Properties

Label 196.8.a.d.1.2
Level $196$
Weight $8$
Character 196.1
Self dual yes
Analytic conductor $61.227$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,8,Mod(1,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 196.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.2274649949\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 341x^{3} - 912x^{2} + 1764x + 4860 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{9}\cdot 3^{2}\cdot 7^{3} \)
Twist minimal: no (minimal twist has level 28)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.29744\) of defining polynomial
Character \(\chi\) \(=\) 196.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-58.7379 q^{3} +418.382 q^{5} +1263.14 q^{9} +256.583 q^{11} -8020.94 q^{13} -24574.9 q^{15} -25641.5 q^{17} +55127.7 q^{19} -37896.2 q^{23} +96918.1 q^{25} +54265.4 q^{27} +125755. q^{29} -160389. q^{31} -15071.1 q^{33} +141005. q^{37} +471134. q^{39} -674106. q^{41} +755814. q^{43} +528476. q^{45} +205501. q^{47} +1.50613e6 q^{51} +365777. q^{53} +107349. q^{55} -3.23809e6 q^{57} -1.92491e6 q^{59} -2.71920e6 q^{61} -3.35581e6 q^{65} -1.56543e6 q^{67} +2.22595e6 q^{69} -2.29364e6 q^{71} -1.17273e6 q^{73} -5.69277e6 q^{75} +720162. q^{79} -5.94993e6 q^{81} +2.39050e6 q^{83} -1.07279e7 q^{85} -7.38656e6 q^{87} -1.24140e7 q^{89} +9.42093e6 q^{93} +2.30644e7 q^{95} -1.48005e7 q^{97} +324101. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 27 q^{3} - 249 q^{5} + 5702 q^{9} - 6399 q^{11} - 13494 q^{13} + 9647 q^{15} - 3609 q^{17} + 12403 q^{19} + 13959 q^{23} + 162364 q^{25} + 80775 q^{27} + 13074 q^{29} + 20181 q^{31} - 264239 q^{33}+ \cdots - 59638906 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −58.7379 −1.25601 −0.628007 0.778208i \(-0.716129\pi\)
−0.628007 + 0.778208i \(0.716129\pi\)
\(4\) 0 0
\(5\) 418.382 1.49685 0.748424 0.663221i \(-0.230811\pi\)
0.748424 + 0.663221i \(0.230811\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1263.14 0.577570
\(10\) 0 0
\(11\) 256.583 0.0581236 0.0290618 0.999578i \(-0.490748\pi\)
0.0290618 + 0.999578i \(0.490748\pi\)
\(12\) 0 0
\(13\) −8020.94 −1.01257 −0.506283 0.862367i \(-0.668981\pi\)
−0.506283 + 0.862367i \(0.668981\pi\)
\(14\) 0 0
\(15\) −24574.9 −1.88006
\(16\) 0 0
\(17\) −25641.5 −1.26582 −0.632911 0.774225i \(-0.718140\pi\)
−0.632911 + 0.774225i \(0.718140\pi\)
\(18\) 0 0
\(19\) 55127.7 1.84388 0.921939 0.387336i \(-0.126605\pi\)
0.921939 + 0.387336i \(0.126605\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −37896.2 −0.649454 −0.324727 0.945808i \(-0.605272\pi\)
−0.324727 + 0.945808i \(0.605272\pi\)
\(24\) 0 0
\(25\) 96918.1 1.24055
\(26\) 0 0
\(27\) 54265.4 0.530578
\(28\) 0 0
\(29\) 125755. 0.957482 0.478741 0.877956i \(-0.341093\pi\)
0.478741 + 0.877956i \(0.341093\pi\)
\(30\) 0 0
\(31\) −160389. −0.966962 −0.483481 0.875355i \(-0.660628\pi\)
−0.483481 + 0.875355i \(0.660628\pi\)
\(32\) 0 0
\(33\) −15071.1 −0.0730041
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 141005. 0.457644 0.228822 0.973468i \(-0.426513\pi\)
0.228822 + 0.973468i \(0.426513\pi\)
\(38\) 0 0
\(39\) 471134. 1.27180
\(40\) 0 0
\(41\) −674106. −1.52751 −0.763756 0.645505i \(-0.776647\pi\)
−0.763756 + 0.645505i \(0.776647\pi\)
\(42\) 0 0
\(43\) 755814. 1.44969 0.724845 0.688912i \(-0.241911\pi\)
0.724845 + 0.688912i \(0.241911\pi\)
\(44\) 0 0
\(45\) 528476. 0.864533
\(46\) 0 0
\(47\) 205501. 0.288717 0.144358 0.989525i \(-0.453888\pi\)
0.144358 + 0.989525i \(0.453888\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 1.50613e6 1.58989
\(52\) 0 0
\(53\) 365777. 0.337482 0.168741 0.985660i \(-0.446030\pi\)
0.168741 + 0.985660i \(0.446030\pi\)
\(54\) 0 0
\(55\) 107349. 0.0870022
\(56\) 0 0
\(57\) −3.23809e6 −2.31593
\(58\) 0 0
\(59\) −1.92491e6 −1.22019 −0.610097 0.792327i \(-0.708870\pi\)
−0.610097 + 0.792327i \(0.708870\pi\)
\(60\) 0 0
\(61\) −2.71920e6 −1.53386 −0.766931 0.641729i \(-0.778217\pi\)
−0.766931 + 0.641729i \(0.778217\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.35581e6 −1.51566
\(66\) 0 0
\(67\) −1.56543e6 −0.635875 −0.317938 0.948112i \(-0.602990\pi\)
−0.317938 + 0.948112i \(0.602990\pi\)
\(68\) 0 0
\(69\) 2.22595e6 0.815723
\(70\) 0 0
\(71\) −2.29364e6 −0.760538 −0.380269 0.924876i \(-0.624169\pi\)
−0.380269 + 0.924876i \(0.624169\pi\)
\(72\) 0 0
\(73\) −1.17273e6 −0.352832 −0.176416 0.984316i \(-0.556450\pi\)
−0.176416 + 0.984316i \(0.556450\pi\)
\(74\) 0 0
\(75\) −5.69277e6 −1.55815
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 720162. 0.164337 0.0821685 0.996618i \(-0.473815\pi\)
0.0821685 + 0.996618i \(0.473815\pi\)
\(80\) 0 0
\(81\) −5.94993e6 −1.24398
\(82\) 0 0
\(83\) 2.39050e6 0.458898 0.229449 0.973321i \(-0.426308\pi\)
0.229449 + 0.973321i \(0.426308\pi\)
\(84\) 0 0
\(85\) −1.07279e7 −1.89474
\(86\) 0 0
\(87\) −7.38656e6 −1.20261
\(88\) 0 0
\(89\) −1.24140e7 −1.86658 −0.933288 0.359128i \(-0.883074\pi\)
−0.933288 + 0.359128i \(0.883074\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 9.42093e6 1.21452
\(94\) 0 0
\(95\) 2.30644e7 2.76000
\(96\) 0 0
\(97\) −1.48005e7 −1.64655 −0.823276 0.567641i \(-0.807856\pi\)
−0.823276 + 0.567641i \(0.807856\pi\)
\(98\) 0 0
\(99\) 324101. 0.0335704
\(100\) 0 0
\(101\) 6.42121e6 0.620144 0.310072 0.950713i \(-0.399647\pi\)
0.310072 + 0.950713i \(0.399647\pi\)
\(102\) 0 0
\(103\) 3.46452e6 0.312401 0.156201 0.987725i \(-0.450075\pi\)
0.156201 + 0.987725i \(0.450075\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.78860e7 1.41146 0.705732 0.708479i \(-0.250618\pi\)
0.705732 + 0.708479i \(0.250618\pi\)
\(108\) 0 0
\(109\) −4.56937e6 −0.337959 −0.168979 0.985620i \(-0.554047\pi\)
−0.168979 + 0.985620i \(0.554047\pi\)
\(110\) 0 0
\(111\) −8.28234e6 −0.574808
\(112\) 0 0
\(113\) 5.46079e6 0.356025 0.178013 0.984028i \(-0.443033\pi\)
0.178013 + 0.984028i \(0.443033\pi\)
\(114\) 0 0
\(115\) −1.58551e7 −0.972133
\(116\) 0 0
\(117\) −1.01316e7 −0.584828
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.94213e7 −0.996622
\(122\) 0 0
\(123\) 3.95956e7 1.91858
\(124\) 0 0
\(125\) 7.86270e6 0.360070
\(126\) 0 0
\(127\) −1.65990e7 −0.719066 −0.359533 0.933132i \(-0.617064\pi\)
−0.359533 + 0.933132i \(0.617064\pi\)
\(128\) 0 0
\(129\) −4.43950e7 −1.82083
\(130\) 0 0
\(131\) −4.00970e7 −1.55834 −0.779169 0.626813i \(-0.784359\pi\)
−0.779169 + 0.626813i \(0.784359\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.27036e7 0.794195
\(136\) 0 0
\(137\) 890583. 0.0295905 0.0147953 0.999891i \(-0.495290\pi\)
0.0147953 + 0.999891i \(0.495290\pi\)
\(138\) 0 0
\(139\) 1.42244e7 0.449243 0.224622 0.974446i \(-0.427885\pi\)
0.224622 + 0.974446i \(0.427885\pi\)
\(140\) 0 0
\(141\) −1.20707e7 −0.362632
\(142\) 0 0
\(143\) −2.05803e6 −0.0588541
\(144\) 0 0
\(145\) 5.26134e7 1.43320
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.98118e7 −1.23362 −0.616809 0.787113i \(-0.711575\pi\)
−0.616809 + 0.787113i \(0.711575\pi\)
\(150\) 0 0
\(151\) −5.20497e7 −1.23026 −0.615132 0.788424i \(-0.710897\pi\)
−0.615132 + 0.788424i \(0.710897\pi\)
\(152\) 0 0
\(153\) −3.23890e7 −0.731100
\(154\) 0 0
\(155\) −6.71039e7 −1.44739
\(156\) 0 0
\(157\) 2.67138e7 0.550917 0.275459 0.961313i \(-0.411170\pi\)
0.275459 + 0.961313i \(0.411170\pi\)
\(158\) 0 0
\(159\) −2.14850e7 −0.423882
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.71508e7 0.310189 0.155095 0.987900i \(-0.450432\pi\)
0.155095 + 0.987900i \(0.450432\pi\)
\(164\) 0 0
\(165\) −6.30548e6 −0.109276
\(166\) 0 0
\(167\) 7.00218e7 1.16339 0.581695 0.813407i \(-0.302390\pi\)
0.581695 + 0.813407i \(0.302390\pi\)
\(168\) 0 0
\(169\) 1.58701e6 0.0252916
\(170\) 0 0
\(171\) 6.96342e7 1.06497
\(172\) 0 0
\(173\) −5.17012e7 −0.759170 −0.379585 0.925157i \(-0.623933\pi\)
−0.379585 + 0.925157i \(0.623933\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.13065e8 1.53258
\(178\) 0 0
\(179\) −3.32281e7 −0.433032 −0.216516 0.976279i \(-0.569469\pi\)
−0.216516 + 0.976279i \(0.569469\pi\)
\(180\) 0 0
\(181\) −1.23418e8 −1.54705 −0.773523 0.633769i \(-0.781507\pi\)
−0.773523 + 0.633769i \(0.781507\pi\)
\(182\) 0 0
\(183\) 1.59720e8 1.92655
\(184\) 0 0
\(185\) 5.89939e7 0.685024
\(186\) 0 0
\(187\) −6.57917e6 −0.0735742
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.24575e7 −0.856275 −0.428137 0.903714i \(-0.640830\pi\)
−0.428137 + 0.903714i \(0.640830\pi\)
\(192\) 0 0
\(193\) −1.05850e8 −1.05984 −0.529922 0.848047i \(-0.677779\pi\)
−0.529922 + 0.848047i \(0.677779\pi\)
\(194\) 0 0
\(195\) 1.97114e8 1.90369
\(196\) 0 0
\(197\) 1.23667e8 1.15245 0.576224 0.817292i \(-0.304525\pi\)
0.576224 + 0.817292i \(0.304525\pi\)
\(198\) 0 0
\(199\) 3.92583e7 0.353139 0.176569 0.984288i \(-0.443500\pi\)
0.176569 + 0.984288i \(0.443500\pi\)
\(200\) 0 0
\(201\) 9.19501e7 0.798668
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.82033e8 −2.28645
\(206\) 0 0
\(207\) −4.78684e7 −0.375105
\(208\) 0 0
\(209\) 1.41448e7 0.107173
\(210\) 0 0
\(211\) −1.64534e7 −0.120578 −0.0602890 0.998181i \(-0.519202\pi\)
−0.0602890 + 0.998181i \(0.519202\pi\)
\(212\) 0 0
\(213\) 1.34724e8 0.955246
\(214\) 0 0
\(215\) 3.16219e8 2.16997
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 6.88838e7 0.443162
\(220\) 0 0
\(221\) 2.05669e8 1.28173
\(222\) 0 0
\(223\) −9.12765e7 −0.551178 −0.275589 0.961276i \(-0.588873\pi\)
−0.275589 + 0.961276i \(0.588873\pi\)
\(224\) 0 0
\(225\) 1.22422e8 0.716505
\(226\) 0 0
\(227\) −3.30696e8 −1.87646 −0.938230 0.346014i \(-0.887535\pi\)
−0.938230 + 0.346014i \(0.887535\pi\)
\(228\) 0 0
\(229\) 2.76156e8 1.51960 0.759802 0.650154i \(-0.225296\pi\)
0.759802 + 0.650154i \(0.225296\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.08365e8 1.59705 0.798526 0.601961i \(-0.205614\pi\)
0.798526 + 0.601961i \(0.205614\pi\)
\(234\) 0 0
\(235\) 8.59779e7 0.432165
\(236\) 0 0
\(237\) −4.23008e7 −0.206409
\(238\) 0 0
\(239\) −7.05871e7 −0.334451 −0.167225 0.985919i \(-0.553481\pi\)
−0.167225 + 0.985919i \(0.553481\pi\)
\(240\) 0 0
\(241\) 7.97343e6 0.0366932 0.0183466 0.999832i \(-0.494160\pi\)
0.0183466 + 0.999832i \(0.494160\pi\)
\(242\) 0 0
\(243\) 2.30808e8 1.03188
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.42176e8 −1.86705
\(248\) 0 0
\(249\) −1.40413e8 −0.576382
\(250\) 0 0
\(251\) −1.09068e8 −0.435351 −0.217675 0.976021i \(-0.569847\pi\)
−0.217675 + 0.976021i \(0.569847\pi\)
\(252\) 0 0
\(253\) −9.72351e6 −0.0377486
\(254\) 0 0
\(255\) 6.30137e8 2.37982
\(256\) 0 0
\(257\) 6.23013e7 0.228945 0.114473 0.993426i \(-0.463482\pi\)
0.114473 + 0.993426i \(0.463482\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.58846e8 0.553013
\(262\) 0 0
\(263\) −8.95838e7 −0.303658 −0.151829 0.988407i \(-0.548516\pi\)
−0.151829 + 0.988407i \(0.548516\pi\)
\(264\) 0 0
\(265\) 1.53034e8 0.505159
\(266\) 0 0
\(267\) 7.29171e8 2.34445
\(268\) 0 0
\(269\) −2.77561e8 −0.869411 −0.434706 0.900573i \(-0.643148\pi\)
−0.434706 + 0.900573i \(0.643148\pi\)
\(270\) 0 0
\(271\) 1.90781e6 0.00582295 0.00291147 0.999996i \(-0.499073\pi\)
0.00291147 + 0.999996i \(0.499073\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.48675e7 0.0721054
\(276\) 0 0
\(277\) −3.81539e8 −1.07860 −0.539299 0.842114i \(-0.681311\pi\)
−0.539299 + 0.842114i \(0.681311\pi\)
\(278\) 0 0
\(279\) −2.02595e8 −0.558488
\(280\) 0 0
\(281\) 1.58621e8 0.426470 0.213235 0.977001i \(-0.431600\pi\)
0.213235 + 0.977001i \(0.431600\pi\)
\(282\) 0 0
\(283\) 2.43169e8 0.637759 0.318879 0.947795i \(-0.396694\pi\)
0.318879 + 0.947795i \(0.396694\pi\)
\(284\) 0 0
\(285\) −1.35476e9 −3.46660
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 2.47149e8 0.602305
\(290\) 0 0
\(291\) 8.69351e8 2.06809
\(292\) 0 0
\(293\) 5.34536e8 1.24148 0.620740 0.784016i \(-0.286832\pi\)
0.620740 + 0.784016i \(0.286832\pi\)
\(294\) 0 0
\(295\) −8.05348e8 −1.82644
\(296\) 0 0
\(297\) 1.39235e7 0.0308391
\(298\) 0 0
\(299\) 3.03963e8 0.657616
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −3.77169e8 −0.778909
\(304\) 0 0
\(305\) −1.13766e9 −2.29596
\(306\) 0 0
\(307\) 6.57215e8 1.29635 0.648176 0.761490i \(-0.275532\pi\)
0.648176 + 0.761490i \(0.275532\pi\)
\(308\) 0 0
\(309\) −2.03499e8 −0.392380
\(310\) 0 0
\(311\) −5.54408e7 −0.104513 −0.0522563 0.998634i \(-0.516641\pi\)
−0.0522563 + 0.998634i \(0.516641\pi\)
\(312\) 0 0
\(313\) −4.51349e8 −0.831968 −0.415984 0.909372i \(-0.636563\pi\)
−0.415984 + 0.909372i \(0.636563\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.13880e7 −0.108237 −0.0541186 0.998535i \(-0.517235\pi\)
−0.0541186 + 0.998535i \(0.517235\pi\)
\(318\) 0 0
\(319\) 3.22664e7 0.0556523
\(320\) 0 0
\(321\) −1.05059e9 −1.77282
\(322\) 0 0
\(323\) −1.41356e9 −2.33402
\(324\) 0 0
\(325\) −7.77375e8 −1.25614
\(326\) 0 0
\(327\) 2.68395e8 0.424481
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.07760e8 0.618026 0.309013 0.951058i \(-0.400001\pi\)
0.309013 + 0.951058i \(0.400001\pi\)
\(332\) 0 0
\(333\) 1.78110e8 0.264322
\(334\) 0 0
\(335\) −6.54947e8 −0.951808
\(336\) 0 0
\(337\) −2.63519e8 −0.375066 −0.187533 0.982258i \(-0.560049\pi\)
−0.187533 + 0.982258i \(0.560049\pi\)
\(338\) 0 0
\(339\) −3.20755e8 −0.447172
\(340\) 0 0
\(341\) −4.11531e7 −0.0562033
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 9.31294e8 1.22101
\(346\) 0 0
\(347\) 4.07599e8 0.523696 0.261848 0.965109i \(-0.415668\pi\)
0.261848 + 0.965109i \(0.415668\pi\)
\(348\) 0 0
\(349\) −5.06614e7 −0.0637952 −0.0318976 0.999491i \(-0.510155\pi\)
−0.0318976 + 0.999491i \(0.510155\pi\)
\(350\) 0 0
\(351\) −4.35259e8 −0.537246
\(352\) 0 0
\(353\) −8.52749e8 −1.03183 −0.515917 0.856639i \(-0.672549\pi\)
−0.515917 + 0.856639i \(0.672549\pi\)
\(354\) 0 0
\(355\) −9.59616e8 −1.13841
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.50311e9 −1.71459 −0.857293 0.514828i \(-0.827856\pi\)
−0.857293 + 0.514828i \(0.827856\pi\)
\(360\) 0 0
\(361\) 2.14519e9 2.39988
\(362\) 0 0
\(363\) 1.14077e9 1.25177
\(364\) 0 0
\(365\) −4.90649e8 −0.528136
\(366\) 0 0
\(367\) −1.09915e9 −1.16071 −0.580355 0.814363i \(-0.697086\pi\)
−0.580355 + 0.814363i \(0.697086\pi\)
\(368\) 0 0
\(369\) −8.51493e8 −0.882244
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.16058e9 1.15796 0.578981 0.815341i \(-0.303451\pi\)
0.578981 + 0.815341i \(0.303451\pi\)
\(374\) 0 0
\(375\) −4.61839e8 −0.452252
\(376\) 0 0
\(377\) −1.00867e9 −0.969515
\(378\) 0 0
\(379\) 1.63326e9 1.54106 0.770528 0.637406i \(-0.219993\pi\)
0.770528 + 0.637406i \(0.219993\pi\)
\(380\) 0 0
\(381\) 9.74990e8 0.903156
\(382\) 0 0
\(383\) −1.22920e8 −0.111796 −0.0558981 0.998436i \(-0.517802\pi\)
−0.0558981 + 0.998436i \(0.517802\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 9.54702e8 0.837297
\(388\) 0 0
\(389\) 5.58108e8 0.480723 0.240361 0.970684i \(-0.422734\pi\)
0.240361 + 0.970684i \(0.422734\pi\)
\(390\) 0 0
\(391\) 9.71717e8 0.822093
\(392\) 0 0
\(393\) 2.35521e9 1.95729
\(394\) 0 0
\(395\) 3.01302e8 0.245987
\(396\) 0 0
\(397\) 8.92169e8 0.715617 0.357808 0.933795i \(-0.383524\pi\)
0.357808 + 0.933795i \(0.383524\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.71115e8 −0.519746 −0.259873 0.965643i \(-0.583681\pi\)
−0.259873 + 0.965643i \(0.583681\pi\)
\(402\) 0 0
\(403\) 1.28647e9 0.979113
\(404\) 0 0
\(405\) −2.48934e9 −1.86205
\(406\) 0 0
\(407\) 3.61794e7 0.0266000
\(408\) 0 0
\(409\) 4.03330e8 0.291494 0.145747 0.989322i \(-0.453442\pi\)
0.145747 + 0.989322i \(0.453442\pi\)
\(410\) 0 0
\(411\) −5.23110e7 −0.0371661
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.00014e9 0.686900
\(416\) 0 0
\(417\) −8.35510e8 −0.564255
\(418\) 0 0
\(419\) 4.45684e8 0.295990 0.147995 0.988988i \(-0.452718\pi\)
0.147995 + 0.988988i \(0.452718\pi\)
\(420\) 0 0
\(421\) −2.97060e9 −1.94025 −0.970123 0.242614i \(-0.921995\pi\)
−0.970123 + 0.242614i \(0.921995\pi\)
\(422\) 0 0
\(423\) 2.59578e8 0.166754
\(424\) 0 0
\(425\) −2.48513e9 −1.57032
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.20885e8 0.0739215
\(430\) 0 0
\(431\) 1.13683e9 0.683950 0.341975 0.939709i \(-0.388904\pi\)
0.341975 + 0.939709i \(0.388904\pi\)
\(432\) 0 0
\(433\) −1.17793e9 −0.697287 −0.348644 0.937255i \(-0.613358\pi\)
−0.348644 + 0.937255i \(0.613358\pi\)
\(434\) 0 0
\(435\) −3.09040e9 −1.80012
\(436\) 0 0
\(437\) −2.08913e9 −1.19751
\(438\) 0 0
\(439\) 1.14708e9 0.647093 0.323546 0.946212i \(-0.395125\pi\)
0.323546 + 0.946212i \(0.395125\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7.38444e8 −0.403557 −0.201778 0.979431i \(-0.564672\pi\)
−0.201778 + 0.979431i \(0.564672\pi\)
\(444\) 0 0
\(445\) −5.19378e9 −2.79398
\(446\) 0 0
\(447\) 2.92584e9 1.54944
\(448\) 0 0
\(449\) 1.95056e9 1.01695 0.508473 0.861078i \(-0.330210\pi\)
0.508473 + 0.861078i \(0.330210\pi\)
\(450\) 0 0
\(451\) −1.72964e8 −0.0887845
\(452\) 0 0
\(453\) 3.05729e9 1.54523
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −9.89090e6 −0.00484762 −0.00242381 0.999997i \(-0.500772\pi\)
−0.00242381 + 0.999997i \(0.500772\pi\)
\(458\) 0 0
\(459\) −1.39145e9 −0.671618
\(460\) 0 0
\(461\) −8.01965e8 −0.381243 −0.190622 0.981664i \(-0.561050\pi\)
−0.190622 + 0.981664i \(0.561050\pi\)
\(462\) 0 0
\(463\) −3.05301e8 −0.142953 −0.0714767 0.997442i \(-0.522771\pi\)
−0.0714767 + 0.997442i \(0.522771\pi\)
\(464\) 0 0
\(465\) 3.94154e9 1.81795
\(466\) 0 0
\(467\) 5.36242e8 0.243642 0.121821 0.992552i \(-0.461127\pi\)
0.121821 + 0.992552i \(0.461127\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.56911e9 −0.691959
\(472\) 0 0
\(473\) 1.93929e8 0.0842613
\(474\) 0 0
\(475\) 5.34287e9 2.28743
\(476\) 0 0
\(477\) 4.62029e8 0.194919
\(478\) 0 0
\(479\) 1.98624e9 0.825768 0.412884 0.910784i \(-0.364521\pi\)
0.412884 + 0.910784i \(0.364521\pi\)
\(480\) 0 0
\(481\) −1.13099e9 −0.463396
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.19226e9 −2.46464
\(486\) 0 0
\(487\) 8.28257e8 0.324948 0.162474 0.986713i \(-0.448053\pi\)
0.162474 + 0.986713i \(0.448053\pi\)
\(488\) 0 0
\(489\) −1.00740e9 −0.389602
\(490\) 0 0
\(491\) 1.29504e9 0.493739 0.246869 0.969049i \(-0.420598\pi\)
0.246869 + 0.969049i \(0.420598\pi\)
\(492\) 0 0
\(493\) −3.22454e9 −1.21200
\(494\) 0 0
\(495\) 1.35598e8 0.0502498
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −7.46144e7 −0.0268826 −0.0134413 0.999910i \(-0.504279\pi\)
−0.0134413 + 0.999910i \(0.504279\pi\)
\(500\) 0 0
\(501\) −4.11294e9 −1.46123
\(502\) 0 0
\(503\) −2.88380e8 −0.101036 −0.0505181 0.998723i \(-0.516087\pi\)
−0.0505181 + 0.998723i \(0.516087\pi\)
\(504\) 0 0
\(505\) 2.68652e9 0.928260
\(506\) 0 0
\(507\) −9.32178e7 −0.0317666
\(508\) 0 0
\(509\) 9.65027e8 0.324360 0.162180 0.986761i \(-0.448147\pi\)
0.162180 + 0.986761i \(0.448147\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 2.99152e9 0.978321
\(514\) 0 0
\(515\) 1.44949e9 0.467617
\(516\) 0 0
\(517\) 5.27280e7 0.0167813
\(518\) 0 0
\(519\) 3.03682e9 0.953528
\(520\) 0 0
\(521\) 5.10390e9 1.58114 0.790570 0.612372i \(-0.209784\pi\)
0.790570 + 0.612372i \(0.209784\pi\)
\(522\) 0 0
\(523\) 3.37030e9 1.03018 0.515090 0.857136i \(-0.327758\pi\)
0.515090 + 0.857136i \(0.327758\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.11262e9 1.22400
\(528\) 0 0
\(529\) −1.96870e9 −0.578210
\(530\) 0 0
\(531\) −2.43144e9 −0.704747
\(532\) 0 0
\(533\) 5.40696e9 1.54671
\(534\) 0 0
\(535\) 7.48317e9 2.11275
\(536\) 0 0
\(537\) 1.95175e9 0.543894
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 3.34596e9 0.908512 0.454256 0.890871i \(-0.349905\pi\)
0.454256 + 0.890871i \(0.349905\pi\)
\(542\) 0 0
\(543\) 7.24931e9 1.94311
\(544\) 0 0
\(545\) −1.91174e9 −0.505872
\(546\) 0 0
\(547\) 4.98263e9 1.30168 0.650838 0.759216i \(-0.274418\pi\)
0.650838 + 0.759216i \(0.274418\pi\)
\(548\) 0 0
\(549\) −3.43474e9 −0.885912
\(550\) 0 0
\(551\) 6.93256e9 1.76548
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −3.46518e9 −0.860399
\(556\) 0 0
\(557\) 4.05452e8 0.0994137 0.0497069 0.998764i \(-0.484171\pi\)
0.0497069 + 0.998764i \(0.484171\pi\)
\(558\) 0 0
\(559\) −6.06234e9 −1.46791
\(560\) 0 0
\(561\) 3.86447e8 0.0924101
\(562\) 0 0
\(563\) −5.29340e9 −1.25013 −0.625065 0.780573i \(-0.714928\pi\)
−0.625065 + 0.780573i \(0.714928\pi\)
\(564\) 0 0
\(565\) 2.28469e9 0.532915
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.70120e9 −0.387136 −0.193568 0.981087i \(-0.562006\pi\)
−0.193568 + 0.981087i \(0.562006\pi\)
\(570\) 0 0
\(571\) 3.48432e9 0.783234 0.391617 0.920128i \(-0.371916\pi\)
0.391617 + 0.920128i \(0.371916\pi\)
\(572\) 0 0
\(573\) 4.84338e9 1.07549
\(574\) 0 0
\(575\) −3.67283e9 −0.805681
\(576\) 0 0
\(577\) 6.22782e9 1.34965 0.674825 0.737978i \(-0.264219\pi\)
0.674825 + 0.737978i \(0.264219\pi\)
\(578\) 0 0
\(579\) 6.21743e9 1.33118
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 9.38519e7 0.0196157
\(584\) 0 0
\(585\) −4.23888e9 −0.875398
\(586\) 0 0
\(587\) −1.01119e9 −0.206348 −0.103174 0.994663i \(-0.532900\pi\)
−0.103174 + 0.994663i \(0.532900\pi\)
\(588\) 0 0
\(589\) −8.84189e9 −1.78296
\(590\) 0 0
\(591\) −7.26394e9 −1.44749
\(592\) 0 0
\(593\) −7.91897e9 −1.55947 −0.779736 0.626109i \(-0.784647\pi\)
−0.779736 + 0.626109i \(0.784647\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.30595e9 −0.443547
\(598\) 0 0
\(599\) −2.34123e9 −0.445093 −0.222546 0.974922i \(-0.571437\pi\)
−0.222546 + 0.974922i \(0.571437\pi\)
\(600\) 0 0
\(601\) 1.13771e8 0.0213781 0.0106891 0.999943i \(-0.496598\pi\)
0.0106891 + 0.999943i \(0.496598\pi\)
\(602\) 0 0
\(603\) −1.97736e9 −0.367262
\(604\) 0 0
\(605\) −8.12553e9 −1.49179
\(606\) 0 0
\(607\) −4.03060e9 −0.731492 −0.365746 0.930715i \(-0.619186\pi\)
−0.365746 + 0.930715i \(0.619186\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.64831e9 −0.292345
\(612\) 0 0
\(613\) 1.34356e9 0.235584 0.117792 0.993038i \(-0.462418\pi\)
0.117792 + 0.993038i \(0.462418\pi\)
\(614\) 0 0
\(615\) 1.65661e10 2.87181
\(616\) 0 0
\(617\) 6.24917e9 1.07109 0.535543 0.844508i \(-0.320107\pi\)
0.535543 + 0.844508i \(0.320107\pi\)
\(618\) 0 0
\(619\) 7.69026e9 1.30324 0.651619 0.758546i \(-0.274090\pi\)
0.651619 + 0.758546i \(0.274090\pi\)
\(620\) 0 0
\(621\) −2.05645e9 −0.344586
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −4.28212e9 −0.701583
\(626\) 0 0
\(627\) −8.30836e8 −0.134611
\(628\) 0 0
\(629\) −3.61558e9 −0.579296
\(630\) 0 0
\(631\) 6.83436e9 1.08292 0.541459 0.840727i \(-0.317872\pi\)
0.541459 + 0.840727i \(0.317872\pi\)
\(632\) 0 0
\(633\) 9.66441e8 0.151448
\(634\) 0 0
\(635\) −6.94471e9 −1.07633
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −2.89720e9 −0.439264
\(640\) 0 0
\(641\) 4.58177e9 0.687116 0.343558 0.939131i \(-0.388368\pi\)
0.343558 + 0.939131i \(0.388368\pi\)
\(642\) 0 0
\(643\) −6.98580e9 −1.03628 −0.518140 0.855296i \(-0.673376\pi\)
−0.518140 + 0.855296i \(0.673376\pi\)
\(644\) 0 0
\(645\) −1.85740e10 −2.72551
\(646\) 0 0
\(647\) −9.79379e9 −1.42163 −0.710814 0.703380i \(-0.751673\pi\)
−0.710814 + 0.703380i \(0.751673\pi\)
\(648\) 0 0
\(649\) −4.93899e8 −0.0709221
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.22131e10 1.71645 0.858223 0.513276i \(-0.171568\pi\)
0.858223 + 0.513276i \(0.171568\pi\)
\(654\) 0 0
\(655\) −1.67758e10 −2.33260
\(656\) 0 0
\(657\) −1.48133e9 −0.203785
\(658\) 0 0
\(659\) −6.39022e9 −0.869795 −0.434898 0.900480i \(-0.643215\pi\)
−0.434898 + 0.900480i \(0.643215\pi\)
\(660\) 0 0
\(661\) 1.93942e9 0.261196 0.130598 0.991435i \(-0.458310\pi\)
0.130598 + 0.991435i \(0.458310\pi\)
\(662\) 0 0
\(663\) −1.20806e10 −1.60987
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.76562e9 −0.621841
\(668\) 0 0
\(669\) 5.36140e9 0.692287
\(670\) 0 0
\(671\) −6.97699e8 −0.0891536
\(672\) 0 0
\(673\) −9.25555e8 −0.117044 −0.0585221 0.998286i \(-0.518639\pi\)
−0.0585221 + 0.998286i \(0.518639\pi\)
\(674\) 0 0
\(675\) 5.25930e9 0.658210
\(676\) 0 0
\(677\) −5.49367e9 −0.680460 −0.340230 0.940342i \(-0.610505\pi\)
−0.340230 + 0.940342i \(0.610505\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.94244e10 2.35686
\(682\) 0 0
\(683\) −4.14007e9 −0.497205 −0.248603 0.968606i \(-0.579971\pi\)
−0.248603 + 0.968606i \(0.579971\pi\)
\(684\) 0 0
\(685\) 3.72603e8 0.0442925
\(686\) 0 0
\(687\) −1.62208e10 −1.90864
\(688\) 0 0
\(689\) −2.93387e9 −0.341723
\(690\) 0 0
\(691\) −1.04694e10 −1.20711 −0.603555 0.797321i \(-0.706250\pi\)
−0.603555 + 0.797321i \(0.706250\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.95122e9 0.672448
\(696\) 0 0
\(697\) 1.72851e10 1.93356
\(698\) 0 0
\(699\) −1.81127e10 −2.00592
\(700\) 0 0
\(701\) 1.45142e10 1.59141 0.795703 0.605686i \(-0.207101\pi\)
0.795703 + 0.605686i \(0.207101\pi\)
\(702\) 0 0
\(703\) 7.77327e9 0.843840
\(704\) 0 0
\(705\) −5.05016e9 −0.542805
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.12754e10 −1.18815 −0.594074 0.804410i \(-0.702481\pi\)
−0.594074 + 0.804410i \(0.702481\pi\)
\(710\) 0 0
\(711\) 9.09669e8 0.0949160
\(712\) 0 0
\(713\) 6.07814e9 0.627997
\(714\) 0 0
\(715\) −8.61043e8 −0.0880955
\(716\) 0 0
\(717\) 4.14614e9 0.420075
\(718\) 0 0
\(719\) 5.68142e9 0.570041 0.285020 0.958521i \(-0.408000\pi\)
0.285020 + 0.958521i \(0.408000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −4.68343e8 −0.0460871
\(724\) 0 0
\(725\) 1.21879e10 1.18781
\(726\) 0 0
\(727\) 1.98501e9 0.191599 0.0957993 0.995401i \(-0.469459\pi\)
0.0957993 + 0.995401i \(0.469459\pi\)
\(728\) 0 0
\(729\) −5.44705e8 −0.0520733
\(730\) 0 0
\(731\) −1.93802e10 −1.83505
\(732\) 0 0
\(733\) 5.03969e9 0.472651 0.236325 0.971674i \(-0.424057\pi\)
0.236325 + 0.971674i \(0.424057\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.01662e8 −0.0369594
\(738\) 0 0
\(739\) −1.10178e10 −1.00425 −0.502124 0.864796i \(-0.667448\pi\)
−0.502124 + 0.864796i \(0.667448\pi\)
\(740\) 0 0
\(741\) 2.59725e10 2.34504
\(742\) 0 0
\(743\) 4.80549e9 0.429810 0.214905 0.976635i \(-0.431056\pi\)
0.214905 + 0.976635i \(0.431056\pi\)
\(744\) 0 0
\(745\) −2.08403e10 −1.84654
\(746\) 0 0
\(747\) 3.01955e9 0.265045
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.65858e10 1.42888 0.714440 0.699697i \(-0.246682\pi\)
0.714440 + 0.699697i \(0.246682\pi\)
\(752\) 0 0
\(753\) 6.40643e9 0.546806
\(754\) 0 0
\(755\) −2.17766e10 −1.84152
\(756\) 0 0
\(757\) −1.01328e10 −0.848973 −0.424487 0.905434i \(-0.639545\pi\)
−0.424487 + 0.905434i \(0.639545\pi\)
\(758\) 0 0
\(759\) 5.71139e8 0.0474128
\(760\) 0 0
\(761\) 1.63036e9 0.134103 0.0670514 0.997750i \(-0.478641\pi\)
0.0670514 + 0.997750i \(0.478641\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.35509e10 −1.09435
\(766\) 0 0
\(767\) 1.54396e10 1.23553
\(768\) 0 0
\(769\) −3.58444e9 −0.284236 −0.142118 0.989850i \(-0.545391\pi\)
−0.142118 + 0.989850i \(0.545391\pi\)
\(770\) 0 0
\(771\) −3.65945e9 −0.287558
\(772\) 0 0
\(773\) −1.00689e10 −0.784069 −0.392034 0.919951i \(-0.628229\pi\)
−0.392034 + 0.919951i \(0.628229\pi\)
\(774\) 0 0
\(775\) −1.55446e10 −1.19957
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.71619e10 −2.81654
\(780\) 0 0
\(781\) −5.88508e8 −0.0442052
\(782\) 0 0
\(783\) 6.82411e9 0.508019
\(784\) 0 0
\(785\) 1.11765e10 0.824639
\(786\) 0 0
\(787\) 1.73869e10 1.27149 0.635743 0.771901i \(-0.280694\pi\)
0.635743 + 0.771901i \(0.280694\pi\)
\(788\) 0 0
\(789\) 5.26197e9 0.381398
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 2.18105e10 1.55314
\(794\) 0 0
\(795\) −8.98891e9 −0.634486
\(796\) 0 0
\(797\) −2.03291e10 −1.42238 −0.711189 0.703001i \(-0.751843\pi\)
−0.711189 + 0.703001i \(0.751843\pi\)
\(798\) 0 0
\(799\) −5.26936e9 −0.365464
\(800\) 0 0
\(801\) −1.56806e10 −1.07808
\(802\) 0 0
\(803\) −3.00902e8 −0.0205079
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.63033e10 1.09199
\(808\) 0 0
\(809\) −5.56009e9 −0.369200 −0.184600 0.982814i \(-0.559099\pi\)
−0.184600 + 0.982814i \(0.559099\pi\)
\(810\) 0 0
\(811\) 1.89473e10 1.24731 0.623655 0.781700i \(-0.285647\pi\)
0.623655 + 0.781700i \(0.285647\pi\)
\(812\) 0 0
\(813\) −1.12061e8 −0.00731370
\(814\) 0 0
\(815\) 7.17556e9 0.464306
\(816\) 0 0
\(817\) 4.16663e10 2.67305
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.58667e10 −1.00066 −0.500329 0.865835i \(-0.666788\pi\)
−0.500329 + 0.865835i \(0.666788\pi\)
\(822\) 0 0
\(823\) 1.70234e10 1.06450 0.532251 0.846586i \(-0.321346\pi\)
0.532251 + 0.846586i \(0.321346\pi\)
\(824\) 0 0
\(825\) −1.46067e9 −0.0905653
\(826\) 0 0
\(827\) 3.25344e9 0.200020 0.100010 0.994986i \(-0.468112\pi\)
0.100010 + 0.994986i \(0.468112\pi\)
\(828\) 0 0
\(829\) 2.58845e10 1.57797 0.788985 0.614412i \(-0.210607\pi\)
0.788985 + 0.614412i \(0.210607\pi\)
\(830\) 0 0
\(831\) 2.24108e10 1.35473
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.92958e10 1.74142
\(836\) 0 0
\(837\) −8.70358e9 −0.513049
\(838\) 0 0
\(839\) −2.19214e10 −1.28145 −0.640724 0.767771i \(-0.721366\pi\)
−0.640724 + 0.767771i \(0.721366\pi\)
\(840\) 0 0
\(841\) −1.43567e9 −0.0832278
\(842\) 0 0
\(843\) −9.31706e9 −0.535652
\(844\) 0 0
\(845\) 6.63977e8 0.0378577
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.42833e10 −0.801034
\(850\) 0 0
\(851\) −5.34355e9 −0.297219
\(852\) 0 0
\(853\) 3.22899e10 1.78133 0.890666 0.454657i \(-0.150238\pi\)
0.890666 + 0.454657i \(0.150238\pi\)
\(854\) 0 0
\(855\) 2.91337e10 1.59409
\(856\) 0 0
\(857\) 2.54343e10 1.38034 0.690172 0.723646i \(-0.257535\pi\)
0.690172 + 0.723646i \(0.257535\pi\)
\(858\) 0 0
\(859\) −1.99925e10 −1.07619 −0.538096 0.842883i \(-0.680856\pi\)
−0.538096 + 0.842883i \(0.680856\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.38285e9 0.126200 0.0630998 0.998007i \(-0.479901\pi\)
0.0630998 + 0.998007i \(0.479901\pi\)
\(864\) 0 0
\(865\) −2.16308e10 −1.13636
\(866\) 0 0
\(867\) −1.45170e10 −0.756503
\(868\) 0 0
\(869\) 1.84781e8 0.00955186
\(870\) 0 0
\(871\) 1.25562e10 0.643866
\(872\) 0 0
\(873\) −1.86952e10 −0.950999
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −2.02965e9 −0.101607 −0.0508033 0.998709i \(-0.516178\pi\)
−0.0508033 + 0.998709i \(0.516178\pi\)
\(878\) 0 0
\(879\) −3.13975e10 −1.55932
\(880\) 0 0
\(881\) 2.02197e10 0.996231 0.498116 0.867111i \(-0.334026\pi\)
0.498116 + 0.867111i \(0.334026\pi\)
\(882\) 0 0
\(883\) 2.38857e10 1.16755 0.583775 0.811916i \(-0.301575\pi\)
0.583775 + 0.811916i \(0.301575\pi\)
\(884\) 0 0
\(885\) 4.73045e10 2.29404
\(886\) 0 0
\(887\) −3.47065e10 −1.66985 −0.834926 0.550363i \(-0.814489\pi\)
−0.834926 + 0.550363i \(0.814489\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.52665e9 −0.0723048
\(892\) 0 0
\(893\) 1.13288e10 0.532358
\(894\) 0 0
\(895\) −1.39020e10 −0.648183
\(896\) 0 0
\(897\) −1.78542e10 −0.825974
\(898\) 0 0
\(899\) −2.01697e10 −0.925849
\(900\) 0 0
\(901\) −9.37907e9 −0.427192
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.16358e10 −2.31569
\(906\) 0 0
\(907\) −1.35367e10 −0.602405 −0.301203 0.953560i \(-0.597388\pi\)
−0.301203 + 0.953560i \(0.597388\pi\)
\(908\) 0 0
\(909\) 8.11092e9 0.358176
\(910\) 0 0
\(911\) 1.62909e10 0.713889 0.356945 0.934126i \(-0.383819\pi\)
0.356945 + 0.934126i \(0.383819\pi\)
\(912\) 0 0
\(913\) 6.13362e8 0.0266728
\(914\) 0 0
\(915\) 6.68239e10 2.88375
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.09325e10 0.464641 0.232320 0.972639i \(-0.425368\pi\)
0.232320 + 0.972639i \(0.425368\pi\)
\(920\) 0 0
\(921\) −3.86035e10 −1.62824
\(922\) 0 0
\(923\) 1.83972e10 0.770096
\(924\) 0 0
\(925\) 1.36659e10 0.567732
\(926\) 0 0
\(927\) 4.37619e9 0.180433
\(928\) 0 0
\(929\) 2.90569e10 1.18903 0.594516 0.804084i \(-0.297344\pi\)
0.594516 + 0.804084i \(0.297344\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 3.25648e9 0.131269
\(934\) 0 0
\(935\) −2.75260e9 −0.110129
\(936\) 0 0
\(937\) 3.95737e10 1.57151 0.785757 0.618535i \(-0.212273\pi\)
0.785757 + 0.618535i \(0.212273\pi\)
\(938\) 0 0
\(939\) 2.65113e10 1.04496
\(940\) 0 0
\(941\) −2.76957e10 −1.08355 −0.541774 0.840524i \(-0.682247\pi\)
−0.541774 + 0.840524i \(0.682247\pi\)
\(942\) 0 0
\(943\) 2.55461e10 0.992049
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.55874e10 −1.36167 −0.680834 0.732438i \(-0.738383\pi\)
−0.680834 + 0.732438i \(0.738383\pi\)
\(948\) 0 0
\(949\) 9.40641e9 0.357266
\(950\) 0 0
\(951\) 3.60581e9 0.135947
\(952\) 0 0
\(953\) −2.97100e10 −1.11193 −0.555964 0.831206i \(-0.687651\pi\)
−0.555964 + 0.831206i \(0.687651\pi\)
\(954\) 0 0
\(955\) −3.44987e10 −1.28171
\(956\) 0 0
\(957\) −1.89526e9 −0.0699001
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.78790e9 −0.0649849
\(962\) 0 0
\(963\) 2.25926e10 0.815218
\(964\) 0 0
\(965\) −4.42858e10 −1.58642
\(966\) 0 0
\(967\) −2.76167e10 −0.982152 −0.491076 0.871117i \(-0.663396\pi\)
−0.491076 + 0.871117i \(0.663396\pi\)
\(968\) 0 0
\(969\) 8.30294e10 2.93156
\(970\) 0 0
\(971\) −3.89828e10 −1.36649 −0.683245 0.730189i \(-0.739432\pi\)
−0.683245 + 0.730189i \(0.739432\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 4.56614e10 1.57773
\(976\) 0 0
\(977\) 3.37230e10 1.15690 0.578450 0.815718i \(-0.303658\pi\)
0.578450 + 0.815718i \(0.303658\pi\)
\(978\) 0 0
\(979\) −3.18521e9 −0.108492
\(980\) 0 0
\(981\) −5.77177e9 −0.195195
\(982\) 0 0
\(983\) −2.62407e10 −0.881126 −0.440563 0.897722i \(-0.645221\pi\)
−0.440563 + 0.897722i \(0.645221\pi\)
\(984\) 0 0
\(985\) 5.17399e10 1.72504
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.86425e10 −0.941507
\(990\) 0 0
\(991\) −8.79302e9 −0.286999 −0.143500 0.989650i \(-0.545836\pi\)
−0.143500 + 0.989650i \(0.545836\pi\)
\(992\) 0 0
\(993\) −2.39510e10 −0.776249
\(994\) 0 0
\(995\) 1.64249e10 0.528595
\(996\) 0 0
\(997\) −3.94096e10 −1.25941 −0.629707 0.776833i \(-0.716825\pi\)
−0.629707 + 0.776833i \(0.716825\pi\)
\(998\) 0 0
\(999\) 7.65168e9 0.242816
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.8.a.d.1.2 5
7.2 even 3 28.8.e.a.25.4 yes 10
7.3 odd 6 196.8.e.f.177.2 10
7.4 even 3 28.8.e.a.9.4 10
7.5 odd 6 196.8.e.f.165.2 10
7.6 odd 2 196.8.a.e.1.4 5
21.2 odd 6 252.8.k.c.109.5 10
21.11 odd 6 252.8.k.c.37.5 10
28.11 odd 6 112.8.i.d.65.2 10
28.23 odd 6 112.8.i.d.81.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.8.e.a.9.4 10 7.4 even 3
28.8.e.a.25.4 yes 10 7.2 even 3
112.8.i.d.65.2 10 28.11 odd 6
112.8.i.d.81.2 10 28.23 odd 6
196.8.a.d.1.2 5 1.1 even 1 trivial
196.8.a.e.1.4 5 7.6 odd 2
196.8.e.f.165.2 10 7.5 odd 6
196.8.e.f.177.2 10 7.3 odd 6
252.8.k.c.37.5 10 21.11 odd 6
252.8.k.c.109.5 10 21.2 odd 6