Dirichlet series
L(s) = 1 | − 249·5-s + 332·7-s − 6.39e3·11-s − 2.69e4·13-s − 3.60e3·17-s − 1.24e4·19-s + 1.39e4·23-s + 1.45e5·25-s − 2.61e4·29-s − 2.01e4·31-s − 8.26e4·35-s − 5.47e4·37-s + 1.82e6·41-s − 1.93e6·43-s − 1.21e6·47-s + 9.16e5·49-s + 2.34e6·53-s + 1.59e6·55-s − 2.18e6·59-s + 6.10e6·61-s + 6.72e6·65-s − 3.17e6·67-s + 1.89e7·71-s + 8.03e6·73-s − 2.12e6·77-s − 7.58e6·79-s + 1.34e7·83-s + ⋯ |
L(s) = 1 | − 0.890·5-s + 0.365·7-s − 1.44·11-s − 3.40·13-s − 0.178·17-s − 0.414·19-s + 0.239·23-s + 1.85·25-s − 0.199·29-s − 0.121·31-s − 0.325·35-s − 0.177·37-s + 4.13·41-s − 3.71·43-s − 1.71·47-s + 1.11·49-s + 2.16·53-s + 1.29·55-s − 1.38·59-s + 3.44·61-s + 3.03·65-s − 1.28·67-s + 6.27·71-s + 2.41·73-s − 0.530·77-s − 1.73·79-s + 2.58·83-s + ⋯ |
Functional equation
Invariants
Degree: | \(20\) |
Conductor: | \(2^{20} \cdot 3^{20} \cdot 7^{10}\) |
Sign: | $1$ |
Analytic conductor: | \(9.13918\times 10^{18}\) |
Root analytic conductor: | \(8.87248\) |
Motivic weight: | \(7\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((20,\ 2^{20} \cdot 3^{20} \cdot 7^{10} ,\ ( \ : [7/2]^{10} ),\ 1 )\) |
Particular Values
\(L(4)\) | \(\approx\) | \(0.5144383589\) |
\(L(\frac12)\) | \(\approx\) | \(0.5144383589\) |
\(L(\frac{9}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $F_p(T)$ | |
---|---|---|
bad | 2 | \( 1 \) |
3 | \( 1 \) | |
7 | \( 1 - 332 T - 115131 p T^{2} - 25640080 p^{2} T^{3} + 322933946 p^{4} T^{4} + 9231846072 p^{6} T^{5} + 322933946 p^{11} T^{6} - 25640080 p^{16} T^{7} - 115131 p^{22} T^{8} - 332 p^{28} T^{9} + p^{35} T^{10} \) | |
good | 5 | \( 1 + 249 T - 16626 p T^{2} - 49730361 T^{3} + 190808126 T^{4} + 1133656209723 p T^{5} + 33364965040648 p^{2} T^{6} - 657852531991821 p^{4} T^{7} - 230422324288807511 p^{4} T^{8} + 4577239882017042054 p^{5} T^{9} + \)\(10\!\cdots\!76\)\( p^{6} T^{10} + 4577239882017042054 p^{12} T^{11} - 230422324288807511 p^{18} T^{12} - 657852531991821 p^{25} T^{13} + 33364965040648 p^{30} T^{14} + 1133656209723 p^{36} T^{15} + 190808126 p^{42} T^{16} - 49730361 p^{49} T^{17} - 16626 p^{57} T^{18} + 249 p^{63} T^{19} + p^{70} T^{20} \) |
11 | \( 1 + 6399 T - 13307172 T^{2} + 55730744559 T^{3} + 1247580499001366 T^{4} - 890998410934715067 T^{5} + \)\(33\!\cdots\!06\)\( T^{6} + \)\(15\!\cdots\!83\)\( T^{7} - \)\(59\!\cdots\!71\)\( T^{8} + \)\(13\!\cdots\!34\)\( T^{9} + \)\(16\!\cdots\!20\)\( T^{10} + \)\(13\!\cdots\!34\)\( p^{7} T^{11} - \)\(59\!\cdots\!71\)\( p^{14} T^{12} + \)\(15\!\cdots\!83\)\( p^{21} T^{13} + \)\(33\!\cdots\!06\)\( p^{28} T^{14} - 890998410934715067 p^{35} T^{15} + 1247580499001366 p^{42} T^{16} + 55730744559 p^{49} T^{17} - 13307172 p^{56} T^{18} + 6399 p^{63} T^{19} + p^{70} T^{20} \) | |
13 | \( ( 1 + 1038 p T + 202348049 T^{2} + 1059028727368 T^{3} + 7960429460406130 T^{4} + 12503167614967234724 T^{5} + 7960429460406130 p^{7} T^{6} + 1059028727368 p^{14} T^{7} + 202348049 p^{21} T^{8} + 1038 p^{29} T^{9} + p^{35} T^{10} )^{2} \) | |
17 | \( 1 + 3609 T - 926734062 T^{2} + 2555731451547 T^{3} + 376173169852081838 T^{4} - \)\(48\!\cdots\!29\)\( T^{5} - \)\(54\!\cdots\!28\)\( T^{6} + \)\(23\!\cdots\!99\)\( p T^{7} - \)\(18\!\cdots\!07\)\( p T^{8} - \)\(30\!\cdots\!50\)\( p^{2} T^{9} + \)\(26\!\cdots\!40\)\( p^{2} T^{10} - \)\(30\!\cdots\!50\)\( p^{9} T^{11} - \)\(18\!\cdots\!07\)\( p^{15} T^{12} + \)\(23\!\cdots\!99\)\( p^{22} T^{13} - \)\(54\!\cdots\!28\)\( p^{28} T^{14} - \)\(48\!\cdots\!29\)\( p^{35} T^{15} + 376173169852081838 p^{42} T^{16} + 2555731451547 p^{49} T^{17} - 926734062 p^{56} T^{18} + 3609 p^{63} T^{19} + p^{70} T^{20} \) | |
19 | \( 1 + 12403 T - 2498224436 T^{2} - 112222121717301 T^{3} + 3102457412032148838 T^{4} + \)\(22\!\cdots\!41\)\( T^{5} + \)\(12\!\cdots\!26\)\( T^{6} - \)\(26\!\cdots\!77\)\( T^{7} - \)\(64\!\cdots\!35\)\( T^{8} + \)\(10\!\cdots\!54\)\( T^{9} + \)\(89\!\cdots\!48\)\( T^{10} + \)\(10\!\cdots\!54\)\( p^{7} T^{11} - \)\(64\!\cdots\!35\)\( p^{14} T^{12} - \)\(26\!\cdots\!77\)\( p^{21} T^{13} + \)\(12\!\cdots\!26\)\( p^{28} T^{14} + \)\(22\!\cdots\!41\)\( p^{35} T^{15} + 3102457412032148838 p^{42} T^{16} - 112222121717301 p^{49} T^{17} - 2498224436 p^{56} T^{18} + 12403 p^{63} T^{19} + p^{70} T^{20} \) | |
23 | \( 1 - 13959 T - 12391634256 T^{2} + 245727261846837 T^{3} + 80001205241355075518 T^{4} - \)\(15\!\cdots\!61\)\( T^{5} - \)\(40\!\cdots\!74\)\( T^{6} + \)\(40\!\cdots\!33\)\( T^{7} + \)\(18\!\cdots\!21\)\( T^{8} - \)\(34\!\cdots\!70\)\( T^{9} - \)\(68\!\cdots\!60\)\( T^{10} - \)\(34\!\cdots\!70\)\( p^{7} T^{11} + \)\(18\!\cdots\!21\)\( p^{14} T^{12} + \)\(40\!\cdots\!33\)\( p^{21} T^{13} - \)\(40\!\cdots\!74\)\( p^{28} T^{14} - \)\(15\!\cdots\!61\)\( p^{35} T^{15} + 80001205241355075518 p^{42} T^{16} + 245727261846837 p^{49} T^{17} - 12391634256 p^{56} T^{18} - 13959 p^{63} T^{19} + p^{70} T^{20} \) | |
29 | \( ( 1 + 13074 T + 42688257921 T^{2} - 1103263471513320 T^{3} + \)\(11\!\cdots\!46\)\( T^{4} - \)\(16\!\cdots\!32\)\( T^{5} + \)\(11\!\cdots\!46\)\( p^{7} T^{6} - 1103263471513320 p^{14} T^{7} + 42688257921 p^{21} T^{8} + 13074 p^{28} T^{9} + p^{35} T^{10} )^{2} \) | |
31 | \( 1 + 21 p^{2} T - 67660440296 T^{2} + 3909805548824945 T^{3} + \)\(17\!\cdots\!22\)\( T^{4} - \)\(22\!\cdots\!17\)\( T^{5} - \)\(36\!\cdots\!42\)\( T^{6} - \)\(27\!\cdots\!79\)\( T^{7} + \)\(16\!\cdots\!61\)\( T^{8} + \)\(85\!\cdots\!58\)\( T^{9} - \)\(61\!\cdots\!92\)\( T^{10} + \)\(85\!\cdots\!58\)\( p^{7} T^{11} + \)\(16\!\cdots\!61\)\( p^{14} T^{12} - \)\(27\!\cdots\!79\)\( p^{21} T^{13} - \)\(36\!\cdots\!42\)\( p^{28} T^{14} - \)\(22\!\cdots\!17\)\( p^{35} T^{15} + \)\(17\!\cdots\!22\)\( p^{42} T^{16} + 3909805548824945 p^{49} T^{17} - 67660440296 p^{56} T^{18} + 21 p^{65} T^{19} + p^{70} T^{20} \) | |
37 | \( 1 + 54763 T - 425909379842 T^{2} - 16912552532175195 T^{3} + \)\(10\!\cdots\!14\)\( T^{4} + \)\(30\!\cdots\!57\)\( T^{5} - \)\(18\!\cdots\!68\)\( T^{6} - \)\(28\!\cdots\!55\)\( T^{7} + \)\(24\!\cdots\!77\)\( T^{8} + \)\(11\!\cdots\!86\)\( T^{9} - \)\(26\!\cdots\!28\)\( T^{10} + \)\(11\!\cdots\!86\)\( p^{7} T^{11} + \)\(24\!\cdots\!77\)\( p^{14} T^{12} - \)\(28\!\cdots\!55\)\( p^{21} T^{13} - \)\(18\!\cdots\!68\)\( p^{28} T^{14} + \)\(30\!\cdots\!57\)\( p^{35} T^{15} + \)\(10\!\cdots\!14\)\( p^{42} T^{16} - 16912552532175195 p^{49} T^{17} - 425909379842 p^{56} T^{18} + 54763 p^{63} T^{19} + p^{70} T^{20} \) | |
41 | \( ( 1 - 912234 T + 910157539669 T^{2} - 532613636859636312 T^{3} + \)\(33\!\cdots\!86\)\( T^{4} - \)\(14\!\cdots\!52\)\( T^{5} + \)\(33\!\cdots\!86\)\( p^{7} T^{6} - 532613636859636312 p^{14} T^{7} + 910157539669 p^{21} T^{8} - 912234 p^{28} T^{9} + p^{35} T^{10} )^{2} \) | |
43 | \( ( 1 + 969212 T + 854486868687 T^{2} + 418889562162638160 T^{3} + \)\(28\!\cdots\!58\)\( T^{4} + \)\(13\!\cdots\!76\)\( T^{5} + \)\(28\!\cdots\!58\)\( p^{7} T^{6} + 418889562162638160 p^{14} T^{7} + 854486868687 p^{21} T^{8} + 969212 p^{28} T^{9} + p^{35} T^{10} )^{2} \) | |
47 | \( 1 + 25899 p T - 1374240694168 T^{2} - 1394356400990587503 T^{3} + \)\(21\!\cdots\!34\)\( T^{4} + \)\(13\!\cdots\!31\)\( T^{5} - \)\(19\!\cdots\!38\)\( T^{6} - \)\(60\!\cdots\!07\)\( T^{7} + \)\(15\!\cdots\!49\)\( T^{8} + \)\(17\!\cdots\!98\)\( T^{9} - \)\(82\!\cdots\!04\)\( T^{10} + \)\(17\!\cdots\!98\)\( p^{7} T^{11} + \)\(15\!\cdots\!49\)\( p^{14} T^{12} - \)\(60\!\cdots\!07\)\( p^{21} T^{13} - \)\(19\!\cdots\!38\)\( p^{28} T^{14} + \)\(13\!\cdots\!31\)\( p^{35} T^{15} + \)\(21\!\cdots\!34\)\( p^{42} T^{16} - 1394356400990587503 p^{49} T^{17} - 1374240694168 p^{56} T^{18} + 25899 p^{64} T^{19} + p^{70} T^{20} \) | |
53 | \( 1 - 2349159 T + 250300976054 T^{2} + 3942955978706042487 T^{3} - \)\(23\!\cdots\!42\)\( T^{4} - \)\(43\!\cdots\!01\)\( T^{5} + \)\(47\!\cdots\!96\)\( T^{6} + \)\(35\!\cdots\!63\)\( T^{7} - \)\(75\!\cdots\!79\)\( T^{8} - \)\(95\!\cdots\!50\)\( T^{9} + \)\(70\!\cdots\!60\)\( T^{10} - \)\(95\!\cdots\!50\)\( p^{7} T^{11} - \)\(75\!\cdots\!79\)\( p^{14} T^{12} + \)\(35\!\cdots\!63\)\( p^{21} T^{13} + \)\(47\!\cdots\!96\)\( p^{28} T^{14} - \)\(43\!\cdots\!01\)\( p^{35} T^{15} - \)\(23\!\cdots\!42\)\( p^{42} T^{16} + 3942955978706042487 p^{49} T^{17} + 250300976054 p^{56} T^{18} - 2349159 p^{63} T^{19} + p^{70} T^{20} \) | |
59 | \( 1 + 2188611 T - 4824209251620 T^{2} - 3799527654253362309 T^{3} + \)\(30\!\cdots\!10\)\( T^{4} + \)\(13\!\cdots\!25\)\( T^{5} - \)\(80\!\cdots\!90\)\( T^{6} + \)\(46\!\cdots\!75\)\( T^{7} + \)\(14\!\cdots\!73\)\( T^{8} - \)\(12\!\cdots\!54\)\( p T^{9} - \)\(23\!\cdots\!12\)\( T^{10} - \)\(12\!\cdots\!54\)\( p^{8} T^{11} + \)\(14\!\cdots\!73\)\( p^{14} T^{12} + \)\(46\!\cdots\!75\)\( p^{21} T^{13} - \)\(80\!\cdots\!90\)\( p^{28} T^{14} + \)\(13\!\cdots\!25\)\( p^{35} T^{15} + \)\(30\!\cdots\!10\)\( p^{42} T^{16} - 3799527654253362309 p^{49} T^{17} - 4824209251620 p^{56} T^{18} + 2188611 p^{63} T^{19} + p^{70} T^{20} \) | |
61 | \( 1 - 6107445 T + 10874833097974 T^{2} - 5276441610538080739 T^{3} + \)\(31\!\cdots\!06\)\( T^{4} - \)\(10\!\cdots\!95\)\( T^{5} + \)\(33\!\cdots\!04\)\( T^{6} + \)\(57\!\cdots\!81\)\( T^{7} + \)\(51\!\cdots\!73\)\( T^{8} - \)\(24\!\cdots\!38\)\( T^{9} - \)\(14\!\cdots\!84\)\( T^{10} - \)\(24\!\cdots\!38\)\( p^{7} T^{11} + \)\(51\!\cdots\!73\)\( p^{14} T^{12} + \)\(57\!\cdots\!81\)\( p^{21} T^{13} + \)\(33\!\cdots\!04\)\( p^{28} T^{14} - \)\(10\!\cdots\!95\)\( p^{35} T^{15} + \)\(31\!\cdots\!06\)\( p^{42} T^{16} - 5276441610538080739 p^{49} T^{17} + 10874833097974 p^{56} T^{18} - 6107445 p^{63} T^{19} + p^{70} T^{20} \) | |
67 | \( 1 + 3171581 T - 9842922058220 T^{2} - 71834120796309454835 T^{3} - \)\(29\!\cdots\!82\)\( T^{4} + \)\(56\!\cdots\!79\)\( T^{5} + \)\(16\!\cdots\!94\)\( p T^{6} - \)\(17\!\cdots\!15\)\( T^{7} - \)\(77\!\cdots\!11\)\( T^{8} + \)\(17\!\cdots\!62\)\( T^{9} + \)\(37\!\cdots\!40\)\( T^{10} + \)\(17\!\cdots\!62\)\( p^{7} T^{11} - \)\(77\!\cdots\!11\)\( p^{14} T^{12} - \)\(17\!\cdots\!15\)\( p^{21} T^{13} + \)\(16\!\cdots\!94\)\( p^{29} T^{14} + \)\(56\!\cdots\!79\)\( p^{35} T^{15} - \)\(29\!\cdots\!82\)\( p^{42} T^{16} - 71834120796309454835 p^{49} T^{17} - 9842922058220 p^{56} T^{18} + 3171581 p^{63} T^{19} + p^{70} T^{20} \) | |
71 | \( ( 1 - 9469488 T + 50648806838355 T^{2} - \)\(19\!\cdots\!88\)\( T^{3} + \)\(58\!\cdots\!94\)\( T^{4} - \)\(17\!\cdots\!40\)\( T^{5} + \)\(58\!\cdots\!94\)\( p^{7} T^{6} - \)\(19\!\cdots\!88\)\( p^{14} T^{7} + 50648806838355 p^{21} T^{8} - 9469488 p^{28} T^{9} + p^{35} T^{10} )^{2} \) | |
73 | \( 1 - 8034853 T - 4416730301198 T^{2} + 83379410929933457689 T^{3} + \)\(64\!\cdots\!46\)\( T^{4} - \)\(20\!\cdots\!11\)\( T^{5} - \)\(11\!\cdots\!56\)\( T^{6} + \)\(18\!\cdots\!13\)\( T^{7} + \)\(16\!\cdots\!81\)\( T^{8} - \)\(14\!\cdots\!54\)\( T^{9} - \)\(22\!\cdots\!84\)\( T^{10} - \)\(14\!\cdots\!54\)\( p^{7} T^{11} + \)\(16\!\cdots\!81\)\( p^{14} T^{12} + \)\(18\!\cdots\!13\)\( p^{21} T^{13} - \)\(11\!\cdots\!56\)\( p^{28} T^{14} - \)\(20\!\cdots\!11\)\( p^{35} T^{15} + \)\(64\!\cdots\!46\)\( p^{42} T^{16} + 83379410929933457689 p^{49} T^{17} - 4416730301198 p^{56} T^{18} - 8034853 p^{63} T^{19} + p^{70} T^{20} \) | |
79 | \( 1 + 7589559 T - 43616309164472 T^{2} - \)\(32\!\cdots\!57\)\( T^{3} + \)\(20\!\cdots\!02\)\( T^{4} + \)\(10\!\cdots\!69\)\( T^{5} - \)\(67\!\cdots\!86\)\( T^{6} - \)\(16\!\cdots\!21\)\( T^{7} + \)\(20\!\cdots\!77\)\( T^{8} + \)\(15\!\cdots\!02\)\( T^{9} - \)\(41\!\cdots\!96\)\( T^{10} + \)\(15\!\cdots\!02\)\( p^{7} T^{11} + \)\(20\!\cdots\!77\)\( p^{14} T^{12} - \)\(16\!\cdots\!21\)\( p^{21} T^{13} - \)\(67\!\cdots\!86\)\( p^{28} T^{14} + \)\(10\!\cdots\!69\)\( p^{35} T^{15} + \)\(20\!\cdots\!02\)\( p^{42} T^{16} - \)\(32\!\cdots\!57\)\( p^{49} T^{17} - 43616309164472 p^{56} T^{18} + 7589559 p^{63} T^{19} + p^{70} T^{20} \) | |
83 | \( ( 1 - 6726204 T + 109061370811527 T^{2} - \)\(64\!\cdots\!80\)\( T^{3} + \)\(54\!\cdots\!66\)\( T^{4} - \)\(24\!\cdots\!84\)\( T^{5} + \)\(54\!\cdots\!66\)\( p^{7} T^{6} - \)\(64\!\cdots\!80\)\( p^{14} T^{7} + 109061370811527 p^{21} T^{8} - 6726204 p^{28} T^{9} + p^{35} T^{10} )^{2} \) | |
89 | \( 1 + 29864757 T + 420507434709410 T^{2} + \)\(38\!\cdots\!23\)\( T^{3} + \)\(26\!\cdots\!42\)\( T^{4} + \)\(12\!\cdots\!15\)\( T^{5} + \)\(13\!\cdots\!04\)\( T^{6} - \)\(41\!\cdots\!01\)\( T^{7} - \)\(50\!\cdots\!79\)\( T^{8} - \)\(41\!\cdots\!78\)\( T^{9} - \)\(29\!\cdots\!28\)\( T^{10} - \)\(41\!\cdots\!78\)\( p^{7} T^{11} - \)\(50\!\cdots\!79\)\( p^{14} T^{12} - \)\(41\!\cdots\!01\)\( p^{21} T^{13} + \)\(13\!\cdots\!04\)\( p^{28} T^{14} + \)\(12\!\cdots\!15\)\( p^{35} T^{15} + \)\(26\!\cdots\!42\)\( p^{42} T^{16} + \)\(38\!\cdots\!23\)\( p^{49} T^{17} + 420507434709410 p^{56} T^{18} + 29864757 p^{63} T^{19} + p^{70} T^{20} \) | |
97 | \( ( 1 - 142790 T + 38564498819901 T^{2} + \)\(41\!\cdots\!20\)\( T^{3} + \)\(86\!\cdots\!18\)\( T^{4} - \)\(26\!\cdots\!00\)\( T^{5} + \)\(86\!\cdots\!18\)\( p^{7} T^{6} + \)\(41\!\cdots\!20\)\( p^{14} T^{7} + 38564498819901 p^{21} T^{8} - 142790 p^{28} T^{9} + p^{35} T^{10} )^{2} \) | |
show more | ||
show less |
Imaginary part of the first few zeros on the critical line
−3.25079130276362349247657899869, −3.19678391733962180138210662789, −3.02310193388700094242546932353, −2.89700851949213983272573709619, −2.86238437792967641285730277063, −2.61198997273608092473989120417, −2.61095519838810179231734947900, −2.29551327373169698009402740207, −2.27558080750959382934128128987, −2.27321384886147037616028287053, −2.15895120476490068916713168182, −1.99404185788558461648659080206, −1.91550556584906898377927823629, −1.77072529565496998688927499117, −1.51231726722194212649868590216, −1.10426086253996941156889964957, −1.08420795794233006795461309972, −1.07910776310270768546960366319, −0.852056674859453982437816962862, −0.819144930192827130129331562454, −0.74070417385737570384977079530, −0.39062681926120135464865839184, −0.26871132205305597924837056016, −0.19627153977666394570018353104, −0.06986285574477595425966971984, 0.06986285574477595425966971984, 0.19627153977666394570018353104, 0.26871132205305597924837056016, 0.39062681926120135464865839184, 0.74070417385737570384977079530, 0.819144930192827130129331562454, 0.852056674859453982437816962862, 1.07910776310270768546960366319, 1.08420795794233006795461309972, 1.10426086253996941156889964957, 1.51231726722194212649868590216, 1.77072529565496998688927499117, 1.91550556584906898377927823629, 1.99404185788558461648659080206, 2.15895120476490068916713168182, 2.27321384886147037616028287053, 2.27558080750959382934128128987, 2.29551327373169698009402740207, 2.61095519838810179231734947900, 2.61198997273608092473989120417, 2.86238437792967641285730277063, 2.89700851949213983272573709619, 3.02310193388700094242546932353, 3.19678391733962180138210662789, 3.25079130276362349247657899869