Properties

Label 112.8.i.d.81.1
Level $112$
Weight $8$
Character 112.81
Analytic conductor $34.987$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [112,8,Mod(65,112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(112, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("112.65");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.9871228542\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 342 x^{8} + 2165 x^{7} + 113605 x^{6} + 319380 x^{5} + 1438128 x^{4} + 1705752 x^{3} + \cdots + 23619600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{4}\cdot 7^{5} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.1
Root \(-1.38371 - 2.39666i\) of defining polynomial
Character \(\chi\) \(=\) 112.81
Dual form 112.8.i.d.65.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-37.9099 + 65.6620i) q^{3} +(274.614 + 475.646i) q^{5} +(-907.484 + 4.07000i) q^{7} +(-1780.83 - 3084.49i) q^{9} +(-2225.01 + 3853.83i) q^{11} -3918.83 q^{13} -41642.4 q^{15} +(-3001.55 + 5198.83i) q^{17} +(1058.25 + 1832.95i) q^{19} +(34135.4 - 59741.4i) q^{21} +(32443.3 + 56193.4i) q^{23} +(-111763. + 193580. i) q^{25} +104226. q^{27} +118135. q^{29} +(42724.4 - 74000.8i) q^{31} +(-168700. - 292197. i) q^{33} +(-251144. - 430523. i) q^{35} +(13176.1 + 22821.6i) q^{37} +(148563. - 257318. i) q^{39} -459420. q^{41} +511775. q^{43} +(978081. - 1.69409e6i) q^{45} +(-76217.4 - 132012. i) q^{47} +(823510. - 7386.92i) q^{49} +(-227577. - 394175. i) q^{51} +(30522.5 - 52866.5i) q^{53} -2.44408e6 q^{55} -160473. q^{57} +(1.03829e6 - 1.79837e6i) q^{59} +(475849. + 824194. i) q^{61} +(1.62863e6 + 2.79187e6i) q^{63} +(-1.07617e6 - 1.86397e6i) q^{65} +(-558691. + 967681. i) q^{67} -4.91969e6 q^{69} +4.62273e6 q^{71} +(-1.25326e6 + 2.17070e6i) q^{73} +(-8.47389e6 - 1.46772e7i) q^{75} +(2.00348e6 - 3.50635e6i) q^{77} +(1.81828e6 + 3.14935e6i) q^{79} +(-56543.1 + 97935.5i) q^{81} -194336. q^{83} -3.29707e6 q^{85} +(-4.47850e6 + 7.75699e6i) q^{87} +(-2.85298e6 - 4.94150e6i) q^{89} +(3.55627e6 - 15949.7i) q^{91} +(3.23936e6 + 5.61073e6i) q^{93} +(-581222. + 1.00671e6i) q^{95} +1.01861e7 q^{97} +1.58495e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 27 q^{3} + 249 q^{5} - 332 q^{7} - 5702 q^{9} - 6399 q^{11} - 26988 q^{13} - 19294 q^{15} + 3609 q^{17} + 12403 q^{19} + 16099 q^{21} + 13959 q^{23} - 162364 q^{25} - 161550 q^{27} + 26148 q^{29}+ \cdots + 119277812 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −37.9099 + 65.6620i −0.810641 + 1.40407i 0.101774 + 0.994808i \(0.467548\pi\)
−0.912416 + 0.409265i \(0.865785\pi\)
\(4\) 0 0
\(5\) 274.614 + 475.646i 0.982489 + 1.70172i 0.652601 + 0.757702i \(0.273678\pi\)
0.329888 + 0.944020i \(0.392989\pi\)
\(6\) 0 0
\(7\) −907.484 + 4.07000i −0.999990 + 0.00448489i
\(8\) 0 0
\(9\) −1780.83 3084.49i −0.814279 1.41037i
\(10\) 0 0
\(11\) −2225.01 + 3853.83i −0.504032 + 0.873009i 0.495957 + 0.868347i \(0.334817\pi\)
−0.999989 + 0.00466169i \(0.998516\pi\)
\(12\) 0 0
\(13\) −3918.83 −0.494715 −0.247357 0.968924i \(-0.579562\pi\)
−0.247357 + 0.968924i \(0.579562\pi\)
\(14\) 0 0
\(15\) −41642.4 −3.18579
\(16\) 0 0
\(17\) −3001.55 + 5198.83i −0.148175 + 0.256646i −0.930553 0.366158i \(-0.880673\pi\)
0.782378 + 0.622804i \(0.214006\pi\)
\(18\) 0 0
\(19\) 1058.25 + 1832.95i 0.0353958 + 0.0613073i 0.883181 0.469033i \(-0.155397\pi\)
−0.847785 + 0.530340i \(0.822064\pi\)
\(20\) 0 0
\(21\) 34135.4 59741.4i 0.804336 1.40769i
\(22\) 0 0
\(23\) 32443.3 + 56193.4i 0.556003 + 0.963026i 0.997825 + 0.0659227i \(0.0209991\pi\)
−0.441822 + 0.897103i \(0.645668\pi\)
\(24\) 0 0
\(25\) −111763. + 193580.i −1.43057 + 2.47782i
\(26\) 0 0
\(27\) 104226. 1.01907
\(28\) 0 0
\(29\) 118135. 0.899470 0.449735 0.893162i \(-0.351518\pi\)
0.449735 + 0.893162i \(0.351518\pi\)
\(30\) 0 0
\(31\) 42724.4 74000.8i 0.257579 0.446139i −0.708014 0.706198i \(-0.750409\pi\)
0.965593 + 0.260059i \(0.0837420\pi\)
\(32\) 0 0
\(33\) −168700. 292197.i −0.817178 1.41539i
\(34\) 0 0
\(35\) −251144. 430523.i −0.990112 1.69730i
\(36\) 0 0
\(37\) 13176.1 + 22821.6i 0.0427641 + 0.0740696i 0.886615 0.462508i \(-0.153050\pi\)
−0.843851 + 0.536577i \(0.819717\pi\)
\(38\) 0 0
\(39\) 148563. 257318.i 0.401036 0.694615i
\(40\) 0 0
\(41\) −459420. −1.04104 −0.520519 0.853850i \(-0.674262\pi\)
−0.520519 + 0.853850i \(0.674262\pi\)
\(42\) 0 0
\(43\) 511775. 0.981611 0.490806 0.871269i \(-0.336703\pi\)
0.490806 + 0.871269i \(0.336703\pi\)
\(44\) 0 0
\(45\) 978081. 1.69409e6i 1.60004 2.77135i
\(46\) 0 0
\(47\) −76217.4 132012.i −0.107081 0.185470i 0.807506 0.589860i \(-0.200817\pi\)
−0.914586 + 0.404390i \(0.867484\pi\)
\(48\) 0 0
\(49\) 823510. 7386.92i 0.999960 0.00896969i
\(50\) 0 0
\(51\) −227577. 394175.i −0.240233 0.416096i
\(52\) 0 0
\(53\) 30522.5 52866.5i 0.0281614 0.0487770i −0.851601 0.524190i \(-0.824368\pi\)
0.879763 + 0.475413i \(0.157701\pi\)
\(54\) 0 0
\(55\) −2.44408e6 −1.98082
\(56\) 0 0
\(57\) −160473. −0.114773
\(58\) 0 0
\(59\) 1.03829e6 1.79837e6i 0.658167 1.13998i −0.322923 0.946425i \(-0.604666\pi\)
0.981090 0.193553i \(-0.0620011\pi\)
\(60\) 0 0
\(61\) 475849. + 824194.i 0.268420 + 0.464917i 0.968454 0.249193i \(-0.0801652\pi\)
−0.700034 + 0.714109i \(0.746832\pi\)
\(62\) 0 0
\(63\) 1.62863e6 + 2.79187e6i 0.820596 + 1.40671i
\(64\) 0 0
\(65\) −1.07617e6 1.86397e6i −0.486052 0.841866i
\(66\) 0 0
\(67\) −558691. + 967681.i −0.226939 + 0.393071i −0.956900 0.290419i \(-0.906205\pi\)
0.729960 + 0.683490i \(0.239539\pi\)
\(68\) 0 0
\(69\) −4.91969e6 −1.80288
\(70\) 0 0
\(71\) 4.62273e6 1.53283 0.766415 0.642346i \(-0.222039\pi\)
0.766415 + 0.642346i \(0.222039\pi\)
\(72\) 0 0
\(73\) −1.25326e6 + 2.17070e6i −0.377059 + 0.653086i −0.990633 0.136552i \(-0.956398\pi\)
0.613574 + 0.789637i \(0.289731\pi\)
\(74\) 0 0
\(75\) −8.47389e6 1.46772e7i −2.31936 4.01725i
\(76\) 0 0
\(77\) 2.00348e6 3.50635e6i 0.500111 0.875260i
\(78\) 0 0
\(79\) 1.81828e6 + 3.14935e6i 0.414921 + 0.718664i 0.995420 0.0955966i \(-0.0304759\pi\)
−0.580499 + 0.814261i \(0.697143\pi\)
\(80\) 0 0
\(81\) −56543.1 + 97935.5i −0.0118218 + 0.0204759i
\(82\) 0 0
\(83\) −194336. −0.0373060 −0.0186530 0.999826i \(-0.505938\pi\)
−0.0186530 + 0.999826i \(0.505938\pi\)
\(84\) 0 0
\(85\) −3.29707e6 −0.582320
\(86\) 0 0
\(87\) −4.47850e6 + 7.75699e6i −0.729147 + 1.26292i
\(88\) 0 0
\(89\) −2.85298e6 4.94150e6i −0.428977 0.743009i 0.567806 0.823162i \(-0.307792\pi\)
−0.996783 + 0.0801532i \(0.974459\pi\)
\(90\) 0 0
\(91\) 3.55627e6 15949.7i 0.494710 0.00221874i
\(92\) 0 0
\(93\) 3.23936e6 + 5.61073e6i 0.417608 + 0.723318i
\(94\) 0 0
\(95\) −581222. + 1.00671e6i −0.0695520 + 0.120468i
\(96\) 0 0
\(97\) 1.01861e7 1.13320 0.566601 0.823992i \(-0.308258\pi\)
0.566601 + 0.823992i \(0.308258\pi\)
\(98\) 0 0
\(99\) 1.58495e7 1.64169
\(100\) 0 0
\(101\) 7.53754e6 1.30554e7i 0.727956 1.26086i −0.229790 0.973240i \(-0.573804\pi\)
0.957746 0.287616i \(-0.0928627\pi\)
\(102\) 0 0
\(103\) −1.82282e6 3.15722e6i −0.164367 0.284692i 0.772063 0.635546i \(-0.219225\pi\)
−0.936430 + 0.350854i \(0.885891\pi\)
\(104\) 0 0
\(105\) 3.77898e7 169485.i 3.18575 0.0142879i
\(106\) 0 0
\(107\) 4.56669e6 + 7.90974e6i 0.360378 + 0.624193i 0.988023 0.154307i \(-0.0493144\pi\)
−0.627645 + 0.778500i \(0.715981\pi\)
\(108\) 0 0
\(109\) −1.20607e7 + 2.08898e7i −0.892033 + 1.54505i −0.0545997 + 0.998508i \(0.517388\pi\)
−0.837434 + 0.546539i \(0.815945\pi\)
\(110\) 0 0
\(111\) −1.99801e6 −0.138665
\(112\) 0 0
\(113\) −1.51746e7 −0.989337 −0.494668 0.869082i \(-0.664710\pi\)
−0.494668 + 0.869082i \(0.664710\pi\)
\(114\) 0 0
\(115\) −1.78188e7 + 3.08630e7i −1.09253 + 1.89232i
\(116\) 0 0
\(117\) 6.97876e6 + 1.20876e7i 0.402836 + 0.697732i
\(118\) 0 0
\(119\) 2.70269e6 4.73007e6i 0.147022 0.257308i
\(120\) 0 0
\(121\) −157767. 273260.i −0.00809593 0.0140226i
\(122\) 0 0
\(123\) 1.74166e7 3.01664e7i 0.843909 1.46169i
\(124\) 0 0
\(125\) −7.98587e7 −3.65710
\(126\) 0 0
\(127\) −3.12338e7 −1.35305 −0.676523 0.736422i \(-0.736514\pi\)
−0.676523 + 0.736422i \(0.736514\pi\)
\(128\) 0 0
\(129\) −1.94014e7 + 3.36042e7i −0.795735 + 1.37825i
\(130\) 0 0
\(131\) 4.64512e6 + 8.04559e6i 0.180529 + 0.312686i 0.942061 0.335442i \(-0.108886\pi\)
−0.761532 + 0.648128i \(0.775552\pi\)
\(132\) 0 0
\(133\) −967806. 1.65906e6i −0.0356704 0.0611479i
\(134\) 0 0
\(135\) 2.86220e7 + 4.95748e7i 1.00123 + 1.73417i
\(136\) 0 0
\(137\) 4.48735e6 7.77232e6i 0.149097 0.258243i −0.781797 0.623533i \(-0.785697\pi\)
0.930894 + 0.365290i \(0.119030\pi\)
\(138\) 0 0
\(139\) −4.36201e7 −1.37764 −0.688819 0.724934i \(-0.741870\pi\)
−0.688819 + 0.724934i \(0.741870\pi\)
\(140\) 0 0
\(141\) 1.15576e7 0.347217
\(142\) 0 0
\(143\) 8.71944e6 1.51025e7i 0.249352 0.431890i
\(144\) 0 0
\(145\) 3.24416e7 + 5.61905e7i 0.883719 + 1.53065i
\(146\) 0 0
\(147\) −3.07342e7 + 5.43533e7i −0.798015 + 1.41129i
\(148\) 0 0
\(149\) 2.62443e7 + 4.54565e7i 0.649955 + 1.12575i 0.983133 + 0.182891i \(0.0585455\pi\)
−0.333178 + 0.942864i \(0.608121\pi\)
\(150\) 0 0
\(151\) 2.09853e7 3.63477e7i 0.496017 0.859127i −0.503972 0.863720i \(-0.668129\pi\)
0.999989 + 0.00459273i \(0.00146192\pi\)
\(152\) 0 0
\(153\) 2.13810e7 0.482622
\(154\) 0 0
\(155\) 4.69309e7 1.01227
\(156\) 0 0
\(157\) 1.76464e7 3.05645e7i 0.363922 0.630331i −0.624681 0.780880i \(-0.714771\pi\)
0.988603 + 0.150549i \(0.0481042\pi\)
\(158\) 0 0
\(159\) 2.31421e6 + 4.00833e6i 0.0456576 + 0.0790813i
\(160\) 0 0
\(161\) −2.96704e7 5.08625e7i −0.560317 0.960522i
\(162\) 0 0
\(163\) 2.54191e7 + 4.40271e7i 0.459730 + 0.796276i 0.998946 0.0458910i \(-0.0146127\pi\)
−0.539216 + 0.842167i \(0.681279\pi\)
\(164\) 0 0
\(165\) 9.26549e7 1.60483e8i 1.60574 2.78122i
\(166\) 0 0
\(167\) −6.77967e7 −1.12642 −0.563211 0.826313i \(-0.690434\pi\)
−0.563211 + 0.826313i \(0.690434\pi\)
\(168\) 0 0
\(169\) −4.73913e7 −0.755257
\(170\) 0 0
\(171\) 3.76913e6 6.52832e6i 0.0576441 0.0998425i
\(172\) 0 0
\(173\) −2.54193e7 4.40275e7i −0.373252 0.646492i 0.616812 0.787111i \(-0.288424\pi\)
−0.990064 + 0.140619i \(0.955091\pi\)
\(174\) 0 0
\(175\) 1.00636e8 1.76125e8i 1.41944 2.48421i
\(176\) 0 0
\(177\) 7.87229e7 + 1.36352e8i 1.06707 + 1.84823i
\(178\) 0 0
\(179\) −2.33223e7 + 4.03954e7i −0.303939 + 0.526437i −0.977024 0.213127i \(-0.931635\pi\)
0.673086 + 0.739565i \(0.264969\pi\)
\(180\) 0 0
\(181\) 5.38874e7 0.675480 0.337740 0.941239i \(-0.390338\pi\)
0.337740 + 0.941239i \(0.390338\pi\)
\(182\) 0 0
\(183\) −7.21576e7 −0.870369
\(184\) 0 0
\(185\) −7.23666e6 + 1.25343e7i −0.0840306 + 0.145545i
\(186\) 0 0
\(187\) −1.33570e7 2.31349e7i −0.149369 0.258715i
\(188\) 0 0
\(189\) −9.45837e7 + 424202.i −1.01906 + 0.00457042i
\(190\) 0 0
\(191\) −4.24528e7 7.35305e7i −0.440849 0.763573i 0.556904 0.830577i \(-0.311989\pi\)
−0.997753 + 0.0670042i \(0.978656\pi\)
\(192\) 0 0
\(193\) 3.14432e7 5.44613e7i 0.314830 0.545302i −0.664571 0.747225i \(-0.731386\pi\)
0.979401 + 0.201923i \(0.0647190\pi\)
\(194\) 0 0
\(195\) 1.63190e8 1.57605
\(196\) 0 0
\(197\) −1.65100e8 −1.53856 −0.769281 0.638910i \(-0.779385\pi\)
−0.769281 + 0.638910i \(0.779385\pi\)
\(198\) 0 0
\(199\) 2.85712e6 4.94867e6i 0.0257005 0.0445146i −0.852889 0.522092i \(-0.825152\pi\)
0.878590 + 0.477578i \(0.158485\pi\)
\(200\) 0 0
\(201\) −4.23599e7 7.33695e7i −0.367933 0.637279i
\(202\) 0 0
\(203\) −1.07206e8 + 480811.i −0.899461 + 0.00403402i
\(204\) 0 0
\(205\) −1.26163e8 2.18521e8i −1.02281 1.77156i
\(206\) 0 0
\(207\) 1.15552e8 2.00142e8i 0.905483 1.56834i
\(208\) 0 0
\(209\) −9.41849e6 −0.0713624
\(210\) 0 0
\(211\) −1.18425e8 −0.867870 −0.433935 0.900944i \(-0.642875\pi\)
−0.433935 + 0.900944i \(0.642875\pi\)
\(212\) 0 0
\(213\) −1.75247e8 + 3.03537e8i −1.24258 + 2.15220i
\(214\) 0 0
\(215\) 1.40541e8 + 2.43424e8i 0.964423 + 1.67043i
\(216\) 0 0
\(217\) −3.84705e7 + 6.73284e7i −0.255575 + 0.447290i
\(218\) 0 0
\(219\) −9.50217e7 1.64582e8i −0.611320 1.05884i
\(220\) 0 0
\(221\) 1.17626e7 2.03733e7i 0.0733041 0.126967i
\(222\) 0 0
\(223\) −2.90507e8 −1.75424 −0.877121 0.480270i \(-0.840539\pi\)
−0.877121 + 0.480270i \(0.840539\pi\)
\(224\) 0 0
\(225\) 7.96125e8 4.65954
\(226\) 0 0
\(227\) 3.42802e7 5.93750e7i 0.194515 0.336909i −0.752227 0.658905i \(-0.771020\pi\)
0.946741 + 0.321995i \(0.104353\pi\)
\(228\) 0 0
\(229\) −1.27632e8 2.21064e8i −0.702318 1.21645i −0.967651 0.252294i \(-0.918815\pi\)
0.265332 0.964157i \(-0.414518\pi\)
\(230\) 0 0
\(231\) 1.54282e8 + 2.64478e8i 0.823518 + 1.41171i
\(232\) 0 0
\(233\) −2.98377e7 5.16805e7i −0.154533 0.267658i 0.778356 0.627823i \(-0.216054\pi\)
−0.932889 + 0.360165i \(0.882721\pi\)
\(234\) 0 0
\(235\) 4.18608e7 7.25050e7i 0.210412 0.364444i
\(236\) 0 0
\(237\) −2.75723e8 −1.34541
\(238\) 0 0
\(239\) −3.11142e8 −1.47423 −0.737117 0.675765i \(-0.763813\pi\)
−0.737117 + 0.675765i \(0.763813\pi\)
\(240\) 0 0
\(241\) 1.80211e8 3.12135e8i 0.829319 1.43642i −0.0692534 0.997599i \(-0.522062\pi\)
0.898573 0.438824i \(-0.144605\pi\)
\(242\) 0 0
\(243\) 1.09684e8 + 1.89979e8i 0.490369 + 0.849344i
\(244\) 0 0
\(245\) 2.29661e8 + 3.89670e8i 0.997714 + 1.69284i
\(246\) 0 0
\(247\) −4.14711e6 7.18300e6i −0.0175108 0.0303296i
\(248\) 0 0
\(249\) 7.36725e6 1.27605e7i 0.0302418 0.0523804i
\(250\) 0 0
\(251\) 1.56577e8 0.624985 0.312492 0.949920i \(-0.398836\pi\)
0.312492 + 0.949920i \(0.398836\pi\)
\(252\) 0 0
\(253\) −2.88747e8 −1.12097
\(254\) 0 0
\(255\) 1.24992e8 2.16492e8i 0.472053 0.817619i
\(256\) 0 0
\(257\) 1.70225e8 + 2.94838e8i 0.625544 + 1.08347i 0.988435 + 0.151642i \(0.0484561\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(258\) 0 0
\(259\) −1.20499e7 2.06566e7i −0.0430959 0.0738771i
\(260\) 0 0
\(261\) −2.10379e8 3.64386e8i −0.732419 1.26859i
\(262\) 0 0
\(263\) −1.95033e8 + 3.37808e8i −0.661095 + 1.14505i 0.319233 + 0.947676i \(0.396575\pi\)
−0.980328 + 0.197374i \(0.936759\pi\)
\(264\) 0 0
\(265\) 3.35276e7 0.110673
\(266\) 0 0
\(267\) 4.32625e8 1.39098
\(268\) 0 0
\(269\) 1.80155e8 3.12038e8i 0.564306 0.977406i −0.432808 0.901486i \(-0.642477\pi\)
0.997114 0.0759200i \(-0.0241894\pi\)
\(270\) 0 0
\(271\) 1.24337e8 + 2.15358e8i 0.379496 + 0.657307i 0.990989 0.133943i \(-0.0427640\pi\)
−0.611493 + 0.791250i \(0.709431\pi\)
\(272\) 0 0
\(273\) −1.33771e8 + 2.34117e8i −0.397917 + 0.696407i
\(274\) 0 0
\(275\) −4.97349e8 8.61435e8i −1.44211 2.49780i
\(276\) 0 0
\(277\) −1.93090e8 + 3.34442e8i −0.545860 + 0.945458i 0.452692 + 0.891667i \(0.350464\pi\)
−0.998552 + 0.0537907i \(0.982870\pi\)
\(278\) 0 0
\(279\) −3.04339e8 −0.838964
\(280\) 0 0
\(281\) −1.38669e8 −0.372826 −0.186413 0.982471i \(-0.559686\pi\)
−0.186413 + 0.982471i \(0.559686\pi\)
\(282\) 0 0
\(283\) 2.13509e8 3.69809e8i 0.559969 0.969894i −0.437529 0.899204i \(-0.644146\pi\)
0.997498 0.0706904i \(-0.0225202\pi\)
\(284\) 0 0
\(285\) −4.40682e7 7.63283e7i −0.112763 0.195312i
\(286\) 0 0
\(287\) 4.16916e8 1.86984e6i 1.04103 0.00466894i
\(288\) 0 0
\(289\) 1.87151e8 + 3.24155e8i 0.456089 + 0.789969i
\(290\) 0 0
\(291\) −3.86155e8 + 6.68840e8i −0.918620 + 1.59110i
\(292\) 0 0
\(293\) 5.59769e8 1.30009 0.650043 0.759898i \(-0.274751\pi\)
0.650043 + 0.759898i \(0.274751\pi\)
\(294\) 0 0
\(295\) 1.14051e9 2.58657
\(296\) 0 0
\(297\) −2.31905e8 + 4.01671e8i −0.513644 + 0.889657i
\(298\) 0 0
\(299\) −1.27140e8 2.20212e8i −0.275063 0.476423i
\(300\) 0 0
\(301\) −4.64427e8 + 2.08293e6i −0.981601 + 0.00440242i
\(302\) 0 0
\(303\) 5.71496e8 + 9.89860e8i 1.18022 + 2.04420i
\(304\) 0 0
\(305\) −2.61350e8 + 4.52671e8i −0.527439 + 0.913552i
\(306\) 0 0
\(307\) 1.50479e8 0.296819 0.148409 0.988926i \(-0.452585\pi\)
0.148409 + 0.988926i \(0.452585\pi\)
\(308\) 0 0
\(309\) 2.76413e8 0.532971
\(310\) 0 0
\(311\) −4.31084e8 + 7.46659e8i −0.812644 + 1.40754i 0.0983630 + 0.995151i \(0.468639\pi\)
−0.911007 + 0.412390i \(0.864694\pi\)
\(312\) 0 0
\(313\) 4.79502e8 + 8.30522e8i 0.883864 + 1.53090i 0.847010 + 0.531577i \(0.178400\pi\)
0.0368540 + 0.999321i \(0.488266\pi\)
\(314\) 0 0
\(315\) −8.80698e8 + 1.54134e9i −1.58760 + 2.77850i
\(316\) 0 0
\(317\) 7.64346e7 + 1.32389e8i 0.134767 + 0.233423i 0.925508 0.378727i \(-0.123638\pi\)
−0.790742 + 0.612150i \(0.790305\pi\)
\(318\) 0 0
\(319\) −2.62852e8 + 4.55274e8i −0.453361 + 0.785245i
\(320\) 0 0
\(321\) −6.92492e8 −1.16855
\(322\) 0 0
\(323\) −1.27056e7 −0.0209790
\(324\) 0 0
\(325\) 4.37982e8 7.58606e8i 0.707724 1.22581i
\(326\) 0 0
\(327\) −9.14444e8 1.58386e9i −1.44624 2.50496i
\(328\) 0 0
\(329\) 6.97034e7 + 1.19489e8i 0.107912 + 0.184987i
\(330\) 0 0
\(331\) −3.64647e8 6.31587e8i −0.552681 0.957271i −0.998080 0.0619390i \(-0.980272\pi\)
0.445399 0.895332i \(-0.353062\pi\)
\(332\) 0 0
\(333\) 4.69286e7 8.12827e7i 0.0696438 0.120627i
\(334\) 0 0
\(335\) −6.13698e8 −0.891862
\(336\) 0 0
\(337\) 9.99520e8 1.42261 0.711306 0.702882i \(-0.248104\pi\)
0.711306 + 0.702882i \(0.248104\pi\)
\(338\) 0 0
\(339\) 5.75270e8 9.96397e8i 0.801997 1.38910i
\(340\) 0 0
\(341\) 1.90125e8 + 3.29305e8i 0.259656 + 0.449737i
\(342\) 0 0
\(343\) −7.47292e8 + 1.00552e7i −0.999909 + 0.0134543i
\(344\) 0 0
\(345\) −1.35102e9 2.34003e9i −1.77131 3.06799i
\(346\) 0 0
\(347\) 2.89931e8 5.02175e8i 0.372513 0.645211i −0.617439 0.786619i \(-0.711830\pi\)
0.989951 + 0.141408i \(0.0451630\pi\)
\(348\) 0 0
\(349\) −1.18267e9 −1.48928 −0.744638 0.667469i \(-0.767378\pi\)
−0.744638 + 0.667469i \(0.767378\pi\)
\(350\) 0 0
\(351\) −4.08445e8 −0.504149
\(352\) 0 0
\(353\) −2.27190e7 + 3.93505e7i −0.0274903 + 0.0476145i −0.879443 0.476004i \(-0.842085\pi\)
0.851953 + 0.523618i \(0.175418\pi\)
\(354\) 0 0
\(355\) 1.26947e9 + 2.19878e9i 1.50599 + 2.60845i
\(356\) 0 0
\(357\) 2.08127e8 + 3.56781e8i 0.242097 + 0.415014i
\(358\) 0 0
\(359\) 4.45017e7 + 7.70792e7i 0.0507628 + 0.0879238i 0.890290 0.455393i \(-0.150501\pi\)
−0.839527 + 0.543317i \(0.817168\pi\)
\(360\) 0 0
\(361\) 4.44696e8 7.70236e8i 0.497494 0.861685i
\(362\) 0 0
\(363\) 2.39237e7 0.0262516
\(364\) 0 0
\(365\) −1.37665e9 −1.48183
\(366\) 0 0
\(367\) −2.39219e8 + 4.14340e8i −0.252619 + 0.437548i −0.964246 0.265009i \(-0.914625\pi\)
0.711627 + 0.702557i \(0.247958\pi\)
\(368\) 0 0
\(369\) 8.18149e8 + 1.41708e9i 0.847696 + 1.46825i
\(370\) 0 0
\(371\) −2.74835e7 + 4.80997e7i −0.0279424 + 0.0489028i
\(372\) 0 0
\(373\) 5.82022e8 + 1.00809e9i 0.580709 + 1.00582i 0.995395 + 0.0958535i \(0.0305580\pi\)
−0.414686 + 0.909965i \(0.636109\pi\)
\(374\) 0 0
\(375\) 3.02744e9 5.24368e9i 2.96460 5.13484i
\(376\) 0 0
\(377\) −4.62952e8 −0.444981
\(378\) 0 0
\(379\) 1.78772e9 1.68679 0.843395 0.537294i \(-0.180553\pi\)
0.843395 + 0.537294i \(0.180553\pi\)
\(380\) 0 0
\(381\) 1.18407e9 2.05088e9i 1.09683 1.89977i
\(382\) 0 0
\(383\) 1.98793e8 + 3.44319e8i 0.180803 + 0.313159i 0.942154 0.335180i \(-0.108797\pi\)
−0.761352 + 0.648339i \(0.775464\pi\)
\(384\) 0 0
\(385\) 2.21796e9 9.94741e6i 1.98080 0.00888377i
\(386\) 0 0
\(387\) −9.11384e8 1.57856e9i −0.799305 1.38444i
\(388\) 0 0
\(389\) 2.46267e8 4.26547e8i 0.212121 0.367404i −0.740257 0.672324i \(-0.765296\pi\)
0.952378 + 0.304920i \(0.0986297\pi\)
\(390\) 0 0
\(391\) −3.89520e8 −0.329542
\(392\) 0 0
\(393\) −7.04386e8 −0.585378
\(394\) 0 0
\(395\) −9.98650e8 + 1.72971e9i −0.815311 + 1.41216i
\(396\) 0 0
\(397\) 2.85231e7 + 4.94034e7i 0.0228786 + 0.0396269i 0.877238 0.480056i \(-0.159384\pi\)
−0.854359 + 0.519683i \(0.826050\pi\)
\(398\) 0 0
\(399\) 1.45627e8 653126.i 0.114772 0.000514745i
\(400\) 0 0
\(401\) −9.15297e8 1.58534e9i −0.708854 1.22777i −0.965283 0.261207i \(-0.915879\pi\)
0.256429 0.966563i \(-0.417454\pi\)
\(402\) 0 0
\(403\) −1.67430e8 + 2.89997e8i −0.127428 + 0.220712i
\(404\) 0 0
\(405\) −6.21101e7 −0.0464590
\(406\) 0 0
\(407\) −1.17268e8 −0.0862179
\(408\) 0 0
\(409\) −1.03052e9 + 1.78492e9i −0.744777 + 1.28999i 0.205522 + 0.978653i \(0.434111\pi\)
−0.950299 + 0.311339i \(0.899223\pi\)
\(410\) 0 0
\(411\) 3.40230e8 + 5.89296e8i 0.241728 + 0.418685i
\(412\) 0 0
\(413\) −9.34910e8 + 1.63621e9i −0.653047 + 1.14292i
\(414\) 0 0
\(415\) −5.33673e7 9.24349e7i −0.0366528 0.0634845i
\(416\) 0 0
\(417\) 1.65364e9 2.86418e9i 1.11677 1.93430i
\(418\) 0 0
\(419\) 2.50238e8 0.166190 0.0830948 0.996542i \(-0.473520\pi\)
0.0830948 + 0.996542i \(0.473520\pi\)
\(420\) 0 0
\(421\) −8.67705e8 −0.566741 −0.283370 0.959011i \(-0.591453\pi\)
−0.283370 + 0.959011i \(0.591453\pi\)
\(422\) 0 0
\(423\) −2.71460e8 + 4.70183e8i −0.174387 + 0.302048i
\(424\) 0 0
\(425\) −6.70926e8 1.16208e9i −0.423949 0.734301i
\(426\) 0 0
\(427\) −4.35180e8 7.46006e8i −0.270502 0.463708i
\(428\) 0 0
\(429\) 6.61107e8 + 1.14507e9i 0.404270 + 0.700216i
\(430\) 0 0
\(431\) −6.03709e7 + 1.04565e8i −0.0363209 + 0.0629097i −0.883614 0.468215i \(-0.844897\pi\)
0.847294 + 0.531125i \(0.178231\pi\)
\(432\) 0 0
\(433\) −8.11123e8 −0.480153 −0.240076 0.970754i \(-0.577172\pi\)
−0.240076 + 0.970754i \(0.577172\pi\)
\(434\) 0 0
\(435\) −4.91944e9 −2.86552
\(436\) 0 0
\(437\) −6.86663e7 + 1.18934e8i −0.0393603 + 0.0681741i
\(438\) 0 0
\(439\) −1.15817e9 2.00601e9i −0.653352 1.13164i −0.982304 0.187293i \(-0.940029\pi\)
0.328952 0.944347i \(-0.393305\pi\)
\(440\) 0 0
\(441\) −1.48931e9 2.52695e9i −0.826897 1.40301i
\(442\) 0 0
\(443\) 1.25883e9 + 2.18036e9i 0.687947 + 1.19156i 0.972501 + 0.232899i \(0.0748213\pi\)
−0.284554 + 0.958660i \(0.591845\pi\)
\(444\) 0 0
\(445\) 1.56694e9 2.71401e9i 0.842930 1.46000i
\(446\) 0 0
\(447\) −3.97968e9 −2.10752
\(448\) 0 0
\(449\) 1.98108e7 0.0103286 0.00516429 0.999987i \(-0.498356\pi\)
0.00516429 + 0.999987i \(0.498356\pi\)
\(450\) 0 0
\(451\) 1.02222e9 1.77053e9i 0.524716 0.908835i
\(452\) 0 0
\(453\) 1.59111e9 + 2.75588e9i 0.804184 + 1.39289i
\(454\) 0 0
\(455\) 9.84189e8 + 1.68715e9i 0.489823 + 0.839678i
\(456\) 0 0
\(457\) 3.90833e8 + 6.76943e8i 0.191551 + 0.331776i 0.945764 0.324853i \(-0.105315\pi\)
−0.754213 + 0.656630i \(0.771982\pi\)
\(458\) 0 0
\(459\) −3.12840e8 + 5.41855e8i −0.151000 + 0.261540i
\(460\) 0 0
\(461\) −6.02108e8 −0.286234 −0.143117 0.989706i \(-0.545713\pi\)
−0.143117 + 0.989706i \(0.545713\pi\)
\(462\) 0 0
\(463\) 1.26552e9 0.592565 0.296282 0.955100i \(-0.404253\pi\)
0.296282 + 0.955100i \(0.404253\pi\)
\(464\) 0 0
\(465\) −1.77915e9 + 3.08157e9i −0.820591 + 1.42130i
\(466\) 0 0
\(467\) −2.01050e8 3.48229e8i −0.0913471 0.158218i 0.816731 0.577018i \(-0.195784\pi\)
−0.908078 + 0.418801i \(0.862451\pi\)
\(468\) 0 0
\(469\) 5.03065e8 8.80429e8i 0.225174 0.394084i
\(470\) 0 0
\(471\) 1.33795e9 + 2.31740e9i 0.590020 + 1.02195i
\(472\) 0 0
\(473\) −1.13871e9 + 1.97230e9i −0.494763 + 0.856955i
\(474\) 0 0
\(475\) −4.73095e8 −0.202545
\(476\) 0 0
\(477\) −2.17421e8 −0.0917250
\(478\) 0 0
\(479\) 8.08815e8 1.40091e9i 0.336260 0.582419i −0.647466 0.762094i \(-0.724171\pi\)
0.983726 + 0.179675i \(0.0575046\pi\)
\(480\) 0 0
\(481\) −5.16347e7 8.94340e7i −0.0211560 0.0366433i
\(482\) 0 0
\(483\) 4.46454e9 2.00232e7i 1.80286 0.00808570i
\(484\) 0 0
\(485\) 2.79725e9 + 4.84498e9i 1.11336 + 1.92839i
\(486\) 0 0
\(487\) 1.52284e8 2.63764e8i 0.0597453 0.103482i −0.834606 0.550848i \(-0.814304\pi\)
0.894351 + 0.447366i \(0.147638\pi\)
\(488\) 0 0
\(489\) −3.85454e9 −1.49071
\(490\) 0 0
\(491\) 2.14359e9 0.817252 0.408626 0.912702i \(-0.366008\pi\)
0.408626 + 0.912702i \(0.366008\pi\)
\(492\) 0 0
\(493\) −3.54588e8 + 6.14165e8i −0.133279 + 0.230845i
\(494\) 0 0
\(495\) 4.35248e9 + 7.53872e9i 1.61294 + 2.79370i
\(496\) 0 0
\(497\) −4.19505e9 + 1.88145e7i −1.53281 + 0.00687457i
\(498\) 0 0
\(499\) −1.24815e9 2.16187e9i −0.449693 0.778891i 0.548673 0.836037i \(-0.315133\pi\)
−0.998366 + 0.0571461i \(0.981800\pi\)
\(500\) 0 0
\(501\) 2.57017e9 4.45166e9i 0.913124 1.58158i
\(502\) 0 0
\(503\) −2.89416e9 −1.01399 −0.506997 0.861948i \(-0.669244\pi\)
−0.506997 + 0.861948i \(0.669244\pi\)
\(504\) 0 0
\(505\) 8.27966e9 2.86084
\(506\) 0 0
\(507\) 1.79660e9 3.11180e9i 0.612243 1.06044i
\(508\) 0 0
\(509\) −1.24625e9 2.15857e9i −0.418883 0.725526i 0.576945 0.816783i \(-0.304245\pi\)
−0.995827 + 0.0912573i \(0.970911\pi\)
\(510\) 0 0
\(511\) 1.12847e9 1.97498e9i 0.374126 0.654770i
\(512\) 0 0
\(513\) 1.10298e8 + 1.91041e8i 0.0360708 + 0.0624764i
\(514\) 0 0
\(515\) 1.00115e9 1.73404e9i 0.322978 0.559414i
\(516\) 0 0
\(517\) 6.78339e8 0.215889
\(518\) 0 0
\(519\) 3.85458e9 1.21029
\(520\) 0 0
\(521\) 1.06085e9 1.83745e9i 0.328641 0.569223i −0.653601 0.756839i \(-0.726743\pi\)
0.982242 + 0.187616i \(0.0600760\pi\)
\(522\) 0 0
\(523\) −4.49299e8 7.78208e8i −0.137334 0.237870i 0.789152 0.614197i \(-0.210520\pi\)
−0.926487 + 0.376327i \(0.877187\pi\)
\(524\) 0 0
\(525\) 7.74965e9 + 1.32848e10i 2.33735 + 4.00681i
\(526\) 0 0
\(527\) 2.56478e8 + 4.44234e8i 0.0763333 + 0.132213i
\(528\) 0 0
\(529\) −4.02719e8 + 6.97530e8i −0.118279 + 0.204865i
\(530\) 0 0
\(531\) −7.39605e9 −2.14372
\(532\) 0 0
\(533\) 1.80039e9 0.515017
\(534\) 0 0
\(535\) −2.50816e9 + 4.34425e9i −0.708135 + 1.22653i
\(536\) 0 0
\(537\) −1.76830e9 3.06278e9i −0.492771 0.853504i
\(538\) 0 0
\(539\) −1.80385e9 + 3.19011e9i −0.496181 + 0.877494i
\(540\) 0 0
\(541\) −1.77642e9 3.07685e9i −0.482342 0.835441i 0.517452 0.855712i \(-0.326880\pi\)
−0.999795 + 0.0202709i \(0.993547\pi\)
\(542\) 0 0
\(543\) −2.04287e9 + 3.53836e9i −0.547572 + 0.948423i
\(544\) 0 0
\(545\) −1.32482e10 −3.50565
\(546\) 0 0
\(547\) 1.53131e9 0.400043 0.200021 0.979792i \(-0.435899\pi\)
0.200021 + 0.979792i \(0.435899\pi\)
\(548\) 0 0
\(549\) 1.69481e9 2.93550e9i 0.437137 0.757144i
\(550\) 0 0
\(551\) 1.25017e8 + 2.16536e8i 0.0318374 + 0.0551440i
\(552\) 0 0
\(553\) −1.66287e9 2.85058e9i −0.418140 0.716796i
\(554\) 0 0
\(555\) −5.48683e8 9.50347e8i −0.136237 0.235970i
\(556\) 0 0
\(557\) −9.29428e8 + 1.60982e9i −0.227889 + 0.394715i −0.957182 0.289486i \(-0.906516\pi\)
0.729294 + 0.684201i \(0.239849\pi\)
\(558\) 0 0
\(559\) −2.00556e9 −0.485617
\(560\) 0 0
\(561\) 2.02545e9 0.484340
\(562\) 0 0
\(563\) −3.22008e9 + 5.57735e9i −0.760480 + 1.31719i 0.182124 + 0.983276i \(0.441703\pi\)
−0.942604 + 0.333914i \(0.891631\pi\)
\(564\) 0 0
\(565\) −4.16717e9 7.21775e9i −0.972013 1.68358i
\(566\) 0 0
\(567\) 5.09133e7 8.91050e7i 0.0117298 0.0205287i
\(568\) 0 0
\(569\) 2.37325e9 + 4.11058e9i 0.540070 + 0.935429i 0.998899 + 0.0469042i \(0.0149355\pi\)
−0.458829 + 0.888524i \(0.651731\pi\)
\(570\) 0 0
\(571\) 2.87568e9 4.98083e9i 0.646420 1.11963i −0.337552 0.941307i \(-0.609599\pi\)
0.983972 0.178325i \(-0.0570679\pi\)
\(572\) 0 0
\(573\) 6.43754e9 1.42948
\(574\) 0 0
\(575\) −1.45039e10 −3.18161
\(576\) 0 0
\(577\) −3.45836e9 + 5.99005e9i −0.749471 + 1.29812i 0.198606 + 0.980079i \(0.436359\pi\)
−0.948077 + 0.318042i \(0.896975\pi\)
\(578\) 0 0
\(579\) 2.38402e9 + 4.12925e9i 0.510429 + 0.884089i
\(580\) 0 0
\(581\) 1.76356e8 790947.i 0.0373056 0.000167313i
\(582\) 0 0
\(583\) 1.35826e8 + 2.35257e8i 0.0283885 + 0.0491703i
\(584\) 0 0
\(585\) −3.83293e9 + 6.63884e9i −0.791564 + 1.37103i
\(586\) 0 0
\(587\) 2.21194e9 0.451378 0.225689 0.974199i \(-0.427537\pi\)
0.225689 + 0.974199i \(0.427537\pi\)
\(588\) 0 0
\(589\) 1.80853e8 0.0364688
\(590\) 0 0
\(591\) 6.25893e9 1.08408e10i 1.24722 2.16025i
\(592\) 0 0
\(593\) 1.71060e9 + 2.96285e9i 0.336866 + 0.583470i 0.983842 0.179041i \(-0.0572996\pi\)
−0.646975 + 0.762511i \(0.723966\pi\)
\(594\) 0 0
\(595\) 2.99204e9 1.34191e7i 0.582314 0.00261164i
\(596\) 0 0
\(597\) 2.16626e8 + 3.75208e8i 0.0416678 + 0.0721708i
\(598\) 0 0
\(599\) −4.61146e9 + 7.98728e9i −0.876687 + 1.51847i −0.0217322 + 0.999764i \(0.506918\pi\)
−0.854955 + 0.518703i \(0.826415\pi\)
\(600\) 0 0
\(601\) 6.81256e9 1.28012 0.640059 0.768326i \(-0.278910\pi\)
0.640059 + 0.768326i \(0.278910\pi\)
\(602\) 0 0
\(603\) 3.97973e9 0.739168
\(604\) 0 0
\(605\) 8.66499e7 1.50082e8i 0.0159083 0.0275540i
\(606\) 0 0
\(607\) −2.00349e9 3.47015e9i −0.363603 0.629778i 0.624948 0.780666i \(-0.285120\pi\)
−0.988551 + 0.150888i \(0.951787\pi\)
\(608\) 0 0
\(609\) 4.03260e9 7.05757e9i 0.723476 1.26618i
\(610\) 0 0
\(611\) 2.98683e8 + 5.17335e8i 0.0529745 + 0.0917545i
\(612\) 0 0
\(613\) −4.14048e9 + 7.17153e9i −0.726005 + 1.25748i 0.232555 + 0.972583i \(0.425292\pi\)
−0.958559 + 0.284893i \(0.908042\pi\)
\(614\) 0 0
\(615\) 1.91314e10 3.31653
\(616\) 0 0
\(617\) 3.35578e7 0.00575169 0.00287584 0.999996i \(-0.499085\pi\)
0.00287584 + 0.999996i \(0.499085\pi\)
\(618\) 0 0
\(619\) 1.45841e9 2.52604e9i 0.247151 0.428079i −0.715583 0.698528i \(-0.753839\pi\)
0.962734 + 0.270449i \(0.0871722\pi\)
\(620\) 0 0
\(621\) 3.38144e9 + 5.85683e9i 0.566606 + 0.981391i
\(622\) 0 0
\(623\) 2.60914e9 + 4.47272e9i 0.432305 + 0.741078i
\(624\) 0 0
\(625\) −1.31988e10 2.28610e10i −2.16250 3.74555i
\(626\) 0 0
\(627\) 3.57054e8 6.18437e8i 0.0578493 0.100198i
\(628\) 0 0
\(629\) −1.58194e8 −0.0253462
\(630\) 0 0
\(631\) 7.72632e9 1.22425 0.612125 0.790761i \(-0.290315\pi\)
0.612125 + 0.790761i \(0.290315\pi\)
\(632\) 0 0
\(633\) 4.48948e9 7.77601e9i 0.703531 1.21855i
\(634\) 0 0
\(635\) −8.57726e9 1.48562e10i −1.32935 2.30251i
\(636\) 0 0
\(637\) −3.22720e9 + 2.89481e7i −0.494695 + 0.00443744i
\(638\) 0 0
\(639\) −8.23228e9 1.42587e10i −1.24815 2.16186i
\(640\) 0 0
\(641\) 3.01543e9 5.22288e9i 0.452216 0.783261i −0.546307 0.837585i \(-0.683967\pi\)
0.998523 + 0.0543235i \(0.0173002\pi\)
\(642\) 0 0
\(643\) −3.27128e9 −0.485265 −0.242633 0.970118i \(-0.578011\pi\)
−0.242633 + 0.970118i \(0.578011\pi\)
\(644\) 0 0
\(645\) −2.13116e10 −3.12720
\(646\) 0 0
\(647\) 3.36141e9 5.82214e9i 0.487929 0.845118i −0.511974 0.859001i \(-0.671086\pi\)
0.999904 + 0.0138825i \(0.00441906\pi\)
\(648\) 0 0
\(649\) 4.62041e9 + 8.00278e9i 0.663474 + 1.14917i
\(650\) 0 0
\(651\) −2.96250e9 5.07846e9i −0.420848 0.721438i
\(652\) 0 0
\(653\) 2.47194e9 + 4.28152e9i 0.347409 + 0.601730i 0.985788 0.167992i \(-0.0537282\pi\)
−0.638379 + 0.769722i \(0.720395\pi\)
\(654\) 0 0
\(655\) −2.55123e9 + 4.41887e9i −0.354736 + 0.614421i
\(656\) 0 0
\(657\) 8.92733e9 1.22813
\(658\) 0 0
\(659\) −3.36078e9 −0.457448 −0.228724 0.973491i \(-0.573455\pi\)
−0.228724 + 0.973491i \(0.573455\pi\)
\(660\) 0 0
\(661\) 1.05592e9 1.82890e9i 0.142208 0.246312i −0.786120 0.618074i \(-0.787913\pi\)
0.928328 + 0.371762i \(0.121246\pi\)
\(662\) 0 0
\(663\) 8.91835e8 + 1.54470e9i 0.118847 + 0.205849i
\(664\) 0 0
\(665\) 5.23352e8 9.15935e8i 0.0690110 0.120778i
\(666\) 0 0
\(667\) 3.83269e9 + 6.63842e9i 0.500108 + 0.866212i
\(668\) 0 0
\(669\) 1.10131e10 1.90752e10i 1.42206 2.46308i
\(670\) 0 0
\(671\) −4.23508e9 −0.541168
\(672\) 0 0
\(673\) 1.12547e10 1.42324 0.711622 0.702562i \(-0.247961\pi\)
0.711622 + 0.702562i \(0.247961\pi\)
\(674\) 0 0
\(675\) −1.16487e10 + 2.01761e10i −1.45785 + 2.52507i
\(676\) 0 0
\(677\) −1.57599e9 2.72970e9i −0.195206 0.338107i 0.751762 0.659435i \(-0.229204\pi\)
−0.946968 + 0.321327i \(0.895871\pi\)
\(678\) 0 0
\(679\) −9.24373e9 + 4.14575e7i −1.13319 + 0.00508228i
\(680\) 0 0
\(681\) 2.59912e9 + 4.50181e9i 0.315363 + 0.546225i
\(682\) 0 0
\(683\) 4.30544e9 7.45724e9i 0.517065 0.895583i −0.482739 0.875764i \(-0.660358\pi\)
0.999804 0.0198183i \(-0.00630877\pi\)
\(684\) 0 0
\(685\) 4.92916e9 0.585943
\(686\) 0 0
\(687\) 1.93540e10 2.27731
\(688\) 0 0
\(689\) −1.19612e8 + 2.07175e8i −0.0139319 + 0.0241307i
\(690\) 0 0
\(691\) −6.39246e8 1.10721e9i −0.0737046 0.127660i 0.826818 0.562470i \(-0.190149\pi\)
−0.900522 + 0.434810i \(0.856816\pi\)
\(692\) 0 0
\(693\) −1.43831e10 + 6.45073e7i −1.64167 + 0.00736280i
\(694\) 0 0
\(695\) −1.19787e10 2.07477e10i −1.35351 2.34436i
\(696\) 0 0
\(697\) 1.37897e9 2.38845e9i 0.154255 0.267178i
\(698\) 0 0
\(699\) 4.52459e9 0.501082
\(700\) 0 0
\(701\) −7.24407e9 −0.794273 −0.397136 0.917760i \(-0.629996\pi\)
−0.397136 + 0.917760i \(0.629996\pi\)
\(702\) 0 0
\(703\) −2.78872e7 + 4.83020e7i −0.00302734 + 0.00524350i
\(704\) 0 0
\(705\) 3.17388e9 + 5.49732e9i 0.341137 + 0.590866i
\(706\) 0 0
\(707\) −6.78706e9 + 1.18782e10i −0.722294 + 1.26411i
\(708\) 0 0
\(709\) −2.12572e9 3.68185e9i −0.223998 0.387976i 0.732020 0.681283i \(-0.238578\pi\)
−0.956018 + 0.293307i \(0.905244\pi\)
\(710\) 0 0
\(711\) 6.47608e9 1.12169e10i 0.675723 1.17039i
\(712\) 0 0
\(713\) 5.54448e9 0.572858
\(714\) 0 0
\(715\) 9.57793e9 0.979942
\(716\) 0 0
\(717\) 1.17954e10 2.04302e10i 1.19508 2.06993i
\(718\) 0 0
\(719\) 3.48927e9 + 6.04360e9i 0.350093 + 0.606379i 0.986265 0.165168i \(-0.0528166\pi\)
−0.636172 + 0.771547i \(0.719483\pi\)
\(720\) 0 0
\(721\) 1.66703e9 + 2.85771e9i 0.165642 + 0.283952i
\(722\) 0 0
\(723\) 1.36636e10 + 2.36660e10i 1.34456 + 2.32885i
\(724\) 0 0
\(725\) −1.32032e10 + 2.28686e10i −1.28676 + 2.22873i
\(726\) 0 0
\(727\) 1.21909e9 0.117670 0.0588349 0.998268i \(-0.481261\pi\)
0.0588349 + 0.998268i \(0.481261\pi\)
\(728\) 0 0
\(729\) −1.68798e10 −1.61370
\(730\) 0 0
\(731\) −1.53612e9 + 2.66063e9i −0.145450 + 0.251927i
\(732\) 0 0
\(733\) 8.20330e9 + 1.42085e10i 0.769351 + 1.33255i 0.937915 + 0.346864i \(0.112754\pi\)
−0.168564 + 0.985691i \(0.553913\pi\)
\(734\) 0 0
\(735\) −3.42930e10 + 3.07609e8i −3.18566 + 0.0285755i
\(736\) 0 0
\(737\) −2.48619e9 4.30620e9i −0.228769 0.396240i
\(738\) 0 0
\(739\) −1.86533e9 + 3.23084e9i −0.170020 + 0.294483i −0.938427 0.345479i \(-0.887717\pi\)
0.768407 + 0.639962i \(0.221050\pi\)
\(740\) 0 0
\(741\) 6.28867e8 0.0567799
\(742\) 0 0
\(743\) −1.82498e10 −1.63229 −0.816144 0.577849i \(-0.803892\pi\)
−0.816144 + 0.577849i \(0.803892\pi\)
\(744\) 0 0
\(745\) −1.44141e10 + 2.49660e10i −1.27715 + 2.21208i
\(746\) 0 0
\(747\) 3.46078e8 + 5.99425e8i 0.0303775 + 0.0526154i
\(748\) 0 0
\(749\) −4.17639e9 7.15937e9i −0.363174 0.622571i
\(750\) 0 0
\(751\) 5.97037e9 + 1.03410e10i 0.514353 + 0.890886i 0.999861 + 0.0166536i \(0.00530125\pi\)
−0.485508 + 0.874232i \(0.661365\pi\)
\(752\) 0 0
\(753\) −5.93582e9 + 1.02811e10i −0.506639 + 0.877524i
\(754\) 0 0
\(755\) 2.30515e10 1.94933
\(756\) 0 0
\(757\) 1.34863e10 1.12994 0.564971 0.825111i \(-0.308887\pi\)
0.564971 + 0.825111i \(0.308887\pi\)
\(758\) 0 0
\(759\) 1.09464e10 1.89597e10i 0.908707 1.57393i
\(760\) 0 0
\(761\) 5.63097e9 + 9.75313e9i 0.463166 + 0.802228i 0.999117 0.0420218i \(-0.0133799\pi\)
−0.535950 + 0.844250i \(0.680047\pi\)
\(762\) 0 0
\(763\) 1.08599e10 1.90062e10i 0.885095 1.54903i
\(764\) 0 0
\(765\) 5.87151e9 + 1.01698e10i 0.474171 + 0.821288i
\(766\) 0 0
\(767\) −4.06887e9 + 7.04750e9i −0.325605 + 0.563964i
\(768\) 0 0
\(769\) −2.13869e10 −1.69592 −0.847961 0.530059i \(-0.822170\pi\)
−0.847961 + 0.530059i \(0.822170\pi\)
\(770\) 0 0
\(771\) −2.58129e10 −2.02837
\(772\) 0 0
\(773\) 8.36012e9 1.44802e10i 0.651005 1.12757i −0.331874 0.943324i \(-0.607681\pi\)
0.982879 0.184250i \(-0.0589857\pi\)
\(774\) 0 0
\(775\) 9.55004e9 + 1.65412e10i 0.736969 + 1.27647i
\(776\) 0 0
\(777\) 1.81317e9 8.13193e6i 0.138664 0.000621899i
\(778\) 0 0
\(779\) −4.86182e8 8.42093e8i −0.0368484 0.0638232i
\(780\) 0 0
\(781\) −1.02856e10 + 1.78152e10i −0.772595 + 1.33817i
\(782\) 0 0
\(783\) 1.23128e10 0.916623
\(784\) 0 0
\(785\) 1.93838e10 1.43020
\(786\) 0 0
\(787\) −4.72932e9 + 8.19142e9i −0.345849 + 0.599029i −0.985508 0.169631i \(-0.945743\pi\)
0.639658 + 0.768659i \(0.279076\pi\)
\(788\) 0 0
\(789\) −1.47874e10 2.56126e10i −1.07182 1.85645i
\(790\) 0 0
\(791\) 1.37707e10 6.17609e7i 0.989327 0.00443706i
\(792\) 0 0
\(793\) −1.86477e9 3.22988e9i −0.132791 0.230001i
\(794\) 0 0
\(795\) −1.27103e9 + 2.20149e9i −0.0897162 + 0.155393i
\(796\) 0 0
\(797\) −4.25156e9 −0.297471 −0.148736 0.988877i \(-0.547520\pi\)
−0.148736 + 0.988877i \(0.547520\pi\)
\(798\) 0 0
\(799\) 9.15081e8 0.0634667
\(800\) 0 0
\(801\) −1.01613e10 + 1.75999e10i −0.698613 + 1.21003i
\(802\) 0 0
\(803\) −5.57701e9 9.65967e9i −0.380100 0.658352i
\(804\) 0 0
\(805\) 1.60446e10 2.80802e10i 1.08404 1.89721i
\(806\) 0 0
\(807\) 1.36594e10 + 2.36587e10i 0.914899 + 1.58465i
\(808\) 0 0
\(809\) −2.76390e9 + 4.78722e9i −0.183528 + 0.317880i −0.943080 0.332567i \(-0.892085\pi\)
0.759551 + 0.650447i \(0.225419\pi\)
\(810\) 0 0
\(811\) −4.99197e9 −0.328624 −0.164312 0.986408i \(-0.552540\pi\)
−0.164312 + 0.986408i \(0.552540\pi\)
\(812\) 0 0
\(813\) −1.88544e10 −1.23054
\(814\) 0 0
\(815\) −1.39609e10 + 2.41810e10i −0.903361 + 1.56467i
\(816\) 0 0
\(817\) 5.41587e8 + 9.38056e8i 0.0347449 + 0.0601799i
\(818\) 0 0
\(819\) −6.38231e9 1.09409e10i −0.405961 0.695918i
\(820\) 0 0
\(821\) 5.29502e9 + 9.17125e9i 0.333939 + 0.578399i 0.983280 0.182098i \(-0.0582888\pi\)
−0.649342 + 0.760497i \(0.724955\pi\)
\(822\) 0 0
\(823\) −1.00055e10 + 1.73301e10i −0.625663 + 1.08368i 0.362749 + 0.931887i \(0.381838\pi\)
−0.988412 + 0.151793i \(0.951495\pi\)
\(824\) 0 0
\(825\) 7.54180e10 4.67612
\(826\) 0 0
\(827\) −2.82024e9 −0.173387 −0.0866935 0.996235i \(-0.527630\pi\)
−0.0866935 + 0.996235i \(0.527630\pi\)
\(828\) 0 0
\(829\) −2.35107e9 + 4.07217e9i −0.143326 + 0.248247i −0.928747 0.370714i \(-0.879113\pi\)
0.785421 + 0.618961i \(0.212446\pi\)
\(830\) 0 0
\(831\) −1.46401e10 2.53574e10i −0.884994 1.53285i
\(832\) 0 0
\(833\) −2.43340e9 + 4.30346e9i −0.145867 + 0.257965i
\(834\) 0 0
\(835\) −1.86179e10 3.22472e10i −1.10670 1.91686i
\(836\) 0 0
\(837\) 4.45301e9 7.71283e9i 0.262491 0.454648i
\(838\) 0 0
\(839\) 2.73548e10 1.59907 0.799534 0.600621i \(-0.205080\pi\)
0.799534 + 0.600621i \(0.205080\pi\)
\(840\) 0 0
\(841\) −3.29394e9 −0.190954
\(842\) 0 0
\(843\) 5.25692e9 9.10525e9i 0.302228 0.523474i
\(844\) 0 0
\(845\) −1.30143e10 2.25415e10i −0.742032 1.28524i
\(846\) 0 0
\(847\) 1.44283e8 + 2.47337e8i 0.00815873 + 0.0139861i
\(848\) 0 0
\(849\) 1.61882e10 + 2.80388e10i 0.907868 + 1.57247i
\(850\) 0 0
\(851\) −8.54949e8 + 1.48081e9i −0.0475540 + 0.0823659i
\(852\) 0 0
\(853\) 1.99998e10 1.10333 0.551665 0.834066i \(-0.313993\pi\)
0.551665 + 0.834066i \(0.313993\pi\)
\(854\) 0 0
\(855\) 4.14023e9 0.226539
\(856\) 0 0
\(857\) 1.79869e10 3.11543e10i 0.976167 1.69077i 0.300139 0.953896i \(-0.402967\pi\)
0.676028 0.736876i \(-0.263700\pi\)
\(858\) 0 0
\(859\) 1.05362e10 + 1.82492e10i 0.567161 + 0.982351i 0.996845 + 0.0793721i \(0.0252915\pi\)
−0.429684 + 0.902979i \(0.641375\pi\)
\(860\) 0 0
\(861\) −1.56825e10 + 2.74464e10i −0.837345 + 1.46546i
\(862\) 0 0
\(863\) 1.22382e10 + 2.11971e10i 0.648154 + 1.12264i 0.983563 + 0.180563i \(0.0577919\pi\)
−0.335410 + 0.942072i \(0.608875\pi\)
\(864\) 0 0
\(865\) 1.39610e10 2.41812e10i 0.733433 1.27034i
\(866\) 0 0
\(867\) −2.83795e10 −1.47890
\(868\) 0 0
\(869\) −1.61828e10 −0.836533
\(870\) 0 0
\(871\) 2.18942e9 3.79218e9i 0.112270 0.194458i
\(872\) 0 0
\(873\) −1.81397e10 3.14189e10i −0.922743 1.59824i
\(874\) 0 0
\(875\) 7.24705e10 3.25025e8i 3.65707 0.0164017i
\(876\) 0 0
\(877\) 1.65279e9 + 2.86271e9i 0.0827404 + 0.143311i 0.904426 0.426630i \(-0.140299\pi\)
−0.821686 + 0.569941i \(0.806966\pi\)
\(878\) 0 0
\(879\) −2.12208e10 + 3.67555e10i −1.05390 + 1.82541i
\(880\) 0 0
\(881\) −3.05557e10 −1.50549 −0.752743 0.658315i \(-0.771270\pi\)
−0.752743 + 0.658315i \(0.771270\pi\)
\(882\) 0 0
\(883\) 1.20403e10 0.588540 0.294270 0.955722i \(-0.404923\pi\)
0.294270 + 0.955722i \(0.404923\pi\)
\(884\) 0 0
\(885\) −4.32368e10 + 7.48884e10i −2.09678 + 3.63173i
\(886\) 0 0
\(887\) −1.16411e9 2.01629e9i −0.0560093 0.0970109i 0.836661 0.547721i \(-0.184504\pi\)
−0.892671 + 0.450710i \(0.851171\pi\)
\(888\) 0 0
\(889\) 2.83442e10 1.27122e8i 1.35303 0.00606826i
\(890\) 0 0
\(891\) −2.51618e8 4.35815e8i −0.0119171 0.0206410i
\(892\) 0 0
\(893\) 1.61315e8 2.79405e8i 0.00758042 0.0131297i
\(894\) 0 0
\(895\) −2.56186e10 −1.19447
\(896\) 0 0
\(897\) 1.92794e10 0.891909
\(898\) 0 0
\(899\) 5.04726e9 8.74211e9i 0.231684 0.401289i
\(900\) 0 0
\(901\) 1.83229e8 + 3.17362e8i 0.00834561 + 0.0144550i
\(902\) 0 0
\(903\) 1.74697e10 3.05742e10i 0.789545 1.38181i
\(904\) 0 0
\(905\) 1.47983e10 + 2.56313e10i 0.663652 + 1.14948i
\(906\) 0 0
\(907\) −9.46293e9 + 1.63903e10i −0.421114 + 0.729391i −0.996049 0.0888082i \(-0.971694\pi\)
0.574934 + 0.818199i \(0.305028\pi\)
\(908\) 0 0
\(909\) −5.36923e10 −2.37104
\(910\) 0 0
\(911\) 1.12249e10 0.491891 0.245945 0.969284i \(-0.420902\pi\)
0.245945 + 0.969284i \(0.420902\pi\)
\(912\) 0 0
\(913\) 4.32399e8 7.48937e8i 0.0188034 0.0325685i
\(914\) 0 0
\(915\) −1.98155e10 3.43215e10i −0.855128 1.48113i
\(916\) 0 0
\(917\) −4.24812e9 7.28234e9i −0.181930 0.311873i
\(918\) 0 0
\(919\) −1.64634e10 2.85155e10i −0.699706 1.21193i −0.968568 0.248747i \(-0.919981\pi\)
0.268863 0.963179i \(-0.413352\pi\)
\(920\) 0 0
\(921\) −5.70465e9 + 9.88074e9i −0.240614 + 0.416755i
\(922\) 0 0
\(923\) −1.81157e10 −0.758313
\(924\) 0 0
\(925\) −5.89040e9 −0.244708
\(926\) 0 0
\(927\) −6.49227e9 + 1.12449e10i −0.267681 + 0.463637i
\(928\) 0 0
\(929\) 4.16396e9 + 7.21219e9i 0.170393 + 0.295129i 0.938557 0.345124i \(-0.112163\pi\)
−0.768164 + 0.640253i \(0.778830\pi\)
\(930\) 0 0
\(931\) 8.85021e8 + 1.50163e9i 0.0359443 + 0.0609873i
\(932\) 0 0
\(933\) −3.26847e10 5.66116e10i −1.31753 2.28202i
\(934\) 0 0
\(935\) 7.33601e9 1.27064e10i 0.293508 0.508370i
\(936\) 0 0
\(937\) −3.35209e10 −1.33115 −0.665576 0.746330i \(-0.731814\pi\)
−0.665576 + 0.746330i \(0.731814\pi\)
\(938\) 0 0
\(939\) −7.27116e10 −2.86599
\(940\) 0 0
\(941\) 1.21961e10 2.11243e10i 0.477152 0.826452i −0.522505 0.852636i \(-0.675002\pi\)
0.999657 + 0.0261843i \(0.00833566\pi\)
\(942\) 0 0
\(943\) −1.49051e10 2.58164e10i −0.578821 1.00255i
\(944\) 0 0
\(945\) −2.61758e10 4.48718e10i −1.00899 1.72967i
\(946\) 0 0
\(947\) 5.80141e8 + 1.00483e9i 0.0221977 + 0.0384476i 0.876911 0.480653i \(-0.159600\pi\)
−0.854713 + 0.519101i \(0.826267\pi\)
\(948\) 0 0
\(949\) 4.91129e9 8.50661e9i 0.186537 0.323091i
\(950\) 0 0
\(951\) −1.15905e10 −0.436990
\(952\) 0 0
\(953\) 1.31548e10 0.492333 0.246167 0.969228i \(-0.420829\pi\)
0.246167 + 0.969228i \(0.420829\pi\)
\(954\) 0 0
\(955\) 2.33163e10 4.03850e10i 0.866259 1.50040i
\(956\) 0 0
\(957\) −1.99294e10 3.45188e10i −0.735027 1.27310i
\(958\) 0 0
\(959\) −4.04056e9 + 7.07151e9i −0.147937 + 0.258909i
\(960\) 0 0
\(961\) 1.01056e10 + 1.75033e10i 0.367306 + 0.636193i
\(962\) 0 0
\(963\) 1.62650e10 2.81718e10i 0.586897 1.01653i
\(964\) 0 0
\(965\) 3.45390e10 1.23727
\(966\) 0 0
\(967\) 1.67834e10 0.596880 0.298440 0.954428i \(-0.403534\pi\)
0.298440 + 0.954428i \(0.403534\pi\)
\(968\) 0 0
\(969\) 4.81667e8 8.34272e8i 0.0170065 0.0294561i
\(970\) 0 0
\(971\) 1.69538e10 + 2.93648e10i 0.594292 + 1.02934i 0.993646 + 0.112547i \(0.0359009\pi\)
−0.399355 + 0.916796i \(0.630766\pi\)
\(972\) 0 0
\(973\) 3.95845e10 1.77534e8i 1.37762 0.00617855i
\(974\) 0 0
\(975\) 3.32077e10 + 5.75175e10i 1.14742 + 1.98739i
\(976\) 0 0
\(977\) −1.65238e10 + 2.86200e10i −0.566863 + 0.981835i 0.430011 + 0.902824i \(0.358510\pi\)
−0.996874 + 0.0790114i \(0.974824\pi\)
\(978\) 0 0
\(979\) 2.53916e10 0.864871
\(980\) 0 0
\(981\) 8.59124e10 2.90546
\(982\) 0 0
\(983\) 1.60564e10 2.78105e10i 0.539151 0.933837i −0.459799 0.888023i \(-0.652079\pi\)
0.998950 0.0458138i \(-0.0145881\pi\)
\(984\) 0 0
\(985\) −4.53388e10 7.85291e10i −1.51162 2.61820i
\(986\) 0 0
\(987\) −1.04883e10 + 4.70395e7i −0.347213 + 0.00155723i
\(988\) 0 0
\(989\) 1.66037e10 + 2.87584e10i 0.545779 + 0.945317i
\(990\) 0 0
\(991\) 4.68129e9 8.10824e9i 0.152795 0.264648i −0.779459 0.626453i \(-0.784506\pi\)
0.932254 + 0.361805i \(0.117839\pi\)
\(992\) 0 0
\(993\) 5.52949e10 1.79210
\(994\) 0 0
\(995\) 3.13842e9 0.101002
\(996\) 0 0
\(997\) −2.62304e10 + 4.54323e10i −0.838246 + 1.45188i 0.0531148 + 0.998588i \(0.483085\pi\)
−0.891360 + 0.453295i \(0.850248\pi\)
\(998\) 0 0
\(999\) 1.37329e9 + 2.37861e9i 0.0435796 + 0.0754822i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.8.i.d.81.1 10
4.3 odd 2 28.8.e.a.25.5 yes 10
7.2 even 3 inner 112.8.i.d.65.1 10
12.11 even 2 252.8.k.c.109.1 10
28.3 even 6 196.8.a.e.1.5 5
28.11 odd 6 196.8.a.d.1.1 5
28.19 even 6 196.8.e.f.177.1 10
28.23 odd 6 28.8.e.a.9.5 10
28.27 even 2 196.8.e.f.165.1 10
84.23 even 6 252.8.k.c.37.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.8.e.a.9.5 10 28.23 odd 6
28.8.e.a.25.5 yes 10 4.3 odd 2
112.8.i.d.65.1 10 7.2 even 3 inner
112.8.i.d.81.1 10 1.1 even 1 trivial
196.8.a.d.1.1 5 28.11 odd 6
196.8.a.e.1.5 5 28.3 even 6
196.8.e.f.165.1 10 28.27 even 2
196.8.e.f.177.1 10 28.19 even 6
252.8.k.c.37.1 10 84.23 even 6
252.8.k.c.109.1 10 12.11 even 2