442 0.665450i 0.231760π-0.231760\pi
0.746442 + 0.665450i 0.231760π0.231760\pi
774774 0 0
775775 1028.79i 1.32747i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 1294.00 1.62359 0.811794 0.583944i 0.198491π-0.198491\pi
0.811794 + 0.583944i 0.198491π0.198491\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 − 979.796i − 1.22017i
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 −670.000 −0.816078 −0.408039 0.912965i 0.633787π-0.633787\pi
−0.408039 + 0.912965i 0.633787π0.633787\pi
822822 0 0
823823 − 1577.47i − 1.91673i −0.285541 0.958367i 0.592173π-0.592173\pi
0.285541 0.958367i 0.407827π-0.407827\pi
824824 0 0
825825 0 0
826826 0 0
827827 587.878i 0.710856i 0.934704 + 0.355428i 0.115665π0.115665\pi
−0.934704 + 0.355428i 0.884335π0.884335\pi
828828 0 0
829829 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1659.00 1.97265
842842 0 0
843843 0 0
844844 0 0
845845 338.000 0.400000
846846 0 0
847847 2576.86i 3.04234i
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 −92.0000 −0.106358
866866 0 0
867867 0 0
868868 0 0
869869 −2880.00 −3.31415
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 − 901.412i − 1.03019i
876876 0 0
877877 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 −1056.00 −1.18785
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 − 548.686i − 0.613057i
896896 0 0
897897 0 0
898898 0 0
899899 − 2449.49i − 2.72468i
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 1920.00 2.10296
914914 0 0
915915 0 0
916916 0 0
917917 768.000 0.837514
918918 0 0
919919 1714.64i 1.86577i 0.360174 + 0.932885i 0.382717π0.382717\pi
−0.360174 + 0.932885i 0.617283π0.617283\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 1490.00 1.59018 0.795091 0.606491i 0.207423π-0.207423\pi
0.795091 + 0.606491i 0.207423π0.207423\pi
938938 0 0
939939 0 0
940940 0 0
941941 430.000 0.456961 0.228480 0.973549i 0.426624π-0.426624\pi
0.228480 + 0.973549i 0.426624π0.426624\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 − 1371.71i − 1.44848i −0.689546 0.724242i 0.742190π-0.742190\pi
0.689546 0.724242i 0.257810π-0.257810\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −1439.00 −1.49740
962962 0 0
963963 0 0
964964 0 0
965965 580.000 0.601036
966966 0 0
967967 − 303.737i − 0.314102i −0.987590 0.157051i 0.949801π-0.949801\pi
0.987590 0.157051i 0.0501987π-0.0501987\pi
968968 0 0
969969 0 0
970970 0 0
971971 − 215.555i − 0.221993i −0.993821 0.110996i 0.964596π-0.964596\pi
0.993821 0.110996i 0.0354042π-0.0354042\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 −388.000 −0.393909
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 − 1420.70i − 1.43361i −0.697275 0.716803i 0.745605π-0.745605\pi
0.697275 0.716803i 0.254395π-0.254395\pi
992992 0 0
993993 0 0
994994 0 0
995995 685.857i 0.689304i
996996 0 0
997997 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2304.3.g.i.1279.1 2
3.2 odd 2 2304.3.g.l.1279.1 2
4.3 odd 2 inner 2304.3.g.i.1279.2 2
8.3 odd 2 2304.3.g.l.1279.2 2
8.5 even 2 2304.3.g.l.1279.1 2
12.11 even 2 2304.3.g.l.1279.2 2
16.3 odd 4 1152.3.b.f.703.3 yes 4
16.5 even 4 1152.3.b.f.703.2 yes 4
16.11 odd 4 1152.3.b.f.703.1 4
16.13 even 4 1152.3.b.f.703.4 yes 4
24.5 odd 2 CM 2304.3.g.i.1279.1 2
24.11 even 2 inner 2304.3.g.i.1279.2 2
48.5 odd 4 1152.3.b.f.703.4 yes 4
48.11 even 4 1152.3.b.f.703.3 yes 4
48.29 odd 4 1152.3.b.f.703.2 yes 4
48.35 even 4 1152.3.b.f.703.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1152.3.b.f.703.1 4 16.11 odd 4
1152.3.b.f.703.1 4 48.35 even 4
1152.3.b.f.703.2 yes 4 16.5 even 4
1152.3.b.f.703.2 yes 4 48.29 odd 4
1152.3.b.f.703.3 yes 4 16.3 odd 4
1152.3.b.f.703.3 yes 4 48.11 even 4
1152.3.b.f.703.4 yes 4 16.13 even 4
1152.3.b.f.703.4 yes 4 48.5 odd 4
2304.3.g.i.1279.1 2 1.1 even 1 trivial
2304.3.g.i.1279.1 2 24.5 odd 2 CM
2304.3.g.i.1279.2 2 4.3 odd 2 inner
2304.3.g.i.1279.2 2 24.11 even 2 inner
2304.3.g.l.1279.1 2 3.2 odd 2
2304.3.g.l.1279.1 2 8.5 even 2
2304.3.g.l.1279.2 2 8.3 odd 2
2304.3.g.l.1279.2 2 12.11 even 2