Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2400,2,Mod(1249,2400)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2400.1249");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2400.f (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(19.1640964851\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 480) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 1249.2 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 2400.1249 |
Dual form | 2400.2.f.n.1249.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(901\) | \(1601\) | \(1951\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 1.00000i | 0.577350i | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −1.00000 | −0.333333 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 4.00000 | 1.20605 | 0.603023 | − | 0.797724i | \(-0.293963\pi\) | ||||
0.603023 | + | 0.797724i | \(0.293963\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 2.00000i | 0.554700i | 0.960769 | + | 0.277350i | \(0.0894562\pi\) | ||||
−0.960769 | + | 0.277350i | \(0.910544\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 2.00000i | 0.485071i | 0.970143 | + | 0.242536i | \(0.0779791\pi\) | ||||
−0.970143 | + | 0.242536i | \(0.922021\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −8.00000 | −1.83533 | −0.917663 | − | 0.397360i | \(-0.869927\pi\) | ||||
−0.917663 | + | 0.397360i | \(0.869927\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 4.00000i | 0.834058i | 0.908893 | + | 0.417029i | \(0.136929\pi\) | ||||
−0.908893 | + | 0.417029i | \(0.863071\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | − 1.00000i | − 0.192450i | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 6.00000 | 1.11417 | 0.557086 | − | 0.830455i | \(-0.311919\pi\) | ||||
0.557086 | + | 0.830455i | \(0.311919\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 4.00000i | 0.696311i | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 2.00000i | − 0.328798i | −0.986394 | − | 0.164399i | \(-0.947432\pi\) | ||||
0.986394 | − | 0.164399i | \(-0.0525685\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | −2.00000 | −0.320256 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −6.00000 | −0.937043 | −0.468521 | − | 0.883452i | \(-0.655213\pi\) | ||||
−0.468521 | + | 0.883452i | \(0.655213\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 4.00000i | 0.609994i | 0.952353 | + | 0.304997i | \(0.0986555\pi\) | ||||
−0.952353 | + | 0.304997i | \(0.901344\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 12.0000i | 1.75038i | 0.483779 | + | 0.875190i | \(0.339264\pi\) | ||||
−0.483779 | + | 0.875190i | \(0.660736\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 7.00000 | 1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | −2.00000 | −0.280056 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 6.00000i | − 0.824163i | −0.911147 | − | 0.412082i | \(-0.864802\pi\) | ||||
0.911147 | − | 0.412082i | \(-0.135198\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | − 8.00000i | − 1.05963i | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −12.0000 | −1.56227 | −0.781133 | − | 0.624364i | \(-0.785358\pi\) | ||||
−0.781133 | + | 0.624364i | \(0.785358\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 14.0000 | 1.79252 | 0.896258 | − | 0.443533i | \(-0.146275\pi\) | ||||
0.896258 | + | 0.443533i | \(0.146275\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 12.0000i | 1.46603i | 0.680211 | + | 0.733017i | \(0.261888\pi\) | ||||
−0.680211 | + | 0.733017i | \(0.738112\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | −4.00000 | −0.481543 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 2.00000i | 0.234082i | 0.993127 | + | 0.117041i | \(0.0373409\pi\) | ||||
−0.993127 | + | 0.117041i | \(0.962659\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 8.00000 | 0.900070 | 0.450035 | − | 0.893011i | \(-0.351411\pi\) | ||||
0.450035 | + | 0.893011i | \(0.351411\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 1.00000 | 0.111111 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 4.00000i | − 0.439057i | −0.975606 | − | 0.219529i | \(-0.929548\pi\) | ||||
0.975606 | − | 0.219529i | \(-0.0704519\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 6.00000i | 0.643268i | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −2.00000 | −0.212000 | −0.106000 | − | 0.994366i | \(-0.533804\pi\) | ||||
−0.106000 | + | 0.994366i | \(0.533804\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 14.0000i | 1.42148i | 0.703452 | + | 0.710742i | \(0.251641\pi\) | ||||
−0.703452 | + | 0.710742i | \(0.748359\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | −4.00000 | −0.402015 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −14.0000 | −1.39305 | −0.696526 | − | 0.717532i | \(-0.745272\pi\) | ||||
−0.696526 | + | 0.717532i | \(0.745272\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 8.00000i | 0.788263i | 0.919054 | + | 0.394132i | \(0.128955\pi\) | ||||
−0.919054 | + | 0.394132i | \(0.871045\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 12.0000i | 1.16008i | 0.814587 | + | 0.580042i | \(0.196964\pi\) | ||||
−0.814587 | + | 0.580042i | \(0.803036\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −14.0000 | −1.34096 | −0.670478 | − | 0.741929i | \(-0.733911\pi\) | ||||
−0.670478 | + | 0.741929i | \(0.733911\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 2.00000 | 0.189832 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 6.00000i | 0.564433i | 0.959351 | + | 0.282216i | \(0.0910696\pi\) | ||||
−0.959351 | + | 0.282216i | \(0.908930\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | − 2.00000i | − 0.184900i | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 5.00000 | 0.454545 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | − 6.00000i | − 0.541002i | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 16.0000i | 1.41977i | 0.704317 | + | 0.709885i | \(0.251253\pi\) | ||||
−0.704317 | + | 0.709885i | \(0.748747\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | −4.00000 | −0.352180 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −20.0000 | −1.74741 | −0.873704 | − | 0.486458i | \(-0.838289\pi\) | ||||
−0.873704 | + | 0.486458i | \(0.838289\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 2.00000i | 0.170872i | 0.996344 | + | 0.0854358i | \(0.0272282\pi\) | ||||
−0.996344 | + | 0.0854358i | \(0.972772\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −16.0000 | −1.35710 | −0.678551 | − | 0.734553i | \(-0.737392\pi\) | ||||
−0.678551 | + | 0.734553i | \(0.737392\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | −12.0000 | −1.01058 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 8.00000i | 0.668994i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 7.00000i | 0.577350i | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 6.00000 | 0.491539 | 0.245770 | − | 0.969328i | \(-0.420959\pi\) | ||||
0.245770 | + | 0.969328i | \(0.420959\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 8.00000 | 0.651031 | 0.325515 | − | 0.945537i | \(-0.394462\pi\) | ||||
0.325515 | + | 0.945537i | \(0.394462\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | − 2.00000i | − 0.161690i | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 14.0000i | 1.11732i | 0.829396 | + | 0.558661i | \(0.188685\pi\) | ||||
−0.829396 | + | 0.558661i | \(0.811315\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 6.00000 | 0.475831 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 20.0000i | − 1.56652i | −0.621694 | − | 0.783260i | \(-0.713555\pi\) | ||||
0.621694 | − | 0.783260i | \(-0.286445\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 12.0000i | − 0.928588i | −0.885681 | − | 0.464294i | \(-0.846308\pi\) | ||||
0.885681 | − | 0.464294i | \(-0.153692\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 9.00000 | 0.692308 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 8.00000 | 0.611775 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 14.0000i | − 1.06440i | −0.846619 | − | 0.532200i | \(-0.821365\pi\) | ||||
0.846619 | − | 0.532200i | \(-0.178635\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | − 12.0000i | − 0.901975i | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −12.0000 | −0.896922 | −0.448461 | − | 0.893802i | \(-0.648028\pi\) | ||||
−0.448461 | + | 0.893802i | \(0.648028\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 22.0000 | 1.63525 | 0.817624 | − | 0.575753i | \(-0.195291\pi\) | ||||
0.817624 | + | 0.575753i | \(0.195291\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 14.0000i | 1.03491i | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 8.00000i | 0.585018i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 16.0000 | 1.15772 | 0.578860 | − | 0.815427i | \(-0.303498\pi\) | ||||
0.578860 | + | 0.815427i | \(0.303498\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 22.0000i | − 1.58359i | −0.610784 | − | 0.791797i | \(-0.709146\pi\) | ||||
0.610784 | − | 0.791797i | \(-0.290854\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 26.0000i | − 1.85242i | −0.377004 | − | 0.926212i | \(-0.623046\pi\) | ||||
0.377004 | − | 0.926212i | \(-0.376954\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −16.0000 | −1.13421 | −0.567105 | − | 0.823646i | \(-0.691937\pi\) | ||||
−0.567105 | + | 0.823646i | \(0.691937\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | −12.0000 | −0.846415 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | − 4.00000i | − 0.278019i | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −32.0000 | −2.21349 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −8.00000 | −0.550743 | −0.275371 | − | 0.961338i | \(-0.588801\pi\) | ||||
−0.275371 | + | 0.961338i | \(0.588801\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | −2.00000 | −0.135147 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −4.00000 | −0.269069 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 24.0000i | 1.60716i | 0.595198 | + | 0.803579i | \(0.297074\pi\) | ||||
−0.595198 | + | 0.803579i | \(0.702926\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 4.00000i | 0.265489i | 0.991150 | + | 0.132745i | \(0.0423790\pi\) | ||||
−0.991150 | + | 0.132745i | \(0.957621\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 18.0000 | 1.18947 | 0.594737 | − | 0.803921i | \(-0.297256\pi\) | ||||
0.594737 | + | 0.803921i | \(0.297256\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 6.00000i | 0.393073i | 0.980497 | + | 0.196537i | \(0.0629694\pi\) | ||||
−0.980497 | + | 0.196537i | \(0.937031\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 8.00000i | 0.519656i | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 8.00000 | 0.517477 | 0.258738 | − | 0.965947i | \(-0.416693\pi\) | ||||
0.258738 | + | 0.965947i | \(0.416693\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 2.00000 | 0.128831 | 0.0644157 | − | 0.997923i | \(-0.479482\pi\) | ||||
0.0644157 | + | 0.997923i | \(0.479482\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 1.00000i | 0.0641500i | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 16.0000i | − 1.01806i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 4.00000 | 0.253490 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 12.0000 | 0.757433 | 0.378717 | − | 0.925513i | \(-0.376365\pi\) | ||||
0.378717 | + | 0.925513i | \(0.376365\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 16.0000i | 1.00591i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − 6.00000i | − 0.374270i | −0.982334 | − | 0.187135i | \(-0.940080\pi\) | ||||
0.982334 | − | 0.187135i | \(-0.0599201\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | −6.00000 | −0.371391 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 20.0000i | 1.23325i | 0.787256 | + | 0.616626i | \(0.211501\pi\) | ||||
−0.787256 | + | 0.616626i | \(0.788499\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | − 2.00000i | − 0.122398i | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −10.0000 | −0.609711 | −0.304855 | − | 0.952399i | \(-0.598608\pi\) | ||||
−0.304855 | + | 0.952399i | \(0.598608\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 8.00000 | 0.485965 | 0.242983 | − | 0.970031i | \(-0.421874\pi\) | ||||
0.242983 | + | 0.970031i | \(0.421874\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 30.0000i | 1.80253i | 0.433273 | + | 0.901263i | \(0.357359\pi\) | ||||
−0.433273 | + | 0.901263i | \(0.642641\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 2.00000 | 0.119310 | 0.0596550 | − | 0.998219i | \(-0.481000\pi\) | ||||
0.0596550 | + | 0.998219i | \(0.481000\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 4.00000i | − 0.237775i | −0.992908 | − | 0.118888i | \(-0.962067\pi\) | ||||
0.992908 | − | 0.118888i | \(-0.0379328\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 13.0000 | 0.764706 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | −14.0000 | −0.820695 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 26.0000i | 1.51894i | 0.650545 | + | 0.759468i | \(0.274541\pi\) | ||||
−0.650545 | + | 0.759468i | \(0.725459\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | − 4.00000i | − 0.232104i | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −8.00000 | −0.462652 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | − 14.0000i | − 0.804279i | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 28.0000i | − 1.59804i | −0.601302 | − | 0.799022i | \(-0.705351\pi\) | ||||
0.601302 | − | 0.799022i | \(-0.294649\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | −8.00000 | −0.455104 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 14.0000i | − 0.791327i | −0.918396 | − | 0.395663i | \(-0.870515\pi\) | ||||
0.918396 | − | 0.395663i | \(-0.129485\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 18.0000i | − 1.01098i | −0.862832 | − | 0.505490i | \(-0.831312\pi\) | ||||
0.862832 | − | 0.505490i | \(-0.168688\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 24.0000 | 1.34374 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | −12.0000 | −0.669775 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 16.0000i | − 0.890264i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | − 14.0000i | − 0.774202i | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 2.00000i | 0.109599i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 22.0000i | 1.19842i | 0.800593 | + | 0.599208i | \(0.204518\pi\) | ||||
−0.800593 | + | 0.599208i | \(0.795482\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | −6.00000 | −0.325875 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 4.00000i | 0.214731i | 0.994220 | + | 0.107366i | \(0.0342415\pi\) | ||||
−0.994220 | + | 0.107366i | \(0.965758\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 2.00000 | 0.107058 | 0.0535288 | − | 0.998566i | \(-0.482953\pi\) | ||||
0.0535288 | + | 0.998566i | \(0.482953\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 2.00000 | 0.106752 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 14.0000i | 0.745145i | 0.928003 | + | 0.372572i | \(0.121524\pi\) | ||||
−0.928003 | + | 0.372572i | \(0.878476\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 16.0000 | 0.844448 | 0.422224 | − | 0.906492i | \(-0.361250\pi\) | ||||
0.422224 | + | 0.906492i | \(0.361250\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 45.0000 | 2.36842 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 5.00000i | 0.262432i | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 6.00000 | 0.312348 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 22.0000i | − 1.13912i | −0.821951 | − | 0.569558i | \(-0.807114\pi\) | ||||
0.821951 | − | 0.569558i | \(-0.192886\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 12.0000i | 0.618031i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 16.0000 | 0.821865 | 0.410932 | − | 0.911666i | \(-0.365203\pi\) | ||||
0.410932 | + | 0.911666i | \(0.365203\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | −16.0000 | −0.819705 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 20.0000i | − 1.02195i | −0.859595 | − | 0.510976i | \(-0.829284\pi\) | ||||
0.859595 | − | 0.510976i | \(-0.170716\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | − 4.00000i | − 0.203331i | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 6.00000 | 0.304212 | 0.152106 | − | 0.988364i | \(-0.451394\pi\) | ||||
0.152106 | + | 0.988364i | \(0.451394\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −8.00000 | −0.404577 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | − 20.0000i | − 1.00887i | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 6.00000i | 0.301131i | 0.988600 | + | 0.150566i | \(0.0481095\pi\) | ||||
−0.988600 | + | 0.150566i | \(0.951890\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 10.0000 | 0.499376 | 0.249688 | − | 0.968326i | \(-0.419672\pi\) | ||||
0.249688 | + | 0.968326i | \(0.419672\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | − 8.00000i | − 0.396545i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 22.0000 | 1.08783 | 0.543915 | − | 0.839140i | \(-0.316941\pi\) | ||||
0.543915 | + | 0.839140i | \(0.316941\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | −2.00000 | −0.0986527 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | − 16.0000i | − 0.783523i | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 12.0000 | 0.586238 | 0.293119 | − | 0.956076i | \(-0.405307\pi\) | ||||
0.293119 | + | 0.956076i | \(0.405307\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −2.00000 | −0.0974740 | −0.0487370 | − | 0.998812i | \(-0.515520\pi\) | ||||
−0.0487370 | + | 0.998812i | \(0.515520\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | − 12.0000i | − 0.583460i | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | −8.00000 | −0.386244 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −8.00000 | −0.385346 | −0.192673 | − | 0.981263i | \(-0.561716\pi\) | ||||
−0.192673 | + | 0.981263i | \(0.561716\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 26.0000i | 1.24948i | 0.780833 | + | 0.624740i | \(0.214795\pi\) | ||||
−0.780833 | + | 0.624740i | \(0.785205\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 32.0000i | − 1.53077i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 32.0000 | 1.52728 | 0.763638 | − | 0.645644i | \(-0.223411\pi\) | ||||
0.763638 | + | 0.645644i | \(0.223411\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | −7.00000 | −0.333333 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 28.0000i | − 1.33032i | −0.746701 | − | 0.665160i | \(-0.768363\pi\) | ||||
0.746701 | − | 0.665160i | \(-0.231637\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 6.00000i | 0.283790i | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −10.0000 | −0.471929 | −0.235965 | − | 0.971762i | \(-0.575825\pi\) | ||||
−0.235965 | + | 0.971762i | \(0.575825\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −24.0000 | −1.13012 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 8.00000i | 0.375873i | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 26.0000i | − 1.21623i | −0.793849 | − | 0.608114i | \(-0.791926\pi\) | ||||
0.793849 | − | 0.608114i | \(-0.208074\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 2.00000 | 0.0933520 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −14.0000 | −0.652045 | −0.326023 | − | 0.945362i | \(-0.605709\pi\) | ||||
−0.326023 | + | 0.945362i | \(0.605709\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 32.0000i | − 1.48717i | −0.668644 | − | 0.743583i | \(-0.733125\pi\) | ||||
0.668644 | − | 0.743583i | \(-0.266875\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 36.0000i | − 1.66588i | −0.553362 | − | 0.832941i | \(-0.686655\pi\) | ||||
0.553362 | − | 0.832941i | \(-0.313345\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | −14.0000 | −0.645086 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 16.0000i | 0.735681i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 6.00000i | 0.274721i | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 40.0000 | 1.82765 | 0.913823 | − | 0.406112i | \(-0.133116\pi\) | ||||
0.913823 | + | 0.406112i | \(0.133116\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 4.00000 | 0.182384 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 8.00000i | − 0.362515i | −0.983436 | − | 0.181257i | \(-0.941983\pi\) | ||||
0.983436 | − | 0.181257i | \(-0.0580167\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 20.0000 | 0.904431 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 12.0000 | 0.541552 | 0.270776 | − | 0.962642i | \(-0.412720\pi\) | ||||
0.270776 | + | 0.962642i | \(0.412720\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 12.0000i | 0.540453i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −8.00000 | −0.358129 | −0.179065 | − | 0.983837i | \(-0.557307\pi\) | ||||
−0.179065 | + | 0.983837i | \(0.557307\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 12.0000 | 0.536120 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − 4.00000i | − 0.178351i | −0.996016 | − | 0.0891756i | \(-0.971577\pi\) | ||||
0.996016 | − | 0.0891756i | \(-0.0284232\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 9.00000i | 0.399704i | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 38.0000 | 1.68432 | 0.842160 | − | 0.539227i | \(-0.181284\pi\) | ||||
0.842160 | + | 0.539227i | \(0.181284\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 8.00000i | 0.353209i | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 48.0000i | 2.11104i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 14.0000 | 0.614532 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −30.0000 | −1.31432 | −0.657162 | − | 0.753749i | \(-0.728243\pi\) | ||||
−0.657162 | + | 0.753749i | \(0.728243\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 4.00000i | − 0.174908i | −0.996169 | − | 0.0874539i | \(-0.972127\pi\) | ||||
0.996169 | − | 0.0874539i | \(-0.0278730\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 7.00000 | 0.304348 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 12.0000 | 0.520756 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 12.0000i | − 0.519778i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | − 12.0000i | − 0.517838i | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 28.0000 | 1.20605 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 30.0000 | 1.28980 | 0.644900 | − | 0.764267i | \(-0.276899\pi\) | ||||
0.644900 | + | 0.764267i | \(0.276899\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 22.0000i | 0.944110i | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 28.0000i | − 1.19719i | −0.801050 | − | 0.598597i | \(-0.795725\pi\) | ||||
0.801050 | − | 0.598597i | \(-0.204275\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | −14.0000 | −0.597505 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −48.0000 | −2.04487 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 18.0000i | − 0.762684i | −0.924434 | − | 0.381342i | \(-0.875462\pi\) | ||||
0.924434 | − | 0.381342i | \(-0.124538\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −8.00000 | −0.338364 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | −8.00000 | −0.337760 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 36.0000i | 1.51722i | 0.651546 | + | 0.758610i | \(0.274121\pi\) | ||||
−0.651546 | + | 0.758610i | \(0.725879\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −34.0000 | −1.42535 | −0.712677 | − | 0.701492i | \(-0.752517\pi\) | ||||
−0.712677 | + | 0.701492i | \(0.752517\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 32.0000 | 1.33916 | 0.669579 | − | 0.742741i | \(-0.266474\pi\) | ||||
0.669579 | + | 0.742741i | \(0.266474\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 16.0000i | 0.668410i | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 2.00000i | − 0.0832611i | −0.999133 | − | 0.0416305i | \(-0.986745\pi\) | ||||
0.999133 | − | 0.0416305i | \(-0.0132552\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 22.0000 | 0.914289 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | − 24.0000i | − 0.993978i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 36.0000i | − 1.48588i | −0.669359 | − | 0.742940i | \(-0.733431\pi\) | ||||
0.669359 | − | 0.742940i | \(-0.266569\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 26.0000 | 1.06950 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 42.0000i | − 1.72473i | −0.506284 | − | 0.862367i | \(-0.668981\pi\) | ||||
0.506284 | − | 0.862367i | \(-0.331019\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | − 16.0000i | − 0.654836i | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −16.0000 | −0.653742 | −0.326871 | − | 0.945069i | \(-0.605994\pi\) | ||||
−0.326871 | + | 0.945069i | \(0.605994\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 10.0000 | 0.407909 | 0.203954 | − | 0.978980i | \(-0.434621\pi\) | ||||
0.203954 | + | 0.978980i | \(0.434621\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | − 12.0000i | − 0.488678i | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − 8.00000i | − 0.324710i | −0.986732 | − | 0.162355i | \(-0.948091\pi\) | ||||
0.986732 | − | 0.162355i | \(-0.0519090\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −24.0000 | −0.970936 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 14.0000i | − 0.565455i | −0.959200 | − | 0.282727i | \(-0.908761\pi\) | ||||
0.959200 | − | 0.282727i | \(-0.0912392\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 42.0000i | 1.69086i | 0.534089 | + | 0.845428i | \(0.320655\pi\) | ||||
−0.534089 | + | 0.845428i | \(0.679345\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 16.0000 | 0.643094 | 0.321547 | − | 0.946894i | \(-0.395797\pi\) | ||||
0.321547 | + | 0.946894i | \(0.395797\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 4.00000 | 0.160514 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | − 32.0000i | − 1.27796i | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 4.00000 | 0.159490 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −32.0000 | −1.27390 | −0.636950 | − | 0.770905i | \(-0.719804\pi\) | ||||
−0.636950 | + | 0.770905i | \(0.719804\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | − 8.00000i | − 0.317971i | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 14.0000i | 0.554700i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 2.00000 | 0.0789953 | 0.0394976 | − | 0.999220i | \(-0.487424\pi\) | ||||
0.0394976 | + | 0.999220i | \(0.487424\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 12.0000i | 0.473234i | 0.971603 | + | 0.236617i | \(0.0760386\pi\) | ||||
−0.971603 | + | 0.236617i | \(0.923961\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 20.0000i | − 0.786281i | −0.919478 | − | 0.393141i | \(-0.871389\pi\) | ||||
0.919478 | − | 0.393141i | \(-0.128611\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −48.0000 | −1.88416 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 14.0000i | − 0.547862i | −0.961749 | − | 0.273931i | \(-0.911676\pi\) | ||||
0.961749 | − | 0.273931i | \(-0.0883240\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | − 2.00000i | − 0.0780274i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −20.0000 | −0.779089 | −0.389545 | − | 0.921008i | \(-0.627368\pi\) | ||||
−0.389545 | + | 0.921008i | \(0.627368\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −26.0000 | −1.01128 | −0.505641 | − | 0.862744i | \(-0.668744\pi\) | ||||
−0.505641 | + | 0.862744i | \(0.668744\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | − 4.00000i | − 0.155347i | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 24.0000i | 0.929284i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | −24.0000 | −0.927894 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 56.0000 | 2.16186 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 6.00000i | − 0.231283i | −0.993291 | − | 0.115642i | \(-0.963108\pi\) | ||||
0.993291 | − | 0.115642i | \(-0.0368924\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 6.00000i | 0.230599i | 0.993331 | + | 0.115299i | \(0.0367827\pi\) | ||||
−0.993331 | + | 0.115299i | \(0.963217\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | −4.00000 | −0.153280 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 12.0000i | 0.459167i | 0.973289 | + | 0.229584i | \(0.0737364\pi\) | ||||
−0.973289 | + | 0.229584i | \(0.926264\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 18.0000i | 0.686743i | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 12.0000 | 0.457164 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 16.0000 | 0.608669 | 0.304334 | − | 0.952565i | \(-0.401566\pi\) | ||||
0.304334 | + | 0.952565i | \(0.401566\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 12.0000i | − 0.454532i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | −6.00000 | −0.226941 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 10.0000 | 0.377695 | 0.188847 | − | 0.982006i | \(-0.439525\pi\) | ||||
0.188847 | + | 0.982006i | \(0.439525\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 16.0000i | 0.603451i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 2.00000 | 0.0751116 | 0.0375558 | − | 0.999295i | \(-0.488043\pi\) | ||||
0.0375558 | + | 0.999295i | \(0.488043\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | −8.00000 | −0.300023 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 8.00000i | 0.298765i | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −32.0000 | −1.19340 | −0.596699 | − | 0.802465i | \(-0.703521\pi\) | ||||
−0.596699 | + | 0.802465i | \(0.703521\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 2.00000i | 0.0743808i | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 40.0000i | − 1.48352i | −0.670667 | − | 0.741759i | \(-0.733992\pi\) | ||||
0.670667 | − | 0.741759i | \(-0.266008\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −1.00000 | −0.0370370 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −8.00000 | −0.295891 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 10.0000i | 0.369358i | 0.982799 | + | 0.184679i | \(0.0591246\pi\) | ||||
−0.982799 | + | 0.184679i | \(0.940875\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 48.0000i | 1.76810i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 8.00000 | 0.294285 | 0.147142 | − | 0.989115i | \(-0.452992\pi\) | ||||
0.147142 | + | 0.989115i | \(0.452992\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 16.0000 | 0.587775 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 36.0000i | − 1.32071i | −0.750953 | − | 0.660356i | \(-0.770405\pi\) | ||||
0.750953 | − | 0.660356i | \(-0.229595\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 4.00000i | 0.146352i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 32.0000 | 1.16770 | 0.583848 | − | 0.811863i | \(-0.301546\pi\) | ||||
0.583848 | + | 0.811863i | \(0.301546\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 12.0000i | 0.437304i | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 34.0000i | − 1.23575i | −0.786276 | − | 0.617876i | \(-0.787994\pi\) | ||||
0.786276 | − | 0.617876i | \(-0.212006\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | −16.0000 | −0.580763 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −30.0000 | −1.08750 | −0.543750 | − | 0.839248i | \(-0.682996\pi\) | ||||
−0.543750 | + | 0.839248i | \(0.682996\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | − 24.0000i | − 0.866590i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 14.0000 | 0.504853 | 0.252426 | − | 0.967616i | \(-0.418771\pi\) | ||||
0.252426 | + | 0.967616i | \(0.418771\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 6.00000 | 0.216085 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 10.0000i | 0.359675i | 0.983696 | + | 0.179838i | \(0.0575572\pi\) | ||||
−0.983696 | + | 0.179838i | \(0.942443\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 48.0000 | 1.71978 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | − 6.00000i | − 0.214423i | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 20.0000i | − 0.712923i | −0.934310 | − | 0.356462i | \(-0.883983\pi\) | ||||
0.934310 | − | 0.356462i | \(-0.116017\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | −20.0000 | −0.712019 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 28.0000i | 0.994309i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − 34.0000i | − 1.20434i | −0.798367 | − | 0.602171i | \(-0.794303\pi\) | ||||
0.798367 | − | 0.602171i | \(-0.205697\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −24.0000 | −0.849059 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 2.00000 | 0.0706665 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 8.00000i | 0.282314i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | − 10.0000i | − 0.352017i | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 22.0000 | 0.773479 | 0.386739 | − | 0.922189i | \(-0.373601\pi\) | ||||
0.386739 | + | 0.922189i | \(0.373601\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 24.0000 | 0.842754 | 0.421377 | − | 0.906886i | \(-0.361547\pi\) | ||||
0.421377 | + | 0.906886i | \(0.361547\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 8.00000i | 0.280572i | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 32.0000i | − 1.11954i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −30.0000 | −1.04701 | −0.523504 | − | 0.852023i | \(-0.675375\pi\) | ||||
−0.523504 | + | 0.852023i | \(0.675375\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 16.0000i | 0.557725i | 0.960331 | + | 0.278862i | \(0.0899574\pi\) | ||||
−0.960331 | + | 0.278862i | \(0.910043\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 36.0000i | 1.25184i | 0.779886 | + | 0.625921i | \(0.215277\pi\) | ||||
−0.779886 | + | 0.625921i | \(0.784723\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −30.0000 | −1.04194 | −0.520972 | − | 0.853574i | \(-0.674430\pi\) | ||||
−0.520972 | + | 0.853574i | \(0.674430\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | −30.0000 | −1.04069 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 14.0000i | 0.485071i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −48.0000 | −1.65714 | −0.828572 | − | 0.559883i | \(-0.810846\pi\) | ||||
−0.828572 | + | 0.559883i | \(0.810846\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 2.00000i | 0.0688837i | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 4.00000 | 0.137280 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 8.00000 | 0.274236 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 30.0000i | − 1.02718i | −0.858036 | − | 0.513590i | \(-0.828315\pi\) | ||||
0.858036 | − | 0.513590i | \(-0.171685\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 10.0000i | 0.341593i | 0.985306 | + | 0.170797i | \(0.0546341\pi\) | ||||
−0.985306 | + | 0.170797i | \(0.945366\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 32.0000 | 1.09183 | 0.545913 | − | 0.837842i | \(-0.316183\pi\) | ||||
0.545913 | + | 0.837842i | \(0.316183\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 4.00000i | 0.136162i | 0.997680 | + | 0.0680808i | \(0.0216876\pi\) | ||||
−0.997680 | + | 0.0680808i | \(0.978312\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 13.0000i | 0.441503i | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 32.0000 | 1.08553 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −24.0000 | −0.813209 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | − 14.0000i | − 0.473828i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 14.0000i | 0.472746i | 0.971662 | + | 0.236373i | \(0.0759588\pi\) | ||||
−0.971662 | + | 0.236373i | \(0.924041\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | −26.0000 | −0.876958 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −6.00000 | −0.202145 | −0.101073 | − | 0.994879i | \(-0.532227\pi\) | ||||
−0.101073 | + | 0.994879i | \(0.532227\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 44.0000i | 1.48072i | 0.672212 | + | 0.740359i | \(0.265344\pi\) | ||||
−0.672212 | + | 0.740359i | \(0.734656\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 20.0000i | 0.671534i | 0.941945 | + | 0.335767i | \(0.108996\pi\) | ||||
−0.941945 | + | 0.335767i | \(0.891004\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 4.00000 | 0.134005 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 96.0000i | − 3.21252i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | − 8.00000i | − 0.267112i | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 12.0000 | 0.399778 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 36.0000i | 1.19536i | 0.801735 | + | 0.597680i | \(0.203911\pi\) | ||||
−0.801735 | + | 0.597680i | \(0.796089\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 14.0000 | 0.464351 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −8.00000 | −0.265052 | −0.132526 | − | 0.991180i | \(-0.542309\pi\) | ||||
−0.132526 | + | 0.991180i | \(0.542309\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | − 16.0000i | − 0.529523i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 8.00000 | 0.263896 | 0.131948 | − | 0.991257i | \(-0.457877\pi\) | ||||
0.131948 | + | 0.991257i | \(0.457877\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 28.0000 | 0.922631 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | − 8.00000i | − 0.262754i | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −42.0000 | −1.37798 | −0.688988 | − | 0.724773i | \(-0.741945\pi\) | ||||
−0.688988 | + | 0.724773i | \(0.741945\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −56.0000 | −1.83533 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − 42.0000i | − 1.37208i | −0.727564 | − | 0.686040i | \(-0.759347\pi\) | ||||
0.727564 | − | 0.686040i | \(-0.240653\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 14.0000 | 0.456873 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 34.0000 | 1.10837 | 0.554184 | − | 0.832394i | \(-0.313030\pi\) | ||||
0.554184 | + | 0.832394i | \(0.313030\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | − 24.0000i | − 0.781548i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 4.00000i | 0.129983i | 0.997886 | + | 0.0649913i | \(0.0207020\pi\) | ||||
−0.997886 | + | 0.0649913i | \(0.979298\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −4.00000 | −0.129845 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 18.0000 | 0.583690 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 30.0000i | 0.971795i | 0.874016 | + | 0.485898i | \(0.161507\pi\) | ||||
−0.874016 | + | 0.485898i | \(0.838493\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 24.0000i | 0.775810i | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −31.0000 | −1.00000 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | − 12.0000i | − 0.386695i | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 32.0000i | 1.02905i | 0.857475 | + | 0.514525i | \(0.172032\pi\) | ||||
−0.857475 | + | 0.514525i | \(0.827968\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 16.0000 | 0.513994 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 28.0000 | 0.898563 | 0.449281 | − | 0.893390i | \(-0.351680\pi\) | ||||
0.449281 | + | 0.893390i | \(0.351680\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 18.0000i | 0.575871i | 0.957650 | + | 0.287936i | \(0.0929689\pi\) | ||||
−0.957650 | + | 0.287936i | \(0.907031\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −8.00000 | −0.255681 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 14.0000 | 0.446986 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 4.00000i | − 0.127580i | −0.997963 | − | 0.0637901i | \(-0.979681\pi\) | ||||
0.997963 | − | 0.0637901i | \(-0.0203188\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −16.0000 | −0.508770 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 40.0000 | 1.27064 | 0.635321 | − | 0.772248i | \(-0.280868\pi\) | ||||
0.635321 | + | 0.772248i | \(0.280868\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 6.00000i | 0.190022i | 0.995476 | + | 0.0950110i | \(0.0302886\pi\) | ||||
−0.995476 | + | 0.0950110i | \(0.969711\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | −2.00000 | −0.0632772 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 2400.2.f.n.1249.2 | 2 | ||
3.2 | odd | 2 | 7200.2.f.b.6049.2 | 2 | |||
4.3 | odd | 2 | 2400.2.f.e.1249.1 | 2 | |||
5.2 | odd | 4 | 480.2.a.e.1.1 | yes | 1 | ||
5.3 | odd | 4 | 2400.2.a.j.1.1 | 1 | |||
5.4 | even | 2 | inner | 2400.2.f.n.1249.1 | 2 | ||
8.3 | odd | 2 | 4800.2.f.ba.3649.2 | 2 | |||
8.5 | even | 2 | 4800.2.f.j.3649.1 | 2 | |||
12.11 | even | 2 | 7200.2.f.bb.6049.2 | 2 | |||
15.2 | even | 4 | 1440.2.a.j.1.1 | 1 | |||
15.8 | even | 4 | 7200.2.a.u.1.1 | 1 | |||
15.14 | odd | 2 | 7200.2.f.b.6049.1 | 2 | |||
20.3 | even | 4 | 2400.2.a.y.1.1 | 1 | |||
20.7 | even | 4 | 480.2.a.b.1.1 | ✓ | 1 | ||
20.19 | odd | 2 | 2400.2.f.e.1249.2 | 2 | |||
40.3 | even | 4 | 4800.2.a.u.1.1 | 1 | |||
40.13 | odd | 4 | 4800.2.a.ca.1.1 | 1 | |||
40.19 | odd | 2 | 4800.2.f.ba.3649.1 | 2 | |||
40.27 | even | 4 | 960.2.a.o.1.1 | 1 | |||
40.29 | even | 2 | 4800.2.f.j.3649.2 | 2 | |||
40.37 | odd | 4 | 960.2.a.f.1.1 | 1 | |||
60.23 | odd | 4 | 7200.2.a.bg.1.1 | 1 | |||
60.47 | odd | 4 | 1440.2.a.k.1.1 | 1 | |||
60.59 | even | 2 | 7200.2.f.bb.6049.1 | 2 | |||
80.27 | even | 4 | 3840.2.k.p.1921.2 | 2 | |||
80.37 | odd | 4 | 3840.2.k.k.1921.1 | 2 | |||
80.67 | even | 4 | 3840.2.k.p.1921.1 | 2 | |||
80.77 | odd | 4 | 3840.2.k.k.1921.2 | 2 | |||
120.77 | even | 4 | 2880.2.a.j.1.1 | 1 | |||
120.107 | odd | 4 | 2880.2.a.i.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
480.2.a.b.1.1 | ✓ | 1 | 20.7 | even | 4 | ||
480.2.a.e.1.1 | yes | 1 | 5.2 | odd | 4 | ||
960.2.a.f.1.1 | 1 | 40.37 | odd | 4 | |||
960.2.a.o.1.1 | 1 | 40.27 | even | 4 | |||
1440.2.a.j.1.1 | 1 | 15.2 | even | 4 | |||
1440.2.a.k.1.1 | 1 | 60.47 | odd | 4 | |||
2400.2.a.j.1.1 | 1 | 5.3 | odd | 4 | |||
2400.2.a.y.1.1 | 1 | 20.3 | even | 4 | |||
2400.2.f.e.1249.1 | 2 | 4.3 | odd | 2 | |||
2400.2.f.e.1249.2 | 2 | 20.19 | odd | 2 | |||
2400.2.f.n.1249.1 | 2 | 5.4 | even | 2 | inner | ||
2400.2.f.n.1249.2 | 2 | 1.1 | even | 1 | trivial | ||
2880.2.a.i.1.1 | 1 | 120.107 | odd | 4 | |||
2880.2.a.j.1.1 | 1 | 120.77 | even | 4 | |||
3840.2.k.k.1921.1 | 2 | 80.37 | odd | 4 | |||
3840.2.k.k.1921.2 | 2 | 80.77 | odd | 4 | |||
3840.2.k.p.1921.1 | 2 | 80.67 | even | 4 | |||
3840.2.k.p.1921.2 | 2 | 80.27 | even | 4 | |||
4800.2.a.u.1.1 | 1 | 40.3 | even | 4 | |||
4800.2.a.ca.1.1 | 1 | 40.13 | odd | 4 | |||
4800.2.f.j.3649.1 | 2 | 8.5 | even | 2 | |||
4800.2.f.j.3649.2 | 2 | 40.29 | even | 2 | |||
4800.2.f.ba.3649.1 | 2 | 40.19 | odd | 2 | |||
4800.2.f.ba.3649.2 | 2 | 8.3 | odd | 2 | |||
7200.2.a.u.1.1 | 1 | 15.8 | even | 4 | |||
7200.2.a.bg.1.1 | 1 | 60.23 | odd | 4 | |||
7200.2.f.b.6049.1 | 2 | 15.14 | odd | 2 | |||
7200.2.f.b.6049.2 | 2 | 3.2 | odd | 2 | |||
7200.2.f.bb.6049.1 | 2 | 60.59 | even | 2 | |||
7200.2.f.bb.6049.2 | 2 | 12.11 | even | 2 |