Properties

Label 20-252e10-1.1-c7e10-0-0
Degree 2020
Conductor 1.033×10241.033\times 10^{24}
Sign 11
Analytic cond. 9.13918×10189.13918\times 10^{18}
Root an. cond. 8.872488.87248
Motivic weight 77
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 249·5-s + 332·7-s − 6.39e3·11-s − 2.69e4·13-s − 3.60e3·17-s − 1.24e4·19-s + 1.39e4·23-s + 1.45e5·25-s − 2.61e4·29-s − 2.01e4·31-s − 8.26e4·35-s − 5.47e4·37-s + 1.82e6·41-s − 1.93e6·43-s − 1.21e6·47-s + 9.16e5·49-s + 2.34e6·53-s + 1.59e6·55-s − 2.18e6·59-s + 6.10e6·61-s + 6.72e6·65-s − 3.17e6·67-s + 1.89e7·71-s + 8.03e6·73-s − 2.12e6·77-s − 7.58e6·79-s + 1.34e7·83-s + ⋯
L(s)  = 1  − 0.890·5-s + 0.365·7-s − 1.44·11-s − 3.40·13-s − 0.178·17-s − 0.414·19-s + 0.239·23-s + 1.85·25-s − 0.199·29-s − 0.121·31-s − 0.325·35-s − 0.177·37-s + 4.13·41-s − 3.71·43-s − 1.71·47-s + 1.11·49-s + 2.16·53-s + 1.29·55-s − 1.38·59-s + 3.44·61-s + 3.03·65-s − 1.28·67-s + 6.27·71-s + 2.41·73-s − 0.530·77-s − 1.73·79-s + 2.58·83-s + ⋯

Functional equation

Λ(s)=((220320710)s/2ΓC(s)10L(s)=(Λ(8s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{20} \cdot 7^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(8-s)\end{aligned}
Λ(s)=((220320710)s/2ΓC(s+7/2)10L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{20} \cdot 7^{10}\right)^{s/2} \, \Gamma_{\C}(s+7/2)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 2020
Conductor: 2203207102^{20} \cdot 3^{20} \cdot 7^{10}
Sign: 11
Analytic conductor: 9.13918×10189.13918\times 10^{18}
Root analytic conductor: 8.872488.87248
Motivic weight: 77
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (20, 220320710, ( :[7/2]10), 1)(20,\ 2^{20} \cdot 3^{20} \cdot 7^{10} ,\ ( \ : [7/2]^{10} ),\ 1 )

Particular Values

L(4)L(4) \approx 0.51443835890.5144383589
L(12)L(\frac12) \approx 0.51443835890.5144383589
L(92)L(\frac{9}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
7 1332T115131pT225640080p2T3+322933946p4T4+9231846072p6T5+322933946p11T625640080p16T7115131p22T8332p28T9+p35T10 1 - 332 T - 115131 p T^{2} - 25640080 p^{2} T^{3} + 322933946 p^{4} T^{4} + 9231846072 p^{6} T^{5} + 322933946 p^{11} T^{6} - 25640080 p^{16} T^{7} - 115131 p^{22} T^{8} - 332 p^{28} T^{9} + p^{35} T^{10}
good5 1+249T16626pT249730361T3+190808126T4+1133656209723pT5+33364965040648p2T6657852531991821p4T7230422324288807511p4T8+4577239882017042054p5T9+ 1 + 249 T - 16626 p T^{2} - 49730361 T^{3} + 190808126 T^{4} + 1133656209723 p T^{5} + 33364965040648 p^{2} T^{6} - 657852531991821 p^{4} T^{7} - 230422324288807511 p^{4} T^{8} + 4577239882017042054 p^{5} T^{9} + 10 ⁣ ⁣7610\!\cdots\!76p6T10+4577239882017042054p12T11230422324288807511p18T12657852531991821p25T13+33364965040648p30T14+1133656209723p36T15+190808126p42T1649730361p49T1716626p57T18+249p63T19+p70T20 p^{6} T^{10} + 4577239882017042054 p^{12} T^{11} - 230422324288807511 p^{18} T^{12} - 657852531991821 p^{25} T^{13} + 33364965040648 p^{30} T^{14} + 1133656209723 p^{36} T^{15} + 190808126 p^{42} T^{16} - 49730361 p^{49} T^{17} - 16626 p^{57} T^{18} + 249 p^{63} T^{19} + p^{70} T^{20}
11 1+6399T13307172T2+55730744559T3+1247580499001366T4890998410934715067T5+ 1 + 6399 T - 13307172 T^{2} + 55730744559 T^{3} + 1247580499001366 T^{4} - 890998410934715067 T^{5} + 33 ⁣ ⁣0633\!\cdots\!06T6+ T^{6} + 15 ⁣ ⁣8315\!\cdots\!83T7 T^{7} - 59 ⁣ ⁣7159\!\cdots\!71T8+ T^{8} + 13 ⁣ ⁣3413\!\cdots\!34T9+ T^{9} + 16 ⁣ ⁣2016\!\cdots\!20T10+ T^{10} + 13 ⁣ ⁣3413\!\cdots\!34p7T11 p^{7} T^{11} - 59 ⁣ ⁣7159\!\cdots\!71p14T12+ p^{14} T^{12} + 15 ⁣ ⁣8315\!\cdots\!83p21T13+ p^{21} T^{13} + 33 ⁣ ⁣0633\!\cdots\!06p28T14890998410934715067p35T15+1247580499001366p42T16+55730744559p49T1713307172p56T18+6399p63T19+p70T20 p^{28} T^{14} - 890998410934715067 p^{35} T^{15} + 1247580499001366 p^{42} T^{16} + 55730744559 p^{49} T^{17} - 13307172 p^{56} T^{18} + 6399 p^{63} T^{19} + p^{70} T^{20}
13 (1+1038pT+202348049T2+1059028727368T3+7960429460406130T4+12503167614967234724T5+7960429460406130p7T6+1059028727368p14T7+202348049p21T8+1038p29T9+p35T10)2 ( 1 + 1038 p T + 202348049 T^{2} + 1059028727368 T^{3} + 7960429460406130 T^{4} + 12503167614967234724 T^{5} + 7960429460406130 p^{7} T^{6} + 1059028727368 p^{14} T^{7} + 202348049 p^{21} T^{8} + 1038 p^{29} T^{9} + p^{35} T^{10} )^{2}
17 1+3609T926734062T2+2555731451547T3+376173169852081838T4 1 + 3609 T - 926734062 T^{2} + 2555731451547 T^{3} + 376173169852081838 T^{4} - 48 ⁣ ⁣2948\!\cdots\!29T5 T^{5} - 54 ⁣ ⁣2854\!\cdots\!28T6+ T^{6} + 23 ⁣ ⁣9923\!\cdots\!99pT7 p T^{7} - 18 ⁣ ⁣0718\!\cdots\!07pT8 p T^{8} - 30 ⁣ ⁣5030\!\cdots\!50p2T9+ p^{2} T^{9} + 26 ⁣ ⁣4026\!\cdots\!40p2T10 p^{2} T^{10} - 30 ⁣ ⁣5030\!\cdots\!50p9T11 p^{9} T^{11} - 18 ⁣ ⁣0718\!\cdots\!07p15T12+ p^{15} T^{12} + 23 ⁣ ⁣9923\!\cdots\!99p22T13 p^{22} T^{13} - 54 ⁣ ⁣2854\!\cdots\!28p28T14 p^{28} T^{14} - 48 ⁣ ⁣2948\!\cdots\!29p35T15+376173169852081838p42T16+2555731451547p49T17926734062p56T18+3609p63T19+p70T20 p^{35} T^{15} + 376173169852081838 p^{42} T^{16} + 2555731451547 p^{49} T^{17} - 926734062 p^{56} T^{18} + 3609 p^{63} T^{19} + p^{70} T^{20}
19 1+12403T2498224436T2112222121717301T3+3102457412032148838T4+ 1 + 12403 T - 2498224436 T^{2} - 112222121717301 T^{3} + 3102457412032148838 T^{4} + 22 ⁣ ⁣4122\!\cdots\!41T5+ T^{5} + 12 ⁣ ⁣2612\!\cdots\!26T6 T^{6} - 26 ⁣ ⁣7726\!\cdots\!77T7 T^{7} - 64 ⁣ ⁣3564\!\cdots\!35T8+ T^{8} + 10 ⁣ ⁣5410\!\cdots\!54T9+ T^{9} + 89 ⁣ ⁣4889\!\cdots\!48T10+ T^{10} + 10 ⁣ ⁣5410\!\cdots\!54p7T11 p^{7} T^{11} - 64 ⁣ ⁣3564\!\cdots\!35p14T12 p^{14} T^{12} - 26 ⁣ ⁣7726\!\cdots\!77p21T13+ p^{21} T^{13} + 12 ⁣ ⁣2612\!\cdots\!26p28T14+ p^{28} T^{14} + 22 ⁣ ⁣4122\!\cdots\!41p35T15+3102457412032148838p42T16112222121717301p49T172498224436p56T18+12403p63T19+p70T20 p^{35} T^{15} + 3102457412032148838 p^{42} T^{16} - 112222121717301 p^{49} T^{17} - 2498224436 p^{56} T^{18} + 12403 p^{63} T^{19} + p^{70} T^{20}
23 113959T12391634256T2+245727261846837T3+80001205241355075518T4 1 - 13959 T - 12391634256 T^{2} + 245727261846837 T^{3} + 80001205241355075518 T^{4} - 15 ⁣ ⁣6115\!\cdots\!61T5 T^{5} - 40 ⁣ ⁣7440\!\cdots\!74T6+ T^{6} + 40 ⁣ ⁣3340\!\cdots\!33T7+ T^{7} + 18 ⁣ ⁣2118\!\cdots\!21T8 T^{8} - 34 ⁣ ⁣7034\!\cdots\!70T9 T^{9} - 68 ⁣ ⁣6068\!\cdots\!60T10 T^{10} - 34 ⁣ ⁣7034\!\cdots\!70p7T11+ p^{7} T^{11} + 18 ⁣ ⁣2118\!\cdots\!21p14T12+ p^{14} T^{12} + 40 ⁣ ⁣3340\!\cdots\!33p21T13 p^{21} T^{13} - 40 ⁣ ⁣7440\!\cdots\!74p28T14 p^{28} T^{14} - 15 ⁣ ⁣6115\!\cdots\!61p35T15+80001205241355075518p42T16+245727261846837p49T1712391634256p56T1813959p63T19+p70T20 p^{35} T^{15} + 80001205241355075518 p^{42} T^{16} + 245727261846837 p^{49} T^{17} - 12391634256 p^{56} T^{18} - 13959 p^{63} T^{19} + p^{70} T^{20}
29 (1+13074T+42688257921T21103263471513320T3+ ( 1 + 13074 T + 42688257921 T^{2} - 1103263471513320 T^{3} + 11 ⁣ ⁣4611\!\cdots\!46T4 T^{4} - 16 ⁣ ⁣3216\!\cdots\!32T5+ T^{5} + 11 ⁣ ⁣4611\!\cdots\!46p7T61103263471513320p14T7+42688257921p21T8+13074p28T9+p35T10)2 p^{7} T^{6} - 1103263471513320 p^{14} T^{7} + 42688257921 p^{21} T^{8} + 13074 p^{28} T^{9} + p^{35} T^{10} )^{2}
31 1+21p2T67660440296T2+3909805548824945T3+ 1 + 21 p^{2} T - 67660440296 T^{2} + 3909805548824945 T^{3} + 17 ⁣ ⁣2217\!\cdots\!22T4 T^{4} - 22 ⁣ ⁣1722\!\cdots\!17T5 T^{5} - 36 ⁣ ⁣4236\!\cdots\!42T6 T^{6} - 27 ⁣ ⁣7927\!\cdots\!79T7+ T^{7} + 16 ⁣ ⁣6116\!\cdots\!61T8+ T^{8} + 85 ⁣ ⁣5885\!\cdots\!58T9 T^{9} - 61 ⁣ ⁣9261\!\cdots\!92T10+ T^{10} + 85 ⁣ ⁣5885\!\cdots\!58p7T11+ p^{7} T^{11} + 16 ⁣ ⁣6116\!\cdots\!61p14T12 p^{14} T^{12} - 27 ⁣ ⁣7927\!\cdots\!79p21T13 p^{21} T^{13} - 36 ⁣ ⁣4236\!\cdots\!42p28T14 p^{28} T^{14} - 22 ⁣ ⁣1722\!\cdots\!17p35T15+ p^{35} T^{15} + 17 ⁣ ⁣2217\!\cdots\!22p42T16+3909805548824945p49T1767660440296p56T18+21p65T19+p70T20 p^{42} T^{16} + 3909805548824945 p^{49} T^{17} - 67660440296 p^{56} T^{18} + 21 p^{65} T^{19} + p^{70} T^{20}
37 1+54763T425909379842T216912552532175195T3+ 1 + 54763 T - 425909379842 T^{2} - 16912552532175195 T^{3} + 10 ⁣ ⁣1410\!\cdots\!14T4+ T^{4} + 30 ⁣ ⁣5730\!\cdots\!57T5 T^{5} - 18 ⁣ ⁣6818\!\cdots\!68T6 T^{6} - 28 ⁣ ⁣5528\!\cdots\!55T7+ T^{7} + 24 ⁣ ⁣7724\!\cdots\!77T8+ T^{8} + 11 ⁣ ⁣8611\!\cdots\!86T9 T^{9} - 26 ⁣ ⁣2826\!\cdots\!28T10+ T^{10} + 11 ⁣ ⁣8611\!\cdots\!86p7T11+ p^{7} T^{11} + 24 ⁣ ⁣7724\!\cdots\!77p14T12 p^{14} T^{12} - 28 ⁣ ⁣5528\!\cdots\!55p21T13 p^{21} T^{13} - 18 ⁣ ⁣6818\!\cdots\!68p28T14+ p^{28} T^{14} + 30 ⁣ ⁣5730\!\cdots\!57p35T15+ p^{35} T^{15} + 10 ⁣ ⁣1410\!\cdots\!14p42T1616912552532175195p49T17425909379842p56T18+54763p63T19+p70T20 p^{42} T^{16} - 16912552532175195 p^{49} T^{17} - 425909379842 p^{56} T^{18} + 54763 p^{63} T^{19} + p^{70} T^{20}
41 (1912234T+910157539669T2532613636859636312T3+ ( 1 - 912234 T + 910157539669 T^{2} - 532613636859636312 T^{3} + 33 ⁣ ⁣8633\!\cdots\!86T4 T^{4} - 14 ⁣ ⁣5214\!\cdots\!52T5+ T^{5} + 33 ⁣ ⁣8633\!\cdots\!86p7T6532613636859636312p14T7+910157539669p21T8912234p28T9+p35T10)2 p^{7} T^{6} - 532613636859636312 p^{14} T^{7} + 910157539669 p^{21} T^{8} - 912234 p^{28} T^{9} + p^{35} T^{10} )^{2}
43 (1+969212T+854486868687T2+418889562162638160T3+ ( 1 + 969212 T + 854486868687 T^{2} + 418889562162638160 T^{3} + 28 ⁣ ⁣5828\!\cdots\!58T4+ T^{4} + 13 ⁣ ⁣7613\!\cdots\!76T5+ T^{5} + 28 ⁣ ⁣5828\!\cdots\!58p7T6+418889562162638160p14T7+854486868687p21T8+969212p28T9+p35T10)2 p^{7} T^{6} + 418889562162638160 p^{14} T^{7} + 854486868687 p^{21} T^{8} + 969212 p^{28} T^{9} + p^{35} T^{10} )^{2}
47 1+25899pT1374240694168T21394356400990587503T3+ 1 + 25899 p T - 1374240694168 T^{2} - 1394356400990587503 T^{3} + 21 ⁣ ⁣3421\!\cdots\!34T4+ T^{4} + 13 ⁣ ⁣3113\!\cdots\!31T5 T^{5} - 19 ⁣ ⁣3819\!\cdots\!38T6 T^{6} - 60 ⁣ ⁣0760\!\cdots\!07T7+ T^{7} + 15 ⁣ ⁣4915\!\cdots\!49T8+ T^{8} + 17 ⁣ ⁣9817\!\cdots\!98T9 T^{9} - 82 ⁣ ⁣0482\!\cdots\!04T10+ T^{10} + 17 ⁣ ⁣9817\!\cdots\!98p7T11+ p^{7} T^{11} + 15 ⁣ ⁣4915\!\cdots\!49p14T12 p^{14} T^{12} - 60 ⁣ ⁣0760\!\cdots\!07p21T13 p^{21} T^{13} - 19 ⁣ ⁣3819\!\cdots\!38p28T14+ p^{28} T^{14} + 13 ⁣ ⁣3113\!\cdots\!31p35T15+ p^{35} T^{15} + 21 ⁣ ⁣3421\!\cdots\!34p42T161394356400990587503p49T171374240694168p56T18+25899p64T19+p70T20 p^{42} T^{16} - 1394356400990587503 p^{49} T^{17} - 1374240694168 p^{56} T^{18} + 25899 p^{64} T^{19} + p^{70} T^{20}
53 12349159T+250300976054T2+3942955978706042487T3 1 - 2349159 T + 250300976054 T^{2} + 3942955978706042487 T^{3} - 23 ⁣ ⁣4223\!\cdots\!42T4 T^{4} - 43 ⁣ ⁣0143\!\cdots\!01T5+ T^{5} + 47 ⁣ ⁣9647\!\cdots\!96T6+ T^{6} + 35 ⁣ ⁣6335\!\cdots\!63T7 T^{7} - 75 ⁣ ⁣7975\!\cdots\!79T8 T^{8} - 95 ⁣ ⁣5095\!\cdots\!50T9+ T^{9} + 70 ⁣ ⁣6070\!\cdots\!60T10 T^{10} - 95 ⁣ ⁣5095\!\cdots\!50p7T11 p^{7} T^{11} - 75 ⁣ ⁣7975\!\cdots\!79p14T12+ p^{14} T^{12} + 35 ⁣ ⁣6335\!\cdots\!63p21T13+ p^{21} T^{13} + 47 ⁣ ⁣9647\!\cdots\!96p28T14 p^{28} T^{14} - 43 ⁣ ⁣0143\!\cdots\!01p35T15 p^{35} T^{15} - 23 ⁣ ⁣4223\!\cdots\!42p42T16+3942955978706042487p49T17+250300976054p56T182349159p63T19+p70T20 p^{42} T^{16} + 3942955978706042487 p^{49} T^{17} + 250300976054 p^{56} T^{18} - 2349159 p^{63} T^{19} + p^{70} T^{20}
59 1+2188611T4824209251620T23799527654253362309T3+ 1 + 2188611 T - 4824209251620 T^{2} - 3799527654253362309 T^{3} + 30 ⁣ ⁣1030\!\cdots\!10T4+ T^{4} + 13 ⁣ ⁣2513\!\cdots\!25T5 T^{5} - 80 ⁣ ⁣9080\!\cdots\!90T6+ T^{6} + 46 ⁣ ⁣7546\!\cdots\!75T7+ T^{7} + 14 ⁣ ⁣7314\!\cdots\!73T8 T^{8} - 12 ⁣ ⁣5412\!\cdots\!54pT9 p T^{9} - 23 ⁣ ⁣1223\!\cdots\!12T10 T^{10} - 12 ⁣ ⁣5412\!\cdots\!54p8T11+ p^{8} T^{11} + 14 ⁣ ⁣7314\!\cdots\!73p14T12+ p^{14} T^{12} + 46 ⁣ ⁣7546\!\cdots\!75p21T13 p^{21} T^{13} - 80 ⁣ ⁣9080\!\cdots\!90p28T14+ p^{28} T^{14} + 13 ⁣ ⁣2513\!\cdots\!25p35T15+ p^{35} T^{15} + 30 ⁣ ⁣1030\!\cdots\!10p42T163799527654253362309p49T174824209251620p56T18+2188611p63T19+p70T20 p^{42} T^{16} - 3799527654253362309 p^{49} T^{17} - 4824209251620 p^{56} T^{18} + 2188611 p^{63} T^{19} + p^{70} T^{20}
61 16107445T+10874833097974T25276441610538080739T3+ 1 - 6107445 T + 10874833097974 T^{2} - 5276441610538080739 T^{3} + 31 ⁣ ⁣0631\!\cdots\!06T4 T^{4} - 10 ⁣ ⁣9510\!\cdots\!95T5+ T^{5} + 33 ⁣ ⁣0433\!\cdots\!04T6+ T^{6} + 57 ⁣ ⁣8157\!\cdots\!81T7+ T^{7} + 51 ⁣ ⁣7351\!\cdots\!73T8 T^{8} - 24 ⁣ ⁣3824\!\cdots\!38T9 T^{9} - 14 ⁣ ⁣8414\!\cdots\!84T10 T^{10} - 24 ⁣ ⁣3824\!\cdots\!38p7T11+ p^{7} T^{11} + 51 ⁣ ⁣7351\!\cdots\!73p14T12+ p^{14} T^{12} + 57 ⁣ ⁣8157\!\cdots\!81p21T13+ p^{21} T^{13} + 33 ⁣ ⁣0433\!\cdots\!04p28T14 p^{28} T^{14} - 10 ⁣ ⁣9510\!\cdots\!95p35T15+ p^{35} T^{15} + 31 ⁣ ⁣0631\!\cdots\!06p42T165276441610538080739p49T17+10874833097974p56T186107445p63T19+p70T20 p^{42} T^{16} - 5276441610538080739 p^{49} T^{17} + 10874833097974 p^{56} T^{18} - 6107445 p^{63} T^{19} + p^{70} T^{20}
67 1+3171581T9842922058220T271834120796309454835T3 1 + 3171581 T - 9842922058220 T^{2} - 71834120796309454835 T^{3} - 29 ⁣ ⁣8229\!\cdots\!82T4+ T^{4} + 56 ⁣ ⁣7956\!\cdots\!79T5+ T^{5} + 16 ⁣ ⁣9416\!\cdots\!94pT6 p T^{6} - 17 ⁣ ⁣1517\!\cdots\!15T7 T^{7} - 77 ⁣ ⁣1177\!\cdots\!11T8+ T^{8} + 17 ⁣ ⁣6217\!\cdots\!62T9+ T^{9} + 37 ⁣ ⁣4037\!\cdots\!40T10+ T^{10} + 17 ⁣ ⁣6217\!\cdots\!62p7T11 p^{7} T^{11} - 77 ⁣ ⁣1177\!\cdots\!11p14T12 p^{14} T^{12} - 17 ⁣ ⁣1517\!\cdots\!15p21T13+ p^{21} T^{13} + 16 ⁣ ⁣9416\!\cdots\!94p29T14+ p^{29} T^{14} + 56 ⁣ ⁣7956\!\cdots\!79p35T15 p^{35} T^{15} - 29 ⁣ ⁣8229\!\cdots\!82p42T1671834120796309454835p49T179842922058220p56T18+3171581p63T19+p70T20 p^{42} T^{16} - 71834120796309454835 p^{49} T^{17} - 9842922058220 p^{56} T^{18} + 3171581 p^{63} T^{19} + p^{70} T^{20}
71 (19469488T+50648806838355T2 ( 1 - 9469488 T + 50648806838355 T^{2} - 19 ⁣ ⁣8819\!\cdots\!88T3+ T^{3} + 58 ⁣ ⁣9458\!\cdots\!94T4 T^{4} - 17 ⁣ ⁣4017\!\cdots\!40T5+ T^{5} + 58 ⁣ ⁣9458\!\cdots\!94p7T6 p^{7} T^{6} - 19 ⁣ ⁣8819\!\cdots\!88p14T7+50648806838355p21T89469488p28T9+p35T10)2 p^{14} T^{7} + 50648806838355 p^{21} T^{8} - 9469488 p^{28} T^{9} + p^{35} T^{10} )^{2}
73 18034853T4416730301198T2+83379410929933457689T3+ 1 - 8034853 T - 4416730301198 T^{2} + 83379410929933457689 T^{3} + 64 ⁣ ⁣4664\!\cdots\!46T4 T^{4} - 20 ⁣ ⁣1120\!\cdots\!11T5 T^{5} - 11 ⁣ ⁣5611\!\cdots\!56T6+ T^{6} + 18 ⁣ ⁣1318\!\cdots\!13T7+ T^{7} + 16 ⁣ ⁣8116\!\cdots\!81T8 T^{8} - 14 ⁣ ⁣5414\!\cdots\!54T9 T^{9} - 22 ⁣ ⁣8422\!\cdots\!84T10 T^{10} - 14 ⁣ ⁣5414\!\cdots\!54p7T11+ p^{7} T^{11} + 16 ⁣ ⁣8116\!\cdots\!81p14T12+ p^{14} T^{12} + 18 ⁣ ⁣1318\!\cdots\!13p21T13 p^{21} T^{13} - 11 ⁣ ⁣5611\!\cdots\!56p28T14 p^{28} T^{14} - 20 ⁣ ⁣1120\!\cdots\!11p35T15+ p^{35} T^{15} + 64 ⁣ ⁣4664\!\cdots\!46p42T16+83379410929933457689p49T174416730301198p56T188034853p63T19+p70T20 p^{42} T^{16} + 83379410929933457689 p^{49} T^{17} - 4416730301198 p^{56} T^{18} - 8034853 p^{63} T^{19} + p^{70} T^{20}
79 1+7589559T43616309164472T2 1 + 7589559 T - 43616309164472 T^{2} - 32 ⁣ ⁣5732\!\cdots\!57T3+ T^{3} + 20 ⁣ ⁣0220\!\cdots\!02T4+ T^{4} + 10 ⁣ ⁣6910\!\cdots\!69T5 T^{5} - 67 ⁣ ⁣8667\!\cdots\!86T6 T^{6} - 16 ⁣ ⁣2116\!\cdots\!21T7+ T^{7} + 20 ⁣ ⁣7720\!\cdots\!77T8+ T^{8} + 15 ⁣ ⁣0215\!\cdots\!02T9 T^{9} - 41 ⁣ ⁣9641\!\cdots\!96T10+ T^{10} + 15 ⁣ ⁣0215\!\cdots\!02p7T11+ p^{7} T^{11} + 20 ⁣ ⁣7720\!\cdots\!77p14T12 p^{14} T^{12} - 16 ⁣ ⁣2116\!\cdots\!21p21T13 p^{21} T^{13} - 67 ⁣ ⁣8667\!\cdots\!86p28T14+ p^{28} T^{14} + 10 ⁣ ⁣6910\!\cdots\!69p35T15+ p^{35} T^{15} + 20 ⁣ ⁣0220\!\cdots\!02p42T16 p^{42} T^{16} - 32 ⁣ ⁣5732\!\cdots\!57p49T1743616309164472p56T18+7589559p63T19+p70T20 p^{49} T^{17} - 43616309164472 p^{56} T^{18} + 7589559 p^{63} T^{19} + p^{70} T^{20}
83 (16726204T+109061370811527T2 ( 1 - 6726204 T + 109061370811527 T^{2} - 64 ⁣ ⁣8064\!\cdots\!80T3+ T^{3} + 54 ⁣ ⁣6654\!\cdots\!66T4 T^{4} - 24 ⁣ ⁣8424\!\cdots\!84T5+ T^{5} + 54 ⁣ ⁣6654\!\cdots\!66p7T6 p^{7} T^{6} - 64 ⁣ ⁣8064\!\cdots\!80p14T7+109061370811527p21T86726204p28T9+p35T10)2 p^{14} T^{7} + 109061370811527 p^{21} T^{8} - 6726204 p^{28} T^{9} + p^{35} T^{10} )^{2}
89 1+29864757T+420507434709410T2+ 1 + 29864757 T + 420507434709410 T^{2} + 38 ⁣ ⁣2338\!\cdots\!23T3+ T^{3} + 26 ⁣ ⁣4226\!\cdots\!42T4+ T^{4} + 12 ⁣ ⁣1512\!\cdots\!15T5+ T^{5} + 13 ⁣ ⁣0413\!\cdots\!04T6 T^{6} - 41 ⁣ ⁣0141\!\cdots\!01T7 T^{7} - 50 ⁣ ⁣7950\!\cdots\!79T8 T^{8} - 41 ⁣ ⁣7841\!\cdots\!78T9 T^{9} - 29 ⁣ ⁣2829\!\cdots\!28T10 T^{10} - 41 ⁣ ⁣7841\!\cdots\!78p7T11 p^{7} T^{11} - 50 ⁣ ⁣7950\!\cdots\!79p14T12 p^{14} T^{12} - 41 ⁣ ⁣0141\!\cdots\!01p21T13+ p^{21} T^{13} + 13 ⁣ ⁣0413\!\cdots\!04p28T14+ p^{28} T^{14} + 12 ⁣ ⁣1512\!\cdots\!15p35T15+ p^{35} T^{15} + 26 ⁣ ⁣4226\!\cdots\!42p42T16+ p^{42} T^{16} + 38 ⁣ ⁣2338\!\cdots\!23p49T17+420507434709410p56T18+29864757p63T19+p70T20 p^{49} T^{17} + 420507434709410 p^{56} T^{18} + 29864757 p^{63} T^{19} + p^{70} T^{20}
97 (1142790T+38564498819901T2+ ( 1 - 142790 T + 38564498819901 T^{2} + 41 ⁣ ⁣2041\!\cdots\!20T3+ T^{3} + 86 ⁣ ⁣1886\!\cdots\!18T4 T^{4} - 26 ⁣ ⁣0026\!\cdots\!00T5+ T^{5} + 86 ⁣ ⁣1886\!\cdots\!18p7T6+ p^{7} T^{6} + 41 ⁣ ⁣2041\!\cdots\!20p14T7+38564498819901p21T8142790p28T9+p35T10)2 p^{14} T^{7} + 38564498819901 p^{21} T^{8} - 142790 p^{28} T^{9} + p^{35} T^{10} )^{2}
show more
show less
   L(s)=p j=120(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−3.25079130276362349247657899869, −3.19678391733962180138210662789, −3.02310193388700094242546932353, −2.89700851949213983272573709619, −2.86238437792967641285730277063, −2.61198997273608092473989120417, −2.61095519838810179231734947900, −2.29551327373169698009402740207, −2.27558080750959382934128128987, −2.27321384886147037616028287053, −2.15895120476490068916713168182, −1.99404185788558461648659080206, −1.91550556584906898377927823629, −1.77072529565496998688927499117, −1.51231726722194212649868590216, −1.10426086253996941156889964957, −1.08420795794233006795461309972, −1.07910776310270768546960366319, −0.852056674859453982437816962862, −0.819144930192827130129331562454, −0.74070417385737570384977079530, −0.39062681926120135464865839184, −0.26871132205305597924837056016, −0.19627153977666394570018353104, −0.06986285574477595425966971984, 0.06986285574477595425966971984, 0.19627153977666394570018353104, 0.26871132205305597924837056016, 0.39062681926120135464865839184, 0.74070417385737570384977079530, 0.819144930192827130129331562454, 0.852056674859453982437816962862, 1.07910776310270768546960366319, 1.08420795794233006795461309972, 1.10426086253996941156889964957, 1.51231726722194212649868590216, 1.77072529565496998688927499117, 1.91550556584906898377927823629, 1.99404185788558461648659080206, 2.15895120476490068916713168182, 2.27321384886147037616028287053, 2.27558080750959382934128128987, 2.29551327373169698009402740207, 2.61095519838810179231734947900, 2.61198997273608092473989120417, 2.86238437792967641285730277063, 2.89700851949213983272573709619, 3.02310193388700094242546932353, 3.19678391733962180138210662789, 3.25079130276362349247657899869

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.