Properties

Label 252.8.k.c.37.1
Level $252$
Weight $8$
Character 252.37
Analytic conductor $78.721$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,8,Mod(37,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.37");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.7210264220\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 342 x^{8} + 2165 x^{7} + 113605 x^{6} + 319380 x^{5} + 1438128 x^{4} + 1705752 x^{3} + \cdots + 23619600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{8}\cdot 7^{5} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.1
Root \(-1.38371 + 2.39666i\) of defining polynomial
Character \(\chi\) \(=\) 252.37
Dual form 252.8.k.c.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-274.614 + 475.646i) q^{5} +(907.484 + 4.07000i) q^{7} +(-2225.01 - 3853.83i) q^{11} -3918.83 q^{13} +(3001.55 + 5198.83i) q^{17} +(-1058.25 + 1832.95i) q^{19} +(32443.3 - 56193.4i) q^{23} +(-111763. - 193580. i) q^{25} -118135. q^{29} +(-42724.4 - 74000.8i) q^{31} +(-251144. + 430523. i) q^{35} +(13176.1 - 22821.6i) q^{37} +459420. q^{41} -511775. q^{43} +(-76217.4 + 132012. i) q^{47} +(823510. + 7386.92i) q^{49} +(-30522.5 - 52866.5i) q^{53} +2.44408e6 q^{55} +(1.03829e6 + 1.79837e6i) q^{59} +(475849. - 824194. i) q^{61} +(1.07617e6 - 1.86397e6i) q^{65} +(558691. + 967681. i) q^{67} +4.62273e6 q^{71} +(-1.25326e6 - 2.17070e6i) q^{73} +(-2.00348e6 - 3.50635e6i) q^{77} +(-1.81828e6 + 3.14935e6i) q^{79} -194336. q^{83} -3.29707e6 q^{85} +(2.85298e6 - 4.94150e6i) q^{89} +(-3.55627e6 - 15949.7i) q^{91} +(-581222. - 1.00671e6i) q^{95} +1.01861e7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 249 q^{5} + 332 q^{7} - 6399 q^{11} - 26988 q^{13} - 3609 q^{17} - 12403 q^{19} + 13959 q^{23} - 162364 q^{25} - 26148 q^{29} - 20181 q^{31} - 791715 q^{35} - 54763 q^{37} + 1824468 q^{41} - 1938424 q^{43}+ \cdots + 285580 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −274.614 + 475.646i −0.982489 + 1.70172i −0.329888 + 0.944020i \(0.607011\pi\)
−0.652601 + 0.757702i \(0.726322\pi\)
\(6\) 0 0
\(7\) 907.484 + 4.07000i 0.999990 + 0.00448489i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2225.01 3853.83i −0.504032 0.873009i −0.999989 0.00466169i \(-0.998516\pi\)
0.495957 0.868347i \(-0.334817\pi\)
\(12\) 0 0
\(13\) −3918.83 −0.494715 −0.247357 0.968924i \(-0.579562\pi\)
−0.247357 + 0.968924i \(0.579562\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3001.55 + 5198.83i 0.148175 + 0.256646i 0.930553 0.366158i \(-0.119327\pi\)
−0.782378 + 0.622804i \(0.785994\pi\)
\(18\) 0 0
\(19\) −1058.25 + 1832.95i −0.0353958 + 0.0613073i −0.883181 0.469033i \(-0.844603\pi\)
0.847785 + 0.530340i \(0.177936\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 32443.3 56193.4i 0.556003 0.963026i −0.441822 0.897103i \(-0.645668\pi\)
0.997825 0.0659227i \(-0.0209991\pi\)
\(24\) 0 0
\(25\) −111763. 193580.i −1.43057 2.47782i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −118135. −0.899470 −0.449735 0.893162i \(-0.648482\pi\)
−0.449735 + 0.893162i \(0.648482\pi\)
\(30\) 0 0
\(31\) −42724.4 74000.8i −0.257579 0.446139i 0.708014 0.706198i \(-0.249591\pi\)
−0.965593 + 0.260059i \(0.916258\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −251144. + 430523.i −0.990112 + 1.69730i
\(36\) 0 0
\(37\) 13176.1 22821.6i 0.0427641 0.0740696i −0.843851 0.536577i \(-0.819717\pi\)
0.886615 + 0.462508i \(0.153050\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 459420. 1.04104 0.520519 0.853850i \(-0.325738\pi\)
0.520519 + 0.853850i \(0.325738\pi\)
\(42\) 0 0
\(43\) −511775. −0.981611 −0.490806 0.871269i \(-0.663297\pi\)
−0.490806 + 0.871269i \(0.663297\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −76217.4 + 132012.i −0.107081 + 0.185470i −0.914586 0.404390i \(-0.867484\pi\)
0.807506 + 0.589860i \(0.200817\pi\)
\(48\) 0 0
\(49\) 823510. + 7386.92i 0.999960 + 0.00896969i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −30522.5 52866.5i −0.0281614 0.0487770i 0.851601 0.524190i \(-0.175632\pi\)
−0.879763 + 0.475413i \(0.842299\pi\)
\(54\) 0 0
\(55\) 2.44408e6 1.98082
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.03829e6 + 1.79837e6i 0.658167 + 1.13998i 0.981090 + 0.193553i \(0.0620011\pi\)
−0.322923 + 0.946425i \(0.604666\pi\)
\(60\) 0 0
\(61\) 475849. 824194.i 0.268420 0.464917i −0.700034 0.714109i \(-0.746832\pi\)
0.968454 + 0.249193i \(0.0801652\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.07617e6 1.86397e6i 0.486052 0.841866i
\(66\) 0 0
\(67\) 558691. + 967681.i 0.226939 + 0.393071i 0.956900 0.290419i \(-0.0937947\pi\)
−0.729960 + 0.683490i \(0.760461\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.62273e6 1.53283 0.766415 0.642346i \(-0.222039\pi\)
0.766415 + 0.642346i \(0.222039\pi\)
\(72\) 0 0
\(73\) −1.25326e6 2.17070e6i −0.377059 0.653086i 0.613574 0.789637i \(-0.289731\pi\)
−0.990633 + 0.136552i \(0.956398\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00348e6 3.50635e6i −0.500111 0.875260i
\(78\) 0 0
\(79\) −1.81828e6 + 3.14935e6i −0.414921 + 0.718664i −0.995420 0.0955966i \(-0.969524\pi\)
0.580499 + 0.814261i \(0.302857\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −194336. −0.0373060 −0.0186530 0.999826i \(-0.505938\pi\)
−0.0186530 + 0.999826i \(0.505938\pi\)
\(84\) 0 0
\(85\) −3.29707e6 −0.582320
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.85298e6 4.94150e6i 0.428977 0.743009i −0.567806 0.823162i \(-0.692208\pi\)
0.996783 + 0.0801532i \(0.0255410\pi\)
\(90\) 0 0
\(91\) −3.55627e6 15949.7i −0.494710 0.00221874i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −581222. 1.00671e6i −0.0695520 0.120468i
\(96\) 0 0
\(97\) 1.01861e7 1.13320 0.566601 0.823992i \(-0.308258\pi\)
0.566601 + 0.823992i \(0.308258\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.53754e6 1.30554e7i −0.727956 1.26086i −0.957746 0.287616i \(-0.907137\pi\)
0.229790 0.973240i \(-0.426196\pi\)
\(102\) 0 0
\(103\) 1.82282e6 3.15722e6i 0.164367 0.284692i −0.772063 0.635546i \(-0.780775\pi\)
0.936430 + 0.350854i \(0.114109\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.56669e6 7.90974e6i 0.360378 0.624193i −0.627645 0.778500i \(-0.715981\pi\)
0.988023 + 0.154307i \(0.0493144\pi\)
\(108\) 0 0
\(109\) −1.20607e7 2.08898e7i −0.892033 1.54505i −0.837434 0.546539i \(-0.815945\pi\)
−0.0545997 0.998508i \(-0.517388\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.51746e7 0.989337 0.494668 0.869082i \(-0.335290\pi\)
0.494668 + 0.869082i \(0.335290\pi\)
\(114\) 0 0
\(115\) 1.78188e7 + 3.08630e7i 1.09253 + 1.89232i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.70269e6 + 4.73007e6i 0.147022 + 0.257308i
\(120\) 0 0
\(121\) −157767. + 273260.i −0.00809593 + 0.0140226i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7.98587e7 3.65710
\(126\) 0 0
\(127\) 3.12338e7 1.35305 0.676523 0.736422i \(-0.263486\pi\)
0.676523 + 0.736422i \(0.263486\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.64512e6 8.04559e6i 0.180529 0.312686i −0.761532 0.648128i \(-0.775552\pi\)
0.942061 + 0.335442i \(0.108886\pi\)
\(132\) 0 0
\(133\) −967806. + 1.65906e6i −0.0356704 + 0.0611479i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.48735e6 7.77232e6i −0.149097 0.258243i 0.781797 0.623533i \(-0.214303\pi\)
−0.930894 + 0.365290i \(0.880970\pi\)
\(138\) 0 0
\(139\) 4.36201e7 1.37764 0.688819 0.724934i \(-0.258130\pi\)
0.688819 + 0.724934i \(0.258130\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.71944e6 + 1.51025e7i 0.249352 + 0.431890i
\(144\) 0 0
\(145\) 3.24416e7 5.61905e7i 0.883719 1.53065i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.62443e7 + 4.54565e7i −0.649955 + 1.12575i 0.333178 + 0.942864i \(0.391879\pi\)
−0.983133 + 0.182891i \(0.941454\pi\)
\(150\) 0 0
\(151\) −2.09853e7 3.63477e7i −0.496017 0.859127i 0.503972 0.863720i \(-0.331871\pi\)
−0.999989 + 0.00459273i \(0.998538\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.69309e7 1.01227
\(156\) 0 0
\(157\) 1.76464e7 + 3.05645e7i 0.363922 + 0.630331i 0.988603 0.150549i \(-0.0481042\pi\)
−0.624681 + 0.780880i \(0.714771\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.96704e7 5.08625e7i 0.560317 0.960522i
\(162\) 0 0
\(163\) −2.54191e7 + 4.40271e7i −0.459730 + 0.796276i −0.998946 0.0458910i \(-0.985387\pi\)
0.539216 + 0.842167i \(0.318721\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.77967e7 −1.12642 −0.563211 0.826313i \(-0.690434\pi\)
−0.563211 + 0.826313i \(0.690434\pi\)
\(168\) 0 0
\(169\) −4.73913e7 −0.755257
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.54193e7 4.40275e7i 0.373252 0.646492i −0.616812 0.787111i \(-0.711576\pi\)
0.990064 + 0.140619i \(0.0449093\pi\)
\(174\) 0 0
\(175\) −1.00636e8 1.76125e8i −1.41944 2.48421i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2.33223e7 4.03954e7i −0.303939 0.526437i 0.673086 0.739565i \(-0.264969\pi\)
−0.977024 + 0.213127i \(0.931635\pi\)
\(180\) 0 0
\(181\) 5.38874e7 0.675480 0.337740 0.941239i \(-0.390338\pi\)
0.337740 + 0.941239i \(0.390338\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.23666e6 + 1.25343e7i 0.0840306 + 0.145545i
\(186\) 0 0
\(187\) 1.33570e7 2.31349e7i 0.149369 0.258715i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.24528e7 + 7.35305e7i −0.440849 + 0.763573i −0.997753 0.0670042i \(-0.978656\pi\)
0.556904 + 0.830577i \(0.311989\pi\)
\(192\) 0 0
\(193\) 3.14432e7 + 5.44613e7i 0.314830 + 0.545302i 0.979401 0.201923i \(-0.0647190\pi\)
−0.664571 + 0.747225i \(0.731386\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.65100e8 1.53856 0.769281 0.638910i \(-0.220615\pi\)
0.769281 + 0.638910i \(0.220615\pi\)
\(198\) 0 0
\(199\) −2.85712e6 4.94867e6i −0.0257005 0.0445146i 0.852889 0.522092i \(-0.174848\pi\)
−0.878590 + 0.477578i \(0.841515\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.07206e8 480811.i −0.899461 0.00403402i
\(204\) 0 0
\(205\) −1.26163e8 + 2.18521e8i −1.02281 + 1.77156i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.41849e6 0.0713624
\(210\) 0 0
\(211\) 1.18425e8 0.867870 0.433935 0.900944i \(-0.357125\pi\)
0.433935 + 0.900944i \(0.357125\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.40541e8 2.43424e8i 0.964423 1.67043i
\(216\) 0 0
\(217\) −3.84705e7 6.73284e7i −0.255575 0.447290i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.17626e7 2.03733e7i −0.0733041 0.126967i
\(222\) 0 0
\(223\) 2.90507e8 1.75424 0.877121 0.480270i \(-0.159461\pi\)
0.877121 + 0.480270i \(0.159461\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.42802e7 + 5.93750e7i 0.194515 + 0.336909i 0.946741 0.321995i \(-0.104353\pi\)
−0.752227 + 0.658905i \(0.771020\pi\)
\(228\) 0 0
\(229\) −1.27632e8 + 2.21064e8i −0.702318 + 1.21645i 0.265332 + 0.964157i \(0.414518\pi\)
−0.967651 + 0.252294i \(0.918815\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.98377e7 5.16805e7i 0.154533 0.267658i −0.778356 0.627823i \(-0.783946\pi\)
0.932889 + 0.360165i \(0.117279\pi\)
\(234\) 0 0
\(235\) −4.18608e7 7.25050e7i −0.210412 0.364444i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.11142e8 −1.47423 −0.737117 0.675765i \(-0.763813\pi\)
−0.737117 + 0.675765i \(0.763813\pi\)
\(240\) 0 0
\(241\) 1.80211e8 + 3.12135e8i 0.829319 + 1.43642i 0.898573 + 0.438824i \(0.144605\pi\)
−0.0692534 + 0.997599i \(0.522062\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.29661e8 + 3.89670e8i −0.997714 + 1.69284i
\(246\) 0 0
\(247\) 4.14711e6 7.18300e6i 0.0175108 0.0303296i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.56577e8 0.624985 0.312492 0.949920i \(-0.398836\pi\)
0.312492 + 0.949920i \(0.398836\pi\)
\(252\) 0 0
\(253\) −2.88747e8 −1.12097
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.70225e8 + 2.94838e8i −0.625544 + 1.08347i 0.362892 + 0.931831i \(0.381789\pi\)
−0.988435 + 0.151642i \(0.951544\pi\)
\(258\) 0 0
\(259\) 1.20499e7 2.06566e7i 0.0430959 0.0738771i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.95033e8 3.37808e8i −0.661095 1.14505i −0.980328 0.197374i \(-0.936759\pi\)
0.319233 0.947676i \(-0.396575\pi\)
\(264\) 0 0
\(265\) 3.35276e7 0.110673
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.80155e8 3.12038e8i −0.564306 0.977406i −0.997114 0.0759200i \(-0.975811\pi\)
0.432808 0.901486i \(-0.357523\pi\)
\(270\) 0 0
\(271\) −1.24337e8 + 2.15358e8i −0.379496 + 0.657307i −0.990989 0.133943i \(-0.957236\pi\)
0.611493 + 0.791250i \(0.290569\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.97349e8 + 8.61435e8i −1.44211 + 2.49780i
\(276\) 0 0
\(277\) −1.93090e8 3.34442e8i −0.545860 0.945458i −0.998552 0.0537907i \(-0.982870\pi\)
0.452692 0.891667i \(-0.350464\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.38669e8 0.372826 0.186413 0.982471i \(-0.440314\pi\)
0.186413 + 0.982471i \(0.440314\pi\)
\(282\) 0 0
\(283\) −2.13509e8 3.69809e8i −0.559969 0.969894i −0.997498 0.0706904i \(-0.977480\pi\)
0.437529 0.899204i \(-0.355854\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.16916e8 + 1.86984e6i 1.04103 + 0.00466894i
\(288\) 0 0
\(289\) 1.87151e8 3.24155e8i 0.456089 0.789969i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.59769e8 −1.30009 −0.650043 0.759898i \(-0.725249\pi\)
−0.650043 + 0.759898i \(0.725249\pi\)
\(294\) 0 0
\(295\) −1.14051e9 −2.58657
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.27140e8 + 2.20212e8i −0.275063 + 0.476423i
\(300\) 0 0
\(301\) −4.64427e8 2.08293e6i −0.981601 0.00440242i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.61350e8 + 4.52671e8i 0.527439 + 0.913552i
\(306\) 0 0
\(307\) −1.50479e8 −0.296819 −0.148409 0.988926i \(-0.547415\pi\)
−0.148409 + 0.988926i \(0.547415\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.31084e8 7.46659e8i −0.812644 1.40754i −0.911007 0.412390i \(-0.864694\pi\)
0.0983630 0.995151i \(-0.468639\pi\)
\(312\) 0 0
\(313\) 4.79502e8 8.30522e8i 0.883864 1.53090i 0.0368540 0.999321i \(-0.488266\pi\)
0.847010 0.531577i \(-0.178400\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.64346e7 + 1.32389e8i −0.134767 + 0.233423i −0.925508 0.378727i \(-0.876362\pi\)
0.790742 + 0.612150i \(0.209695\pi\)
\(318\) 0 0
\(319\) 2.62852e8 + 4.55274e8i 0.453361 + 0.785245i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.27056e7 −0.0209790
\(324\) 0 0
\(325\) 4.37982e8 + 7.58606e8i 0.707724 + 1.22581i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6.97034e7 + 1.19489e8i −0.107912 + 0.184987i
\(330\) 0 0
\(331\) 3.64647e8 6.31587e8i 0.552681 0.957271i −0.445399 0.895332i \(-0.646938\pi\)
0.998080 0.0619390i \(-0.0197284\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.13698e8 −0.891862
\(336\) 0 0
\(337\) 9.99520e8 1.42261 0.711306 0.702882i \(-0.248104\pi\)
0.711306 + 0.702882i \(0.248104\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.90125e8 + 3.29305e8i −0.259656 + 0.449737i
\(342\) 0 0
\(343\) 7.47292e8 + 1.00552e7i 0.999909 + 0.0134543i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.89931e8 + 5.02175e8i 0.372513 + 0.645211i 0.989951 0.141408i \(-0.0451630\pi\)
−0.617439 + 0.786619i \(0.711830\pi\)
\(348\) 0 0
\(349\) −1.18267e9 −1.48928 −0.744638 0.667469i \(-0.767378\pi\)
−0.744638 + 0.667469i \(0.767378\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.27190e7 + 3.93505e7i 0.0274903 + 0.0476145i 0.879443 0.476004i \(-0.157915\pi\)
−0.851953 + 0.523618i \(0.824582\pi\)
\(354\) 0 0
\(355\) −1.26947e9 + 2.19878e9i −1.50599 + 2.60845i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.45017e7 7.70792e7i 0.0507628 0.0879238i −0.839527 0.543317i \(-0.817168\pi\)
0.890290 + 0.455393i \(0.150501\pi\)
\(360\) 0 0
\(361\) 4.44696e8 + 7.70236e8i 0.497494 + 0.861685i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.37665e9 1.48183
\(366\) 0 0
\(367\) 2.39219e8 + 4.14340e8i 0.252619 + 0.437548i 0.964246 0.265009i \(-0.0853749\pi\)
−0.711627 + 0.702557i \(0.752042\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.74835e7 4.80997e7i −0.0279424 0.0489028i
\(372\) 0 0
\(373\) 5.82022e8 1.00809e9i 0.580709 1.00582i −0.414686 0.909965i \(-0.636109\pi\)
0.995395 0.0958535i \(-0.0305580\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.62952e8 0.444981
\(378\) 0 0
\(379\) −1.78772e9 −1.68679 −0.843395 0.537294i \(-0.819447\pi\)
−0.843395 + 0.537294i \(0.819447\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.98793e8 3.44319e8i 0.180803 0.313159i −0.761352 0.648339i \(-0.775464\pi\)
0.942154 + 0.335180i \(0.108797\pi\)
\(384\) 0 0
\(385\) 2.21796e9 + 9.94741e6i 1.98080 + 0.00888377i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.46267e8 4.26547e8i −0.212121 0.367404i 0.740257 0.672324i \(-0.234704\pi\)
−0.952378 + 0.304920i \(0.901370\pi\)
\(390\) 0 0
\(391\) 3.89520e8 0.329542
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −9.98650e8 1.72971e9i −0.815311 1.41216i
\(396\) 0 0
\(397\) 2.85231e7 4.94034e7i 0.0228786 0.0396269i −0.854359 0.519683i \(-0.826050\pi\)
0.877238 + 0.480056i \(0.159384\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.15297e8 1.58534e9i 0.708854 1.22777i −0.256429 0.966563i \(-0.582546\pi\)
0.965283 0.261207i \(-0.0841207\pi\)
\(402\) 0 0
\(403\) 1.67430e8 + 2.89997e8i 0.127428 + 0.220712i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.17268e8 −0.0862179
\(408\) 0 0
\(409\) −1.03052e9 1.78492e9i −0.744777 1.28999i −0.950299 0.311339i \(-0.899223\pi\)
0.205522 0.978653i \(-0.434111\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9.34910e8 + 1.63621e9i 0.653047 + 1.14292i
\(414\) 0 0
\(415\) 5.33673e7 9.24349e7i 0.0366528 0.0634845i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.50238e8 0.166190 0.0830948 0.996542i \(-0.473520\pi\)
0.0830948 + 0.996542i \(0.473520\pi\)
\(420\) 0 0
\(421\) −8.67705e8 −0.566741 −0.283370 0.959011i \(-0.591453\pi\)
−0.283370 + 0.959011i \(0.591453\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.70926e8 1.16208e9i 0.423949 0.734301i
\(426\) 0 0
\(427\) 4.35180e8 7.46006e8i 0.270502 0.463708i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6.03709e7 1.04565e8i −0.0363209 0.0629097i 0.847294 0.531125i \(-0.178231\pi\)
−0.883614 + 0.468215i \(0.844897\pi\)
\(432\) 0 0
\(433\) −8.11123e8 −0.480153 −0.240076 0.970754i \(-0.577172\pi\)
−0.240076 + 0.970754i \(0.577172\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.86663e7 + 1.18934e8i 0.0393603 + 0.0681741i
\(438\) 0 0
\(439\) 1.15817e9 2.00601e9i 0.653352 1.13164i −0.328952 0.944347i \(-0.606695\pi\)
0.982304 0.187293i \(-0.0599712\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.25883e9 2.18036e9i 0.687947 1.19156i −0.284554 0.958660i \(-0.591845\pi\)
0.972501 0.232899i \(-0.0748213\pi\)
\(444\) 0 0
\(445\) 1.56694e9 + 2.71401e9i 0.842930 + 1.46000i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.98108e7 −0.0103286 −0.00516429 0.999987i \(-0.501644\pi\)
−0.00516429 + 0.999987i \(0.501644\pi\)
\(450\) 0 0
\(451\) −1.02222e9 1.77053e9i −0.524716 0.908835i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 9.84189e8 1.68715e9i 0.489823 0.839678i
\(456\) 0 0
\(457\) 3.90833e8 6.76943e8i 0.191551 0.331776i −0.754213 0.656630i \(-0.771982\pi\)
0.945764 + 0.324853i \(0.105315\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.02108e8 0.286234 0.143117 0.989706i \(-0.454287\pi\)
0.143117 + 0.989706i \(0.454287\pi\)
\(462\) 0 0
\(463\) −1.26552e9 −0.592565 −0.296282 0.955100i \(-0.595747\pi\)
−0.296282 + 0.955100i \(0.595747\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.01050e8 + 3.48229e8i −0.0913471 + 0.158218i −0.908078 0.418801i \(-0.862451\pi\)
0.816731 + 0.577018i \(0.195784\pi\)
\(468\) 0 0
\(469\) 5.03065e8 + 8.80429e8i 0.225174 + 0.394084i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.13871e9 + 1.97230e9i 0.494763 + 0.856955i
\(474\) 0 0
\(475\) 4.73095e8 0.202545
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8.08815e8 + 1.40091e9i 0.336260 + 0.582419i 0.983726 0.179675i \(-0.0575046\pi\)
−0.647466 + 0.762094i \(0.724171\pi\)
\(480\) 0 0
\(481\) −5.16347e7 + 8.94340e7i −0.0211560 + 0.0366433i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.79725e9 + 4.84498e9i −1.11336 + 1.92839i
\(486\) 0 0
\(487\) −1.52284e8 2.63764e8i −0.0597453 0.103482i 0.834606 0.550848i \(-0.185696\pi\)
−0.894351 + 0.447366i \(0.852362\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.14359e9 0.817252 0.408626 0.912702i \(-0.366008\pi\)
0.408626 + 0.912702i \(0.366008\pi\)
\(492\) 0 0
\(493\) −3.54588e8 6.14165e8i −0.133279 0.230845i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.19505e9 + 1.88145e7i 1.53281 + 0.00687457i
\(498\) 0 0
\(499\) 1.24815e9 2.16187e9i 0.449693 0.778891i −0.548673 0.836037i \(-0.684867\pi\)
0.998366 + 0.0571461i \(0.0182001\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.89416e9 −1.01399 −0.506997 0.861948i \(-0.669244\pi\)
−0.506997 + 0.861948i \(0.669244\pi\)
\(504\) 0 0
\(505\) 8.27966e9 2.86084
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.24625e9 2.15857e9i 0.418883 0.725526i −0.576945 0.816783i \(-0.695755\pi\)
0.995827 + 0.0912573i \(0.0290886\pi\)
\(510\) 0 0
\(511\) −1.12847e9 1.97498e9i −0.374126 0.654770i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.00115e9 + 1.73404e9i 0.322978 + 0.559414i
\(516\) 0 0
\(517\) 6.78339e8 0.215889
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.06085e9 1.83745e9i −0.328641 0.569223i 0.653601 0.756839i \(-0.273257\pi\)
−0.982242 + 0.187616i \(0.939924\pi\)
\(522\) 0 0
\(523\) 4.49299e8 7.78208e8i 0.137334 0.237870i −0.789152 0.614197i \(-0.789480\pi\)
0.926487 + 0.376327i \(0.122813\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.56478e8 4.44234e8i 0.0763333 0.132213i
\(528\) 0 0
\(529\) −4.02719e8 6.97530e8i −0.118279 0.204865i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.80039e9 −0.515017
\(534\) 0 0
\(535\) 2.50816e9 + 4.34425e9i 0.708135 + 1.22653i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.80385e9 3.19011e9i −0.496181 0.877494i
\(540\) 0 0
\(541\) −1.77642e9 + 3.07685e9i −0.482342 + 0.835441i −0.999795 0.0202709i \(-0.993547\pi\)
0.517452 + 0.855712i \(0.326880\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.32482e10 3.50565
\(546\) 0 0
\(547\) −1.53131e9 −0.400043 −0.200021 0.979792i \(-0.564101\pi\)
−0.200021 + 0.979792i \(0.564101\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.25017e8 2.16536e8i 0.0318374 0.0551440i
\(552\) 0 0
\(553\) −1.66287e9 + 2.85058e9i −0.418140 + 0.716796i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.29428e8 + 1.60982e9i 0.227889 + 0.394715i 0.957182 0.289486i \(-0.0934844\pi\)
−0.729294 + 0.684201i \(0.760151\pi\)
\(558\) 0 0
\(559\) 2.00556e9 0.485617
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.22008e9 5.57735e9i −0.760480 1.31719i −0.942604 0.333914i \(-0.891631\pi\)
0.182124 0.983276i \(-0.441703\pi\)
\(564\) 0 0
\(565\) −4.16717e9 + 7.21775e9i −0.972013 + 1.68358i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.37325e9 + 4.11058e9i −0.540070 + 0.935429i 0.458829 + 0.888524i \(0.348269\pi\)
−0.998899 + 0.0469042i \(0.985064\pi\)
\(570\) 0 0
\(571\) −2.87568e9 4.98083e9i −0.646420 1.11963i −0.983972 0.178325i \(-0.942932\pi\)
0.337552 0.941307i \(-0.390401\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.45039e10 −3.18161
\(576\) 0 0
\(577\) −3.45836e9 5.99005e9i −0.749471 1.29812i −0.948077 0.318042i \(-0.896975\pi\)
0.198606 0.980079i \(-0.436359\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.76356e8 790947.i −0.0373056 0.000167313i
\(582\) 0 0
\(583\) −1.35826e8 + 2.35257e8i −0.0283885 + 0.0491703i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.21194e9 0.451378 0.225689 0.974199i \(-0.427537\pi\)
0.225689 + 0.974199i \(0.427537\pi\)
\(588\) 0 0
\(589\) 1.80853e8 0.0364688
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.71060e9 + 2.96285e9i −0.336866 + 0.583470i −0.983842 0.179041i \(-0.942700\pi\)
0.646975 + 0.762511i \(0.276034\pi\)
\(594\) 0 0
\(595\) −2.99204e9 1.34191e7i −0.582314 0.00261164i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.61146e9 7.98728e9i −0.876687 1.51847i −0.854955 0.518703i \(-0.826415\pi\)
−0.0217322 0.999764i \(-0.506918\pi\)
\(600\) 0 0
\(601\) 6.81256e9 1.28012 0.640059 0.768326i \(-0.278910\pi\)
0.640059 + 0.768326i \(0.278910\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −8.66499e7 1.50082e8i −0.0159083 0.0275540i
\(606\) 0 0
\(607\) 2.00349e9 3.47015e9i 0.363603 0.629778i −0.624948 0.780666i \(-0.714880\pi\)
0.988551 + 0.150888i \(0.0482132\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.98683e8 5.17335e8i 0.0529745 0.0917545i
\(612\) 0 0
\(613\) −4.14048e9 7.17153e9i −0.726005 1.25748i −0.958559 0.284893i \(-0.908042\pi\)
0.232555 0.972583i \(-0.425292\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.35578e7 −0.00575169 −0.00287584 0.999996i \(-0.500915\pi\)
−0.00287584 + 0.999996i \(0.500915\pi\)
\(618\) 0 0
\(619\) −1.45841e9 2.52604e9i −0.247151 0.428079i 0.715583 0.698528i \(-0.246161\pi\)
−0.962734 + 0.270449i \(0.912828\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.60914e9 4.47272e9i 0.432305 0.741078i
\(624\) 0 0
\(625\) −1.31988e10 + 2.28610e10i −2.16250 + 3.74555i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.58194e8 0.0253462
\(630\) 0 0
\(631\) −7.72632e9 −1.22425 −0.612125 0.790761i \(-0.709685\pi\)
−0.612125 + 0.790761i \(0.709685\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8.57726e9 + 1.48562e10i −1.32935 + 2.30251i
\(636\) 0 0
\(637\) −3.22720e9 2.89481e7i −0.494695 0.00443744i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.01543e9 5.22288e9i −0.452216 0.783261i 0.546307 0.837585i \(-0.316033\pi\)
−0.998523 + 0.0543235i \(0.982700\pi\)
\(642\) 0 0
\(643\) 3.27128e9 0.485265 0.242633 0.970118i \(-0.421989\pi\)
0.242633 + 0.970118i \(0.421989\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.36141e9 + 5.82214e9i 0.487929 + 0.845118i 0.999904 0.0138825i \(-0.00441906\pi\)
−0.511974 + 0.859001i \(0.671086\pi\)
\(648\) 0 0
\(649\) 4.62041e9 8.00278e9i 0.663474 1.14917i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.47194e9 + 4.28152e9i −0.347409 + 0.601730i −0.985788 0.167992i \(-0.946272\pi\)
0.638379 + 0.769722i \(0.279605\pi\)
\(654\) 0 0
\(655\) 2.55123e9 + 4.41887e9i 0.354736 + 0.614421i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −3.36078e9 −0.457448 −0.228724 0.973491i \(-0.573455\pi\)
−0.228724 + 0.973491i \(0.573455\pi\)
\(660\) 0 0
\(661\) 1.05592e9 + 1.82890e9i 0.142208 + 0.246312i 0.928328 0.371762i \(-0.121246\pi\)
−0.786120 + 0.618074i \(0.787913\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.23352e8 9.15935e8i −0.0690110 0.120778i
\(666\) 0 0
\(667\) −3.83269e9 + 6.63842e9i −0.500108 + 0.866212i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.23508e9 −0.541168
\(672\) 0 0
\(673\) 1.12547e10 1.42324 0.711622 0.702562i \(-0.247961\pi\)
0.711622 + 0.702562i \(0.247961\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.57599e9 2.72970e9i 0.195206 0.338107i −0.751762 0.659435i \(-0.770796\pi\)
0.946968 + 0.321327i \(0.104129\pi\)
\(678\) 0 0
\(679\) 9.24373e9 + 4.14575e7i 1.13319 + 0.00508228i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4.30544e9 + 7.45724e9i 0.517065 + 0.895583i 0.999804 + 0.0198183i \(0.00630877\pi\)
−0.482739 + 0.875764i \(0.660358\pi\)
\(684\) 0 0
\(685\) 4.92916e9 0.585943
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.19612e8 + 2.07175e8i 0.0139319 + 0.0241307i
\(690\) 0 0
\(691\) 6.39246e8 1.10721e9i 0.0737046 0.127660i −0.826818 0.562470i \(-0.809851\pi\)
0.900522 + 0.434810i \(0.143184\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.19787e10 + 2.07477e10i −1.35351 + 2.34436i
\(696\) 0 0
\(697\) 1.37897e9 + 2.38845e9i 0.154255 + 0.267178i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 7.24407e9 0.794273 0.397136 0.917760i \(-0.370004\pi\)
0.397136 + 0.917760i \(0.370004\pi\)
\(702\) 0 0
\(703\) 2.78872e7 + 4.83020e7i 0.00302734 + 0.00524350i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.78706e9 1.18782e10i −0.722294 1.26411i
\(708\) 0 0
\(709\) −2.12572e9 + 3.68185e9i −0.223998 + 0.387976i −0.956018 0.293307i \(-0.905244\pi\)
0.732020 + 0.681283i \(0.238578\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −5.54448e9 −0.572858
\(714\) 0 0
\(715\) −9.57793e9 −0.979942
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.48927e9 6.04360e9i 0.350093 0.606379i −0.636172 0.771547i \(-0.719483\pi\)
0.986265 + 0.165168i \(0.0528166\pi\)
\(720\) 0 0
\(721\) 1.66703e9 2.85771e9i 0.165642 0.283952i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.32032e10 + 2.28686e10i 1.28676 + 2.22873i
\(726\) 0 0
\(727\) −1.21909e9 −0.117670 −0.0588349 0.998268i \(-0.518739\pi\)
−0.0588349 + 0.998268i \(0.518739\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.53612e9 2.66063e9i −0.145450 0.251927i
\(732\) 0 0
\(733\) 8.20330e9 1.42085e10i 0.769351 1.33255i −0.168564 0.985691i \(-0.553913\pi\)
0.937915 0.346864i \(-0.112754\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.48619e9 4.30620e9i 0.228769 0.396240i
\(738\) 0 0
\(739\) 1.86533e9 + 3.23084e9i 0.170020 + 0.294483i 0.938427 0.345479i \(-0.112283\pi\)
−0.768407 + 0.639962i \(0.778950\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.82498e10 −1.63229 −0.816144 0.577849i \(-0.803892\pi\)
−0.816144 + 0.577849i \(0.803892\pi\)
\(744\) 0 0
\(745\) −1.44141e10 2.49660e10i −1.27715 2.21208i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.17639e9 7.15937e9i 0.363174 0.622571i
\(750\) 0 0
\(751\) −5.97037e9 + 1.03410e10i −0.514353 + 0.890886i 0.485508 + 0.874232i \(0.338635\pi\)
−0.999861 + 0.0166536i \(0.994699\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.30515e10 1.94933
\(756\) 0 0
\(757\) 1.34863e10 1.12994 0.564971 0.825111i \(-0.308887\pi\)
0.564971 + 0.825111i \(0.308887\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −5.63097e9 + 9.75313e9i −0.463166 + 0.802228i −0.999117 0.0420218i \(-0.986620\pi\)
0.535950 + 0.844250i \(0.319953\pi\)
\(762\) 0 0
\(763\) −1.08599e10 1.90062e10i −0.885095 1.54903i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.06887e9 7.04750e9i −0.325605 0.563964i
\(768\) 0 0
\(769\) −2.13869e10 −1.69592 −0.847961 0.530059i \(-0.822170\pi\)
−0.847961 + 0.530059i \(0.822170\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8.36012e9 1.44802e10i −0.651005 1.12757i −0.982879 0.184250i \(-0.941014\pi\)
0.331874 0.943324i \(-0.392319\pi\)
\(774\) 0 0
\(775\) −9.55004e9 + 1.65412e10i −0.736969 + 1.27647i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.86182e8 + 8.42093e8i −0.0368484 + 0.0638232i
\(780\) 0 0
\(781\) −1.02856e10 1.78152e10i −0.772595 1.33817i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.93838e10 −1.43020
\(786\) 0 0
\(787\) 4.72932e9 + 8.19142e9i 0.345849 + 0.599029i 0.985508 0.169631i \(-0.0542574\pi\)
−0.639658 + 0.768659i \(0.720924\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.37707e10 + 6.17609e7i 0.989327 + 0.00443706i
\(792\) 0 0
\(793\) −1.86477e9 + 3.22988e9i −0.132791 + 0.230001i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.25156e9 0.297471 0.148736 0.988877i \(-0.452480\pi\)
0.148736 + 0.988877i \(0.452480\pi\)
\(798\) 0 0
\(799\) −9.15081e8 −0.0634667
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −5.57701e9 + 9.65967e9i −0.380100 + 0.658352i
\(804\) 0 0
\(805\) 1.60446e10 + 2.80802e10i 1.08404 + 1.89721i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.76390e9 + 4.78722e9i 0.183528 + 0.317880i 0.943080 0.332567i \(-0.107915\pi\)
−0.759551 + 0.650447i \(0.774581\pi\)
\(810\) 0 0
\(811\) 4.99197e9 0.328624 0.164312 0.986408i \(-0.447460\pi\)
0.164312 + 0.986408i \(0.447460\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.39609e10 2.41810e10i −0.903361 1.56467i
\(816\) 0 0
\(817\) 5.41587e8 9.38056e8i 0.0347449 0.0601799i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.29502e9 + 9.17125e9i −0.333939 + 0.578399i −0.983280 0.182098i \(-0.941711\pi\)
0.649342 + 0.760497i \(0.275045\pi\)
\(822\) 0 0
\(823\) 1.00055e10 + 1.73301e10i 0.625663 + 1.08368i 0.988412 + 0.151793i \(0.0485048\pi\)
−0.362749 + 0.931887i \(0.618162\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.82024e9 −0.173387 −0.0866935 0.996235i \(-0.527630\pi\)
−0.0866935 + 0.996235i \(0.527630\pi\)
\(828\) 0 0
\(829\) −2.35107e9 4.07217e9i −0.143326 0.248247i 0.785421 0.618961i \(-0.212446\pi\)
−0.928747 + 0.370714i \(0.879113\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.43340e9 + 4.30346e9i 0.145867 + 0.257965i
\(834\) 0 0
\(835\) 1.86179e10 3.22472e10i 1.10670 1.91686i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.73548e10 1.59907 0.799534 0.600621i \(-0.205080\pi\)
0.799534 + 0.600621i \(0.205080\pi\)
\(840\) 0 0
\(841\) −3.29394e9 −0.190954
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.30143e10 2.25415e10i 0.742032 1.28524i
\(846\) 0 0
\(847\) −1.44283e8 + 2.47337e8i −0.00815873 + 0.0139861i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −8.54949e8 1.48081e9i −0.0475540 0.0823659i
\(852\) 0 0
\(853\) 1.99998e10 1.10333 0.551665 0.834066i \(-0.313993\pi\)
0.551665 + 0.834066i \(0.313993\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.79869e10 3.11543e10i −0.976167 1.69077i −0.676028 0.736876i \(-0.736300\pi\)
−0.300139 0.953896i \(-0.597033\pi\)
\(858\) 0 0
\(859\) −1.05362e10 + 1.82492e10i −0.567161 + 0.982351i 0.429684 + 0.902979i \(0.358625\pi\)
−0.996845 + 0.0793721i \(0.974708\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.22382e10 2.11971e10i 0.648154 1.12264i −0.335410 0.942072i \(-0.608875\pi\)
0.983563 0.180563i \(-0.0577919\pi\)
\(864\) 0 0
\(865\) 1.39610e10 + 2.41812e10i 0.733433 + 1.27034i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.61828e10 0.836533
\(870\) 0 0
\(871\) −2.18942e9 3.79218e9i −0.112270 0.194458i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 7.24705e10 + 3.25025e8i 3.65707 + 0.0164017i
\(876\) 0 0
\(877\) 1.65279e9 2.86271e9i 0.0827404 0.143311i −0.821686 0.569941i \(-0.806966\pi\)
0.904426 + 0.426630i \(0.140299\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 3.05557e10 1.50549 0.752743 0.658315i \(-0.228730\pi\)
0.752743 + 0.658315i \(0.228730\pi\)
\(882\) 0 0
\(883\) −1.20403e10 −0.588540 −0.294270 0.955722i \(-0.595077\pi\)
−0.294270 + 0.955722i \(0.595077\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.16411e9 + 2.01629e9i −0.0560093 + 0.0970109i −0.892671 0.450710i \(-0.851171\pi\)
0.836661 + 0.547721i \(0.184504\pi\)
\(888\) 0 0
\(889\) 2.83442e10 + 1.27122e8i 1.35303 + 0.00606826i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.61315e8 2.79405e8i −0.00758042 0.0131297i
\(894\) 0 0
\(895\) 2.56186e10 1.19447
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.04726e9 + 8.74211e9i 0.231684 + 0.401289i
\(900\) 0 0
\(901\) 1.83229e8 3.17362e8i 0.00834561 0.0144550i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.47983e10 + 2.56313e10i −0.663652 + 1.14948i
\(906\) 0 0
\(907\) 9.46293e9 + 1.63903e10i 0.421114 + 0.729391i 0.996049 0.0888082i \(-0.0283058\pi\)
−0.574934 + 0.818199i \(0.694972\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.12249e10 0.491891 0.245945 0.969284i \(-0.420902\pi\)
0.245945 + 0.969284i \(0.420902\pi\)
\(912\) 0 0
\(913\) 4.32399e8 + 7.48937e8i 0.0188034 + 0.0325685i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.24812e9 7.28234e9i 0.181930 0.311873i
\(918\) 0 0
\(919\) 1.64634e10 2.85155e10i 0.699706 1.21193i −0.268863 0.963179i \(-0.586648\pi\)
0.968568 0.248747i \(-0.0800189\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.81157e10 −0.758313
\(924\) 0 0
\(925\) −5.89040e9 −0.244708
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −4.16396e9 + 7.21219e9i −0.170393 + 0.295129i −0.938557 0.345124i \(-0.887837\pi\)
0.768164 + 0.640253i \(0.221170\pi\)
\(930\) 0 0
\(931\) −8.85021e8 + 1.50163e9i −0.0359443 + 0.0609873i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7.33601e9 + 1.27064e10i 0.293508 + 0.508370i
\(936\) 0 0
\(937\) −3.35209e10 −1.33115 −0.665576 0.746330i \(-0.731814\pi\)
−0.665576 + 0.746330i \(0.731814\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.21961e10 2.11243e10i −0.477152 0.826452i 0.522505 0.852636i \(-0.324998\pi\)
−0.999657 + 0.0261843i \(0.991664\pi\)
\(942\) 0 0
\(943\) 1.49051e10 2.58164e10i 0.578821 1.00255i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.80141e8 1.00483e9i 0.0221977 0.0384476i −0.854713 0.519101i \(-0.826267\pi\)
0.876911 + 0.480653i \(0.159600\pi\)
\(948\) 0 0
\(949\) 4.91129e9 + 8.50661e9i 0.186537 + 0.323091i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.31548e10 −0.492333 −0.246167 0.969228i \(-0.579171\pi\)
−0.246167 + 0.969228i \(0.579171\pi\)
\(954\) 0 0
\(955\) −2.33163e10 4.03850e10i −0.866259 1.50040i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.04056e9 7.07151e9i −0.147937 0.258909i
\(960\) 0 0
\(961\) 1.01056e10 1.75033e10i 0.367306 0.636193i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3.45390e10 −1.23727
\(966\) 0 0
\(967\) −1.67834e10 −0.596880 −0.298440 0.954428i \(-0.596466\pi\)
−0.298440 + 0.954428i \(0.596466\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.69538e10 2.93648e10i 0.594292 1.02934i −0.399355 0.916796i \(-0.630766\pi\)
0.993646 0.112547i \(-0.0359009\pi\)
\(972\) 0 0
\(973\) 3.95845e10 + 1.77534e8i 1.37762 + 0.00617855i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.65238e10 + 2.86200e10i 0.566863 + 0.981835i 0.996874 + 0.0790114i \(0.0251764\pi\)
−0.430011 + 0.902824i \(0.641490\pi\)
\(978\) 0 0
\(979\) −2.53916e10 −0.864871
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.60564e10 + 2.78105e10i 0.539151 + 0.933837i 0.998950 + 0.0458138i \(0.0145881\pi\)
−0.459799 + 0.888023i \(0.652079\pi\)
\(984\) 0 0
\(985\) −4.53388e10 + 7.85291e10i −1.51162 + 2.61820i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.66037e10 + 2.87584e10i −0.545779 + 0.945317i
\(990\) 0 0
\(991\) −4.68129e9 8.10824e9i −0.152795 0.264648i 0.779459 0.626453i \(-0.215494\pi\)
−0.932254 + 0.361805i \(0.882161\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.13842e9 0.101002
\(996\) 0 0
\(997\) −2.62304e10 4.54323e10i −0.838246 1.45188i −0.891360 0.453295i \(-0.850248\pi\)
0.0531148 0.998588i \(-0.483085\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.8.k.c.37.1 10
3.2 odd 2 28.8.e.a.9.5 10
7.4 even 3 inner 252.8.k.c.109.1 10
12.11 even 2 112.8.i.d.65.1 10
21.2 odd 6 196.8.a.d.1.1 5
21.5 even 6 196.8.a.e.1.5 5
21.11 odd 6 28.8.e.a.25.5 yes 10
21.17 even 6 196.8.e.f.165.1 10
21.20 even 2 196.8.e.f.177.1 10
84.11 even 6 112.8.i.d.81.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.8.e.a.9.5 10 3.2 odd 2
28.8.e.a.25.5 yes 10 21.11 odd 6
112.8.i.d.65.1 10 12.11 even 2
112.8.i.d.81.1 10 84.11 even 6
196.8.a.d.1.1 5 21.2 odd 6
196.8.a.e.1.5 5 21.5 even 6
196.8.e.f.165.1 10 21.17 even 6
196.8.e.f.177.1 10 21.20 even 2
252.8.k.c.37.1 10 1.1 even 1 trivial
252.8.k.c.109.1 10 7.4 even 3 inner