L(s) = 1 | + i·3-s − 9-s + 4·11-s + 2i·13-s + 2i·17-s − 8·19-s + 4i·23-s − i·27-s + 6·29-s + 4i·33-s − 2i·37-s − 2·39-s − 6·41-s + 4i·43-s + 12i·47-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 0.333·9-s + 1.20·11-s + 0.554i·13-s + 0.485i·17-s − 1.83·19-s + 0.834i·23-s − 0.192i·27-s + 1.11·29-s + 0.696i·33-s − 0.328i·37-s − 0.320·39-s − 0.937·41-s + 0.609i·43-s + 1.75i·47-s + ⋯ |
Λ(s)=(=(2400s/2ΓC(s)L(s)(−0.447−0.894i)Λ(2−s)
Λ(s)=(=(2400s/2ΓC(s+1/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2400
= 25⋅3⋅52
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
19.1640 |
Root analytic conductor: |
4.37768 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2400(1249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2400, ( :1/2), −0.447−0.894i)
|
Particular Values
L(1) |
≈ |
1.422015497 |
L(21) |
≈ |
1.422015497 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−iT |
| 5 | 1 |
good | 7 | 1−7T2 |
| 11 | 1−4T+11T2 |
| 13 | 1−2iT−13T2 |
| 17 | 1−2iT−17T2 |
| 19 | 1+8T+19T2 |
| 23 | 1−4iT−23T2 |
| 29 | 1−6T+29T2 |
| 31 | 1+31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−4iT−43T2 |
| 47 | 1−12iT−47T2 |
| 53 | 1+6iT−53T2 |
| 59 | 1+12T+59T2 |
| 61 | 1−14T+61T2 |
| 67 | 1−12iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1−2iT−73T2 |
| 79 | 1−8T+79T2 |
| 83 | 1+4iT−83T2 |
| 89 | 1+2T+89T2 |
| 97 | 1−14iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.121279321727361796187495882666, −8.653946391450262269850011610284, −7.80110789286529074190981222881, −6.59253762829136573373045722505, −6.33179208332781865686470221518, −5.17977672209596164305187515504, −4.22025835593867010029583925639, −3.80609050352547795382138013611, −2.52612844324430918158692015706, −1.37731319719758585072401552200,
0.49200684404884067164167360943, 1.76875518447980779067063967005, 2.74778045478718415433800835631, 3.85858199368142659427749753835, 4.68200779026234768406191851070, 5.72318174511009985932257059866, 6.66034590661104915103867788837, 6.86163984448130820996516660373, 8.132350852563471362107334593035, 8.566199376355159919024556049375