Properties

Label 252.8.k.c.37.5
Level $252$
Weight $8$
Character 252.37
Analytic conductor $78.721$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,8,Mod(37,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.37");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.7210264220\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 342 x^{8} + 2165 x^{7} + 113605 x^{6} + 319380 x^{5} + 1438128 x^{4} + 1705752 x^{3} + \cdots + 23619600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{8}\cdot 7^{5} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.5
Root \(1.14872 - 1.98964i\) of defining polynomial
Character \(\chi\) \(=\) 252.37
Dual form 252.8.k.c.109.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(209.191 - 362.329i) q^{5} +(-505.918 - 753.386i) q^{7} +(128.291 + 222.207i) q^{11} -8020.94 q^{13} +(-12820.8 - 22206.2i) q^{17} +(-27563.8 + 47742.0i) q^{19} +(-18948.1 + 32819.1i) q^{23} +(-48459.1 - 83933.6i) q^{25} -125755. q^{29} +(80194.6 + 138901. i) q^{31} +(-378807. + 25707.3i) q^{35} +(-70502.5 + 122114. i) q^{37} +674106. q^{41} +755814. q^{43} +(102751. - 177969. i) q^{47} +(-311638. + 762302. i) q^{49} +(182888. + 316772. i) q^{53} +107349. q^{55} +(-962456. - 1.66702e6i) q^{59} +(1.35960e6 - 2.35489e6i) q^{61} +(-1.67791e6 + 2.90622e6i) q^{65} +(782715. + 1.35570e6i) q^{67} +2.29364e6 q^{71} +(586366. + 1.01562e6i) q^{73} +(102503. - 209071. i) q^{77} +(-360081. + 623678. i) q^{79} -2.39050e6 q^{83} -1.07279e7 q^{85} +(-6.20699e6 + 1.07508e7i) q^{89} +(4.05794e6 + 6.04287e6i) q^{91} +(1.15322e7 + 1.99744e7i) q^{95} -1.48005e7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 249 q^{5} + 332 q^{7} - 6399 q^{11} - 26988 q^{13} - 3609 q^{17} - 12403 q^{19} + 13959 q^{23} - 162364 q^{25} - 26148 q^{29} - 20181 q^{31} - 791715 q^{35} - 54763 q^{37} + 1824468 q^{41} - 1938424 q^{43}+ \cdots + 285580 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 209.191 362.329i 0.748424 1.29631i −0.200154 0.979764i \(-0.564144\pi\)
0.948578 0.316543i \(-0.102522\pi\)
\(6\) 0 0
\(7\) −505.918 753.386i −0.557490 0.830184i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 128.291 + 222.207i 0.0290618 + 0.0503365i 0.880191 0.474621i \(-0.157415\pi\)
−0.851129 + 0.524957i \(0.824081\pi\)
\(12\) 0 0
\(13\) −8020.94 −1.01257 −0.506283 0.862367i \(-0.668981\pi\)
−0.506283 + 0.862367i \(0.668981\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −12820.8 22206.2i −0.632911 1.09623i −0.986954 0.161005i \(-0.948527\pi\)
0.354043 0.935229i \(-0.384807\pi\)
\(18\) 0 0
\(19\) −27563.8 + 47742.0i −0.921939 + 1.59684i −0.125527 + 0.992090i \(0.540062\pi\)
−0.796412 + 0.604755i \(0.793271\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −18948.1 + 32819.1i −0.324727 + 0.562444i −0.981457 0.191682i \(-0.938606\pi\)
0.656730 + 0.754126i \(0.271939\pi\)
\(24\) 0 0
\(25\) −48459.1 83933.6i −0.620276 1.07435i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −125755. −0.957482 −0.478741 0.877956i \(-0.658907\pi\)
−0.478741 + 0.877956i \(0.658907\pi\)
\(30\) 0 0
\(31\) 80194.6 + 138901.i 0.483481 + 0.837413i 0.999820 0.0189707i \(-0.00603893\pi\)
−0.516339 + 0.856384i \(0.672706\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −378807. + 25707.3i −1.49341 + 0.101349i
\(36\) 0 0
\(37\) −70502.5 + 122114.i −0.228822 + 0.396332i −0.957459 0.288568i \(-0.906821\pi\)
0.728637 + 0.684900i \(0.240154\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 674106. 1.52751 0.763756 0.645505i \(-0.223353\pi\)
0.763756 + 0.645505i \(0.223353\pi\)
\(42\) 0 0
\(43\) 755814. 1.44969 0.724845 0.688912i \(-0.241911\pi\)
0.724845 + 0.688912i \(0.241911\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 102751. 177969.i 0.144358 0.250036i −0.784775 0.619781i \(-0.787222\pi\)
0.929133 + 0.369745i \(0.120555\pi\)
\(48\) 0 0
\(49\) −311638. + 762302.i −0.378411 + 0.925638i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 182888. + 316772.i 0.168741 + 0.292268i 0.937977 0.346696i \(-0.112697\pi\)
−0.769237 + 0.638964i \(0.779363\pi\)
\(54\) 0 0
\(55\) 107349. 0.0870022
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −962456. 1.66702e6i −0.610097 1.05672i −0.991224 0.132196i \(-0.957797\pi\)
0.381127 0.924523i \(-0.375536\pi\)
\(60\) 0 0
\(61\) 1.35960e6 2.35489e6i 0.766931 1.32836i −0.172288 0.985047i \(-0.555116\pi\)
0.939220 0.343317i \(-0.111551\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.67791e6 + 2.90622e6i −0.757829 + 1.31260i
\(66\) 0 0
\(67\) 782715. + 1.35570e6i 0.317938 + 0.550684i 0.980058 0.198714i \(-0.0636764\pi\)
−0.662120 + 0.749398i \(0.730343\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.29364e6 0.760538 0.380269 0.924876i \(-0.375831\pi\)
0.380269 + 0.924876i \(0.375831\pi\)
\(72\) 0 0
\(73\) 586366. + 1.01562e6i 0.176416 + 0.305562i 0.940650 0.339377i \(-0.110216\pi\)
−0.764234 + 0.644939i \(0.776883\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 102503. 209071.i 0.0255869 0.0521887i
\(78\) 0 0
\(79\) −360081. + 623678.i −0.0821685 + 0.142320i −0.904181 0.427149i \(-0.859518\pi\)
0.822013 + 0.569469i \(0.192851\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.39050e6 −0.458898 −0.229449 0.973321i \(-0.573692\pi\)
−0.229449 + 0.973321i \(0.573692\pi\)
\(84\) 0 0
\(85\) −1.07279e7 −1.89474
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.20699e6 + 1.07508e7i −0.933288 + 1.61650i −0.155630 + 0.987815i \(0.549741\pi\)
−0.777658 + 0.628688i \(0.783592\pi\)
\(90\) 0 0
\(91\) 4.05794e6 + 6.04287e6i 0.564495 + 0.840617i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.15322e7 + 1.99744e7i 1.38000 + 2.39023i
\(96\) 0 0
\(97\) −1.48005e7 −1.64655 −0.823276 0.567641i \(-0.807856\pi\)
−0.823276 + 0.567641i \(0.807856\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.21061e6 + 5.56093e6i 0.310072 + 0.537060i 0.978378 0.206827i \(-0.0663136\pi\)
−0.668306 + 0.743887i \(0.732980\pi\)
\(102\) 0 0
\(103\) −1.73226e6 + 3.00036e6i −0.156201 + 0.270547i −0.933496 0.358589i \(-0.883258\pi\)
0.777295 + 0.629136i \(0.216591\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.94299e6 1.54897e7i 0.705732 1.22236i −0.260695 0.965421i \(-0.583952\pi\)
0.966427 0.256942i \(-0.0827149\pi\)
\(108\) 0 0
\(109\) 2.28468e6 + 3.95719e6i 0.168979 + 0.292681i 0.938061 0.346469i \(-0.112620\pi\)
−0.769082 + 0.639150i \(0.779286\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.46079e6 −0.356025 −0.178013 0.984028i \(-0.556967\pi\)
−0.178013 + 0.984028i \(0.556967\pi\)
\(114\) 0 0
\(115\) 7.92754e6 + 1.37309e7i 0.486067 + 0.841892i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.02436e7 + 2.08935e7i −0.557235 + 1.13657i
\(120\) 0 0
\(121\) 9.71067e6 1.68194e7i 0.498311 0.863100i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.86270e6 −0.360070
\(126\) 0 0
\(127\) −1.65990e7 −0.719066 −0.359533 0.933132i \(-0.617064\pi\)
−0.359533 + 0.933132i \(0.617064\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.00485e7 + 3.47250e7i −0.779169 + 1.34956i 0.153252 + 0.988187i \(0.451026\pi\)
−0.932421 + 0.361374i \(0.882308\pi\)
\(132\) 0 0
\(133\) 4.99132e7 3.38730e6i 1.83965 0.124845i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 445291. + 771267.i 0.0147953 + 0.0256261i 0.873328 0.487132i \(-0.161957\pi\)
−0.858533 + 0.512758i \(0.828624\pi\)
\(138\) 0 0
\(139\) 1.42244e7 0.449243 0.224622 0.974446i \(-0.427885\pi\)
0.224622 + 0.974446i \(0.427885\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.02902e6 1.78231e6i −0.0294270 0.0509691i
\(144\) 0 0
\(145\) −2.63067e7 + 4.55645e7i −0.716602 + 1.24119i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.49059e7 + 4.31383e7i −0.616809 + 1.06834i 0.373256 + 0.927729i \(0.378241\pi\)
−0.990064 + 0.140615i \(0.955092\pi\)
\(150\) 0 0
\(151\) 2.60248e7 + 4.50763e7i 0.615132 + 1.06544i 0.990361 + 0.138508i \(0.0442308\pi\)
−0.375229 + 0.926932i \(0.622436\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.71039e7 1.44739
\(156\) 0 0
\(157\) −1.33569e7 2.31348e7i −0.275459 0.477108i 0.694792 0.719211i \(-0.255496\pi\)
−0.970251 + 0.242102i \(0.922163\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.43116e7 2.32852e6i 0.647964 0.0439733i
\(162\) 0 0
\(163\) −8.57538e6 + 1.48530e7i −0.155095 + 0.268632i −0.933093 0.359634i \(-0.882902\pi\)
0.777999 + 0.628266i \(0.216235\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.00218e7 −1.16339 −0.581695 0.813407i \(-0.697610\pi\)
−0.581695 + 0.813407i \(0.697610\pi\)
\(168\) 0 0
\(169\) 1.58701e6 0.0252916
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.58506e7 + 4.47745e7i −0.379585 + 0.657460i −0.991002 0.133848i \(-0.957267\pi\)
0.611417 + 0.791309i \(0.290600\pi\)
\(174\) 0 0
\(175\) −3.87181e7 + 7.89718e7i −0.546110 + 1.11388i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.66140e7 2.87764e7i −0.216516 0.375017i 0.737225 0.675648i \(-0.236136\pi\)
−0.953740 + 0.300631i \(0.902803\pi\)
\(180\) 0 0
\(181\) −1.23418e8 −1.54705 −0.773523 0.633769i \(-0.781507\pi\)
−0.773523 + 0.633769i \(0.781507\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.94969e7 + 5.10902e7i 0.342512 + 0.593248i
\(186\) 0 0
\(187\) 3.28958e6 5.69773e6i 0.0367871 0.0637171i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.12287e7 + 7.14103e7i −0.428137 + 0.741556i −0.996708 0.0810789i \(-0.974163\pi\)
0.568570 + 0.822635i \(0.307497\pi\)
\(192\) 0 0
\(193\) 5.29252e7 + 9.16691e7i 0.529922 + 0.917851i 0.999391 + 0.0349023i \(0.0111120\pi\)
−0.469469 + 0.882949i \(0.655555\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.23667e8 −1.15245 −0.576224 0.817292i \(-0.695475\pi\)
−0.576224 + 0.817292i \(0.695475\pi\)
\(198\) 0 0
\(199\) −1.96291e7 3.39986e7i −0.176569 0.305827i 0.764134 0.645058i \(-0.223167\pi\)
−0.940703 + 0.339231i \(0.889833\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.36214e7 + 9.47417e7i 0.533786 + 0.794886i
\(204\) 0 0
\(205\) 1.41017e8 2.44248e8i 1.14323 1.98013i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.41448e7 −0.107173
\(210\) 0 0
\(211\) −1.64534e7 −0.120578 −0.0602890 0.998181i \(-0.519202\pi\)
−0.0602890 + 0.998181i \(0.519202\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.58109e8 2.73853e8i 1.08498 1.87925i
\(216\) 0 0
\(217\) 6.40743e7 1.30690e8i 0.425672 0.868227i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.02835e8 + 1.78115e8i 0.640865 + 1.11001i
\(222\) 0 0
\(223\) −9.12765e7 −0.551178 −0.275589 0.961276i \(-0.588873\pi\)
−0.275589 + 0.961276i \(0.588873\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.65348e8 2.86392e8i −0.938230 1.62506i −0.768771 0.639524i \(-0.779132\pi\)
−0.169458 0.985537i \(-0.554202\pi\)
\(228\) 0 0
\(229\) −1.38078e8 + 2.39158e8i −0.759802 + 1.31602i 0.183149 + 0.983085i \(0.441371\pi\)
−0.942951 + 0.332931i \(0.891962\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.54182e8 2.67052e8i 0.798526 1.38309i −0.122050 0.992524i \(-0.538947\pi\)
0.920576 0.390563i \(-0.127720\pi\)
\(234\) 0 0
\(235\) −4.29889e7 7.44590e7i −0.216082 0.374266i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.05871e7 0.334451 0.167225 0.985919i \(-0.446519\pi\)
0.167225 + 0.985919i \(0.446519\pi\)
\(240\) 0 0
\(241\) −3.98671e6 6.90519e6i −0.0183466 0.0317772i 0.856706 0.515804i \(-0.172507\pi\)
−0.875053 + 0.484027i \(0.839174\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.11013e8 + 2.72382e8i 0.916700 + 1.18331i
\(246\) 0 0
\(247\) 2.21088e8 3.82936e8i 0.933525 1.61691i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.09068e8 0.435351 0.217675 0.976021i \(-0.430153\pi\)
0.217675 + 0.976021i \(0.430153\pi\)
\(252\) 0 0
\(253\) −9.72351e6 −0.0377486
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.11507e7 5.39545e7i 0.114473 0.198272i −0.803096 0.595849i \(-0.796816\pi\)
0.917569 + 0.397577i \(0.130149\pi\)
\(258\) 0 0
\(259\) 1.27667e8 8.66399e6i 0.456594 0.0309862i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.47919e7 7.75818e7i −0.151829 0.262975i 0.780071 0.625691i \(-0.215183\pi\)
−0.931900 + 0.362716i \(0.881850\pi\)
\(264\) 0 0
\(265\) 1.53034e8 0.505159
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.38780e8 2.40375e8i −0.434706 0.752932i 0.562566 0.826752i \(-0.309814\pi\)
−0.997272 + 0.0738203i \(0.976481\pi\)
\(270\) 0 0
\(271\) −953906. + 1.65221e6i −0.00291147 + 0.00504282i −0.867477 0.497476i \(-0.834260\pi\)
0.864566 + 0.502519i \(0.167593\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.24337e7 2.15359e7i 0.0360527 0.0624451i
\(276\) 0 0
\(277\) 1.90770e8 + 3.30422e8i 0.539299 + 0.934094i 0.998942 + 0.0459897i \(0.0146441\pi\)
−0.459643 + 0.888104i \(0.652023\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1.58621e8 −0.426470 −0.213235 0.977001i \(-0.568400\pi\)
−0.213235 + 0.977001i \(0.568400\pi\)
\(282\) 0 0
\(283\) −1.21585e8 2.10591e8i −0.318879 0.552315i 0.661375 0.750055i \(-0.269973\pi\)
−0.980255 + 0.197740i \(0.936640\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.41042e8 5.07862e8i −0.851572 1.26812i
\(288\) 0 0
\(289\) −1.23575e8 + 2.14037e8i −0.301152 + 0.521611i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.34536e8 −1.24148 −0.620740 0.784016i \(-0.713168\pi\)
−0.620740 + 0.784016i \(0.713168\pi\)
\(294\) 0 0
\(295\) −8.05348e8 −1.82644
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.51982e8 2.63240e8i 0.328808 0.569512i
\(300\) 0 0
\(301\) −3.82380e8 5.69420e8i −0.808187 1.20351i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −5.68831e8 9.85244e8i −1.14798 1.98836i
\(306\) 0 0
\(307\) 6.57215e8 1.29635 0.648176 0.761490i \(-0.275532\pi\)
0.648176 + 0.761490i \(0.275532\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.77204e7 4.80132e7i −0.0522563 0.0905105i 0.838714 0.544572i \(-0.183308\pi\)
−0.890970 + 0.454062i \(0.849975\pi\)
\(312\) 0 0
\(313\) 2.25674e8 3.90879e8i 0.415984 0.720506i −0.579547 0.814939i \(-0.696770\pi\)
0.995531 + 0.0944330i \(0.0301038\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.06940e7 + 5.31636e7i −0.0541186 + 0.0937361i −0.891816 0.452399i \(-0.850568\pi\)
0.837697 + 0.546135i \(0.183902\pi\)
\(318\) 0 0
\(319\) −1.61332e7 2.79435e7i −0.0278262 0.0481963i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.41356e9 2.33402
\(324\) 0 0
\(325\) 3.88687e8 + 6.73226e8i 0.628071 + 1.08785i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.86063e8 + 1.26269e7i −0.288054 + 0.0195484i
\(330\) 0 0
\(331\) −2.03880e8 + 3.53131e8i −0.309013 + 0.535227i −0.978147 0.207916i \(-0.933332\pi\)
0.669134 + 0.743142i \(0.266665\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.54947e8 0.951808
\(336\) 0 0
\(337\) −2.63519e8 −0.375066 −0.187533 0.982258i \(-0.560049\pi\)
−0.187533 + 0.982258i \(0.560049\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.05765e7 + 3.56396e7i −0.0281017 + 0.0486735i
\(342\) 0 0
\(343\) 7.31971e8 1.50879e8i 0.979410 0.201883i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.03799e8 + 3.52991e8i 0.261848 + 0.453534i 0.966733 0.255787i \(-0.0823347\pi\)
−0.704885 + 0.709322i \(0.749001\pi\)
\(348\) 0 0
\(349\) −5.06614e7 −0.0637952 −0.0318976 0.999491i \(-0.510155\pi\)
−0.0318976 + 0.999491i \(0.510155\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.26375e8 7.38502e8i −0.515917 0.893594i −0.999829 0.0184778i \(-0.994118\pi\)
0.483912 0.875116i \(-0.339215\pi\)
\(354\) 0 0
\(355\) 4.79808e8 8.31052e8i 0.569205 0.985891i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7.51554e8 + 1.30173e9i −0.857293 + 1.48488i 0.0172074 + 0.999852i \(0.494522\pi\)
−0.874501 + 0.485024i \(0.838811\pi\)
\(360\) 0 0
\(361\) −1.07259e9 1.85779e9i −1.19994 2.07836i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.90649e8 0.528136
\(366\) 0 0
\(367\) 5.49573e8 + 9.51888e8i 0.580355 + 1.00520i 0.995437 + 0.0954206i \(0.0304196\pi\)
−0.415082 + 0.909784i \(0.636247\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.46125e8 2.98046e8i 0.148565 0.303022i
\(372\) 0 0
\(373\) −5.80290e8 + 1.00509e9i −0.578981 + 1.00282i 0.416616 + 0.909083i \(0.363216\pi\)
−0.995597 + 0.0937415i \(0.970117\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.00867e9 0.969515
\(378\) 0 0
\(379\) 1.63326e9 1.54106 0.770528 0.637406i \(-0.219993\pi\)
0.770528 + 0.637406i \(0.219993\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.14600e7 + 1.06452e8i −0.0558981 + 0.0968183i −0.892620 0.450809i \(-0.851136\pi\)
0.836722 + 0.547627i \(0.184469\pi\)
\(384\) 0 0
\(385\) −5.43100e7 8.08755e7i −0.0485028 0.0722278i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.79054e8 + 4.83336e8i 0.240361 + 0.416318i 0.960817 0.277183i \(-0.0894008\pi\)
−0.720456 + 0.693501i \(0.756067\pi\)
\(390\) 0 0
\(391\) 9.71717e8 0.822093
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.50651e8 + 2.60936e8i 0.122994 + 0.213031i
\(396\) 0 0
\(397\) −4.46085e8 + 7.72641e8i −0.357808 + 0.619742i −0.987594 0.157026i \(-0.949809\pi\)
0.629786 + 0.776769i \(0.283143\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.35557e8 + 5.81202e8i −0.259873 + 0.450114i −0.966208 0.257765i \(-0.917014\pi\)
0.706335 + 0.707878i \(0.250347\pi\)
\(402\) 0 0
\(403\) −6.43237e8 1.11412e9i −0.489557 0.847937i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.61794e7 −0.0266000
\(408\) 0 0
\(409\) −2.01665e8 3.49294e8i −0.145747 0.252441i 0.783905 0.620881i \(-0.213225\pi\)
−0.929651 + 0.368441i \(0.879892\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.68988e8 + 1.56848e9i −0.537149 + 1.09560i
\(414\) 0 0
\(415\) −5.00071e8 + 8.66149e8i −0.343450 + 0.594873i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.45684e8 −0.295990 −0.147995 0.988988i \(-0.547282\pi\)
−0.147995 + 0.988988i \(0.547282\pi\)
\(420\) 0 0
\(421\) −2.97060e9 −1.94025 −0.970123 0.242614i \(-0.921995\pi\)
−0.970123 + 0.242614i \(0.921995\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.24256e9 + 2.15218e9i −0.785159 + 1.35994i
\(426\) 0 0
\(427\) −2.46199e9 + 1.67080e8i −1.53034 + 0.103855i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.68414e8 + 9.84522e8i 0.341975 + 0.592318i 0.984799 0.173695i \(-0.0555709\pi\)
−0.642824 + 0.766014i \(0.722238\pi\)
\(432\) 0 0
\(433\) −1.17793e9 −0.697287 −0.348644 0.937255i \(-0.613358\pi\)
−0.348644 + 0.937255i \(0.613358\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.04457e9 1.80924e9i −0.598757 1.03708i
\(438\) 0 0
\(439\) −5.73538e8 + 9.93398e8i −0.323546 + 0.560399i −0.981217 0.192907i \(-0.938209\pi\)
0.657671 + 0.753306i \(0.271542\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.69222e8 + 6.39512e8i −0.201778 + 0.349490i −0.949102 0.314970i \(-0.898005\pi\)
0.747323 + 0.664461i \(0.231339\pi\)
\(444\) 0 0
\(445\) 2.59689e9 + 4.49794e9i 1.39699 + 2.41966i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.95056e9 −1.01695 −0.508473 0.861078i \(-0.669790\pi\)
−0.508473 + 0.861078i \(0.669790\pi\)
\(450\) 0 0
\(451\) 8.64819e7 + 1.49791e8i 0.0443923 + 0.0768897i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.03839e9 2.06197e8i 1.51218 0.102622i
\(456\) 0 0
\(457\) 4.94545e6 8.56577e6i 0.00242381 0.00419817i −0.864811 0.502098i \(-0.832562\pi\)
0.867235 + 0.497899i \(0.165895\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.01965e8 0.381243 0.190622 0.981664i \(-0.438950\pi\)
0.190622 + 0.981664i \(0.438950\pi\)
\(462\) 0 0
\(463\) −3.05301e8 −0.142953 −0.0714767 0.997442i \(-0.522771\pi\)
−0.0714767 + 0.997442i \(0.522771\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.68121e8 4.64399e8i 0.121821 0.211000i −0.798665 0.601776i \(-0.794460\pi\)
0.920486 + 0.390776i \(0.127793\pi\)
\(468\) 0 0
\(469\) 6.25378e8 1.27556e9i 0.279922 0.570947i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.69643e7 + 1.67947e8i 0.0421306 + 0.0729724i
\(474\) 0 0
\(475\) 5.34287e9 2.28743
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.93121e8 + 1.72014e9i 0.412884 + 0.715136i 0.995204 0.0978238i \(-0.0311882\pi\)
−0.582320 + 0.812960i \(0.697855\pi\)
\(480\) 0 0
\(481\) 5.65496e8 9.79468e8i 0.231698 0.401312i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.09613e9 + 5.36266e9i −1.23232 + 2.13444i
\(486\) 0 0
\(487\) −4.14128e8 7.17291e8i −0.162474 0.281413i 0.773281 0.634063i \(-0.218614\pi\)
−0.935755 + 0.352650i \(0.885281\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.29504e9 −0.493739 −0.246869 0.969049i \(-0.579402\pi\)
−0.246869 + 0.969049i \(0.579402\pi\)
\(492\) 0 0
\(493\) 1.61227e9 + 2.79253e9i 0.606001 + 1.04962i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.16039e9 1.72800e9i −0.423992 0.631387i
\(498\) 0 0
\(499\) 3.73072e7 6.46180e7i 0.0134413 0.0232810i −0.859227 0.511595i \(-0.829055\pi\)
0.872668 + 0.488314i \(0.162388\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.88380e8 0.101036 0.0505181 0.998723i \(-0.483913\pi\)
0.0505181 + 0.998723i \(0.483913\pi\)
\(504\) 0 0
\(505\) 2.68652e9 0.928260
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4.82513e8 8.35738e8i 0.162180 0.280904i −0.773470 0.633833i \(-0.781481\pi\)
0.935650 + 0.352929i \(0.114814\pi\)
\(510\) 0 0
\(511\) 4.68497e8 9.55577e8i 0.155322 0.316805i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.24745e8 + 1.25530e9i 0.233808 + 0.404968i
\(516\) 0 0
\(517\) 5.27280e7 0.0167813
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.55195e9 + 4.42011e9i 0.790570 + 1.36931i 0.925615 + 0.378468i \(0.123549\pi\)
−0.135045 + 0.990840i \(0.543118\pi\)
\(522\) 0 0
\(523\) −1.68515e9 + 2.91877e9i −0.515090 + 0.892162i 0.484757 + 0.874649i \(0.338908\pi\)
−0.999847 + 0.0175130i \(0.994425\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.05631e9 3.56164e9i 0.612001 1.06002i
\(528\) 0 0
\(529\) 9.84351e8 + 1.70495e9i 0.289105 + 0.500744i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5.40696e9 −1.54671
\(534\) 0 0
\(535\) −3.74158e9 6.48061e9i −1.05637 1.82969i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.09369e8 + 2.85487e7i −0.0575907 + 0.00785282i
\(540\) 0 0
\(541\) −1.67298e9 + 2.89769e9i −0.454256 + 0.786794i −0.998645 0.0520386i \(-0.983428\pi\)
0.544389 + 0.838833i \(0.316761\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.91174e9 0.505872
\(546\) 0 0
\(547\) 4.98263e9 1.30168 0.650838 0.759216i \(-0.274418\pi\)
0.650838 + 0.759216i \(0.274418\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.46628e9 6.00377e9i 0.882740 1.52895i
\(552\) 0 0
\(553\) 6.52042e8 4.42500e7i 0.163960 0.0111269i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.02726e8 + 3.51132e8i 0.0497069 + 0.0860948i 0.889808 0.456335i \(-0.150838\pi\)
−0.840101 + 0.542429i \(0.817505\pi\)
\(558\) 0 0
\(559\) −6.06234e9 −1.46791
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.64670e9 4.58422e9i −0.625065 1.08264i −0.988528 0.151036i \(-0.951739\pi\)
0.363463 0.931609i \(-0.381594\pi\)
\(564\) 0 0
\(565\) −1.14235e9 + 1.97860e9i −0.266458 + 0.461518i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.50601e8 + 1.47328e9i −0.193568 + 0.335269i −0.946430 0.322909i \(-0.895339\pi\)
0.752862 + 0.658178i \(0.228673\pi\)
\(570\) 0 0
\(571\) −1.74216e9 3.01751e9i −0.391617 0.678301i 0.601046 0.799215i \(-0.294751\pi\)
−0.992663 + 0.120914i \(0.961418\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.67283e9 0.805681
\(576\) 0 0
\(577\) −3.11391e9 5.39345e9i −0.674825 1.16883i −0.976520 0.215426i \(-0.930886\pi\)
0.301696 0.953404i \(-0.402447\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.20940e9 + 1.80097e9i 0.255831 + 0.380970i
\(582\) 0 0
\(583\) −4.69259e7 + 8.12781e7i −0.00980783 + 0.0169877i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.01119e9 0.206348 0.103174 0.994663i \(-0.467100\pi\)
0.103174 + 0.994663i \(0.467100\pi\)
\(588\) 0 0
\(589\) −8.84189e9 −1.78296
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3.95949e9 + 6.85803e9i −0.779736 + 1.35054i 0.152358 + 0.988325i \(0.451313\pi\)
−0.932094 + 0.362217i \(0.882020\pi\)
\(594\) 0 0
\(595\) 5.42745e9 + 8.08228e9i 1.05630 + 1.57298i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.17062e9 2.02757e9i −0.222546 0.385462i 0.733034 0.680192i \(-0.238104\pi\)
−0.955581 + 0.294730i \(0.904770\pi\)
\(600\) 0 0
\(601\) 1.13771e8 0.0213781 0.0106891 0.999943i \(-0.496598\pi\)
0.0106891 + 0.999943i \(0.496598\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −4.06276e9 7.03691e9i −0.745895 1.29193i
\(606\) 0 0
\(607\) 2.01530e9 3.49060e9i 0.365746 0.633490i −0.623150 0.782103i \(-0.714147\pi\)
0.988896 + 0.148612i \(0.0474806\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.24156e8 + 1.42748e9i −0.146172 + 0.253178i
\(612\) 0 0
\(613\) −6.71782e8 1.16356e9i −0.117792 0.204022i 0.801100 0.598530i \(-0.204248\pi\)
−0.918892 + 0.394508i \(0.870915\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.24917e9 −1.07109 −0.535543 0.844508i \(-0.679893\pi\)
−0.535543 + 0.844508i \(0.679893\pi\)
\(618\) 0 0
\(619\) −3.84513e9 6.65996e9i −0.651619 1.12864i −0.982730 0.185046i \(-0.940757\pi\)
0.331111 0.943592i \(-0.392577\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.12397e10 7.62772e8i 1.86229 0.126382i
\(624\) 0 0
\(625\) 2.14106e9 3.70843e9i 0.350791 0.607588i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.61558e9 0.579296
\(630\) 0 0
\(631\) 6.83436e9 1.08292 0.541459 0.840727i \(-0.317872\pi\)
0.541459 + 0.840727i \(0.317872\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.47236e9 + 6.01430e9i −0.538166 + 0.932131i
\(636\) 0 0
\(637\) 2.49963e9 6.11438e9i 0.383166 0.937270i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.29088e9 + 3.96793e9i 0.343558 + 0.595060i 0.985091 0.172036i \(-0.0550345\pi\)
−0.641533 + 0.767096i \(0.721701\pi\)
\(642\) 0 0
\(643\) −6.98580e9 −1.03628 −0.518140 0.855296i \(-0.673376\pi\)
−0.518140 + 0.855296i \(0.673376\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.89690e9 8.48167e9i −0.710814 1.23117i −0.964552 0.263893i \(-0.914993\pi\)
0.253738 0.967273i \(-0.418340\pi\)
\(648\) 0 0
\(649\) 2.46949e8 4.27729e8i 0.0354611 0.0614203i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.10656e9 1.05769e10i 0.858223 1.48649i −0.0153985 0.999881i \(-0.504902\pi\)
0.873622 0.486605i \(-0.161765\pi\)
\(654\) 0 0
\(655\) 8.38791e9 + 1.45283e10i 1.16630 + 2.02009i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.39022e9 0.869795 0.434898 0.900480i \(-0.356785\pi\)
0.434898 + 0.900480i \(0.356785\pi\)
\(660\) 0 0
\(661\) −9.69710e8 1.67959e9i −0.130598 0.226203i 0.793309 0.608819i \(-0.208356\pi\)
−0.923907 + 0.382616i \(0.875023\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9.21406e9 1.87936e10i 1.21500 2.47819i
\(666\) 0 0
\(667\) 2.38281e9 4.12715e9i 0.310920 0.538530i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.97699e8 0.0891536
\(672\) 0 0
\(673\) −9.25555e8 −0.117044 −0.0585221 0.998286i \(-0.518639\pi\)
−0.0585221 + 0.998286i \(0.518639\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.74684e9 + 4.75766e9i −0.340230 + 0.589296i −0.984475 0.175523i \(-0.943838\pi\)
0.644245 + 0.764819i \(0.277172\pi\)
\(678\) 0 0
\(679\) 7.48784e9 + 1.11505e10i 0.917936 + 1.36694i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2.07004e9 3.58541e9i −0.248603 0.430592i 0.714536 0.699599i \(-0.246638\pi\)
−0.963138 + 0.269007i \(0.913305\pi\)
\(684\) 0 0
\(685\) 3.72603e8 0.0442925
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.46694e9 2.54081e9i −0.170861 0.295941i
\(690\) 0 0
\(691\) 5.23468e9 9.06673e9i 0.603555 1.04539i −0.388723 0.921355i \(-0.627084\pi\)
0.992278 0.124034i \(-0.0395831\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.97561e9 5.15390e9i 0.336224 0.582357i
\(696\) 0 0
\(697\) −8.64255e9 1.49693e10i −0.966779 1.67451i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.45142e10 −1.59141 −0.795703 0.605686i \(-0.792899\pi\)
−0.795703 + 0.605686i \(0.792899\pi\)
\(702\) 0 0
\(703\) −3.88664e9 6.73185e9i −0.421920 0.730787i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.56523e9 5.23220e9i 0.272997 0.556822i
\(708\) 0 0
\(709\) 5.63771e9 9.76480e9i 0.594074 1.02897i −0.399603 0.916688i \(-0.630852\pi\)
0.993677 0.112278i \(-0.0358148\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −6.07814e9 −0.627997
\(714\) 0 0
\(715\) −8.61043e8 −0.0880955
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.84071e9 4.92026e9i 0.285020 0.493670i −0.687594 0.726096i \(-0.741333\pi\)
0.972614 + 0.232426i \(0.0746663\pi\)
\(720\) 0 0
\(721\) 3.13681e9 2.12876e8i 0.311684 0.0211521i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.09395e9 + 1.05550e10i 0.593903 + 1.02867i
\(726\) 0 0
\(727\) 1.98501e9 0.191599 0.0957993 0.995401i \(-0.469459\pi\)
0.0957993 + 0.995401i \(0.469459\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9.69011e9 1.67838e10i −0.917525 1.58920i
\(732\) 0 0
\(733\) −2.51985e9 + 4.36450e9i −0.236325 + 0.409327i −0.959657 0.281173i \(-0.909276\pi\)
0.723332 + 0.690501i \(0.242610\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.00831e8 + 3.47849e8i −0.0184797 + 0.0320078i
\(738\) 0 0
\(739\) 5.50892e9 + 9.54173e9i 0.502124 + 0.869704i 0.999997 + 0.00245436i \(0.000781249\pi\)
−0.497873 + 0.867250i \(0.665885\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −4.80549e9 −0.429810 −0.214905 0.976635i \(-0.568944\pi\)
−0.214905 + 0.976635i \(0.568944\pi\)
\(744\) 0 0
\(745\) 1.04202e10 + 1.80483e10i 0.923268 + 1.59915i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.61942e10 + 1.09900e9i −1.40822 + 0.0955675i
\(750\) 0 0
\(751\) −8.29288e9 + 1.43637e10i −0.714440 + 1.23745i 0.248735 + 0.968572i \(0.419985\pi\)
−0.963175 + 0.268875i \(0.913348\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.17766e10 1.84152
\(756\) 0 0
\(757\) −1.01328e10 −0.848973 −0.424487 0.905434i \(-0.639545\pi\)
−0.424487 + 0.905434i \(0.639545\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.15181e8 1.41194e9i 0.0670514 0.116136i −0.830551 0.556943i \(-0.811974\pi\)
0.897602 + 0.440807i \(0.145308\pi\)
\(762\) 0 0
\(763\) 1.82543e9 3.72326e9i 0.148775 0.303450i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.71981e9 + 1.33711e10i 0.617764 + 1.07000i
\(768\) 0 0
\(769\) −3.58444e9 −0.284236 −0.142118 0.989850i \(-0.545391\pi\)
−0.142118 + 0.989850i \(0.545391\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5.03445e9 8.71993e9i −0.392034 0.679023i 0.600683 0.799487i \(-0.294895\pi\)
−0.992718 + 0.120464i \(0.961562\pi\)
\(774\) 0 0
\(775\) 7.77231e9 1.34620e10i 0.599783 1.03885i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.85809e10 + 3.21831e10i −1.40827 + 2.43920i
\(780\) 0 0
\(781\) 2.94254e8 + 5.09663e8i 0.0221026 + 0.0382829i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.11765e10 −0.824639
\(786\) 0 0
\(787\) −8.69347e9 1.50575e10i −0.635743 1.10114i −0.986357 0.164619i \(-0.947361\pi\)
0.350615 0.936520i \(-0.385973\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.76271e9 + 4.11408e9i 0.198480 + 0.295566i
\(792\) 0 0
\(793\) −1.09053e10 + 1.88885e10i −0.776569 + 1.34506i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.03291e10 1.42238 0.711189 0.703001i \(-0.248157\pi\)
0.711189 + 0.703001i \(0.248157\pi\)
\(798\) 0 0
\(799\) −5.26936e9 −0.365464
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.50451e8 + 2.60589e8i −0.0102539 + 0.0177604i
\(804\) 0 0
\(805\) 6.33398e9 1.29192e10i 0.427948 0.872871i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.78004e9 4.81518e9i −0.184600 0.319737i 0.758842 0.651275i \(-0.225766\pi\)
−0.943442 + 0.331538i \(0.892432\pi\)
\(810\) 0 0
\(811\) 1.89473e10 1.24731 0.623655 0.781700i \(-0.285647\pi\)
0.623655 + 0.781700i \(0.285647\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.58778e9 + 6.21422e9i 0.232153 + 0.402101i
\(816\) 0 0
\(817\) −2.08331e10 + 3.60840e10i −1.33653 + 2.31493i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.93335e9 + 1.37410e10i −0.500329 + 0.866595i 0.499671 + 0.866215i \(0.333454\pi\)
−1.00000 0.000379943i \(0.999879\pi\)
\(822\) 0 0
\(823\) −8.51170e9 1.47427e10i −0.532251 0.921886i −0.999291 0.0376500i \(-0.988013\pi\)
0.467040 0.884236i \(-0.345321\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3.25344e9 −0.200020 −0.100010 0.994986i \(-0.531888\pi\)
−0.100010 + 0.994986i \(0.531888\pi\)
\(828\) 0 0
\(829\) −1.29422e10 2.24166e10i −0.788985 1.36656i −0.926589 0.376075i \(-0.877273\pi\)
0.137604 0.990487i \(-0.456060\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.09233e10 2.85301e9i 1.25422 0.171019i
\(834\) 0 0
\(835\) −1.46479e10 + 2.53709e10i −0.870709 + 1.50811i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.19214e10 1.28145 0.640724 0.767771i \(-0.278634\pi\)
0.640724 + 0.767771i \(0.278634\pi\)
\(840\) 0 0
\(841\) −1.43567e9 −0.0832278
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.31988e8 5.75021e8i 0.0189289 0.0327857i
\(846\) 0 0
\(847\) −1.75843e10 + 1.19334e9i −0.994335 + 0.0674793i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.67178e9 4.62765e9i −0.148610 0.257399i
\(852\) 0 0
\(853\) 3.22899e10 1.78133 0.890666 0.454657i \(-0.150238\pi\)
0.890666 + 0.454657i \(0.150238\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.27172e10 + 2.20268e10i 0.690172 + 1.19541i 0.971781 + 0.235883i \(0.0757983\pi\)
−0.281610 + 0.959529i \(0.590868\pi\)
\(858\) 0 0
\(859\) 9.99623e9 1.73140e10i 0.538096 0.932010i −0.460910 0.887447i \(-0.652477\pi\)
0.999007 0.0445634i \(-0.0141897\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.19142e9 2.06361e9i 0.0630998 0.109292i −0.832750 0.553650i \(-0.813235\pi\)
0.895850 + 0.444358i \(0.146568\pi\)
\(864\) 0 0
\(865\) 1.08154e10 + 1.87328e10i 0.568181 + 0.984118i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.84781e8 −0.00955186
\(870\) 0 0
\(871\) −6.27811e9 1.08740e10i −0.321933 0.557604i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.97788e9 + 5.92364e9i 0.200735 + 0.298924i
\(876\) 0 0
\(877\) 1.01482e9 1.75773e9i 0.0508033 0.0879939i −0.839505 0.543351i \(-0.817155\pi\)
0.890309 + 0.455357i \(0.150489\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.02197e10 −0.996231 −0.498116 0.867111i \(-0.665974\pi\)
−0.498116 + 0.867111i \(0.665974\pi\)
\(882\) 0 0
\(883\) 2.38857e10 1.16755 0.583775 0.811916i \(-0.301575\pi\)
0.583775 + 0.811916i \(0.301575\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.73532e10 + 3.00567e10i −0.834926 + 1.44613i 0.0591654 + 0.998248i \(0.481156\pi\)
−0.894091 + 0.447885i \(0.852177\pi\)
\(888\) 0 0
\(889\) 8.39772e9 + 1.25054e10i 0.400872 + 0.596957i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.66440e9 + 9.81103e9i 0.266179 + 0.461036i
\(894\) 0 0
\(895\) −1.39020e10 −0.648183
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.00848e10 1.74675e10i −0.462924 0.801808i
\(900\) 0 0
\(901\) 4.68953e9 8.12251e9i 0.213596 0.369959i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.58179e10 + 4.47179e10i −1.15785 + 2.00545i
\(906\) 0 0
\(907\) 6.76837e9 + 1.17232e10i 0.301203 + 0.521698i 0.976409 0.215931i \(-0.0692786\pi\)
−0.675206 + 0.737629i \(0.735945\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.62909e10 −0.713889 −0.356945 0.934126i \(-0.616181\pi\)
−0.356945 + 0.934126i \(0.616181\pi\)
\(912\) 0 0
\(913\) −3.06681e8 5.31187e8i −0.0133364 0.0230993i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.63042e10 2.46374e9i 1.55476 0.105512i
\(918\) 0 0
\(919\) −5.46627e9 + 9.46786e9i −0.232320 + 0.402390i −0.958491 0.285124i \(-0.907965\pi\)
0.726170 + 0.687515i \(0.241298\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.83972e10 −0.770096
\(924\) 0 0
\(925\) 1.36659e10 0.567732
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.45284e10 2.51640e10i 0.594516 1.02973i −0.399099 0.916908i \(-0.630677\pi\)
0.993615 0.112824i \(-0.0359898\pi\)
\(930\) 0 0
\(931\) −2.78039e10 3.58902e10i −1.12923 1.45764i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.37630e9 2.38382e9i −0.0550646 0.0953748i
\(936\) 0 0
\(937\) 3.95737e10 1.57151 0.785757 0.618535i \(-0.212273\pi\)
0.785757 + 0.618535i \(0.212273\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.38478e10 2.39851e10i −0.541774 0.938380i −0.998802 0.0489276i \(-0.984420\pi\)
0.457029 0.889452i \(-0.348914\pi\)
\(942\) 0 0
\(943\) −1.27730e10 + 2.21235e10i −0.496024 + 0.859139i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.77937e10 + 3.08196e10i −0.680834 + 1.17924i 0.293893 + 0.955838i \(0.405049\pi\)
−0.974727 + 0.223401i \(0.928284\pi\)
\(948\) 0 0
\(949\) −4.70321e9 8.14619e9i −0.178633 0.309402i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.97100e10 1.11193 0.555964 0.831206i \(-0.312349\pi\)
0.555964 + 0.831206i \(0.312349\pi\)
\(954\) 0 0
\(955\) 1.72493e10 + 2.98767e10i 0.640856 + 1.11000i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.55781e8 7.25674e8i 0.0130262 0.0265691i
\(960\) 0 0
\(961\) 8.93952e8 1.54837e9i 0.0324924 0.0562786i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.42858e10 1.58642
\(966\) 0 0
\(967\) −2.76167e10 −0.982152 −0.491076 0.871117i \(-0.663396\pi\)
−0.491076 + 0.871117i \(0.663396\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.94914e10 + 3.37601e10i −0.683245 + 1.18341i 0.290740 + 0.956802i \(0.406098\pi\)
−0.973985 + 0.226613i \(0.927235\pi\)
\(972\) 0 0
\(973\) −7.19636e9 1.07164e10i −0.250448 0.372954i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.68615e10 + 2.92050e10i 0.578450 + 1.00190i 0.995657 + 0.0930935i \(0.0296755\pi\)
−0.417207 + 0.908811i \(0.636991\pi\)
\(978\) 0 0
\(979\) −3.18521e9 −0.108492
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1.31204e10 2.27251e10i −0.440563 0.763078i 0.557168 0.830400i \(-0.311888\pi\)
−0.997731 + 0.0673220i \(0.978555\pi\)
\(984\) 0 0
\(985\) −2.58700e10 + 4.48081e10i −0.862520 + 1.49393i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.43212e10 + 2.48051e10i −0.470754 + 0.815369i
\(990\) 0 0
\(991\) 4.39651e9 + 7.61498e9i 0.143500 + 0.248548i 0.928812 0.370551i \(-0.120831\pi\)
−0.785313 + 0.619099i \(0.787498\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.64249e10 −0.528595
\(996\) 0 0
\(997\) 1.97048e10 + 3.41297e10i 0.629707 + 1.09068i 0.987610 + 0.156926i \(0.0501585\pi\)
−0.357903 + 0.933759i \(0.616508\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.8.k.c.37.5 10
3.2 odd 2 28.8.e.a.9.4 10
7.4 even 3 inner 252.8.k.c.109.5 10
12.11 even 2 112.8.i.d.65.2 10
21.2 odd 6 196.8.a.d.1.2 5
21.5 even 6 196.8.a.e.1.4 5
21.11 odd 6 28.8.e.a.25.4 yes 10
21.17 even 6 196.8.e.f.165.2 10
21.20 even 2 196.8.e.f.177.2 10
84.11 even 6 112.8.i.d.81.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.8.e.a.9.4 10 3.2 odd 2
28.8.e.a.25.4 yes 10 21.11 odd 6
112.8.i.d.65.2 10 12.11 even 2
112.8.i.d.81.2 10 84.11 even 6
196.8.a.d.1.2 5 21.2 odd 6
196.8.a.e.1.4 5 21.5 even 6
196.8.e.f.165.2 10 21.17 even 6
196.8.e.f.177.2 10 21.20 even 2
252.8.k.c.37.5 10 1.1 even 1 trivial
252.8.k.c.109.5 10 7.4 even 3 inner